	Advanced P	roblem Pa	ckage	Surf., B	o., Practical Or	g. Che	m. & Polymers
			SINGLE C	ORRECT AN	SWER TYPE		
h of th	e following Que	stion has 4	choices A, E	8, C & D, out	of which ONLY (ONE Ch	oice is Correct.
Alco (A) (C)	ohols and phenols NaHCO3 so Tollen's tes	can be distin olution st	guished by	(B) (D)	neutral ferric ch ester test	ıloride s	olution
59 g (A)	g of an amide obtai formic acid	ined from a c (B)	arboxylic aci acetic acid	d, RCOOH on l (C)	hydrolysis gave 1 propionic acid	7 g amn (D)	nonia. The acid is butyric acid
A co (A)	ompound contains CH ₃ NH ₂	38.7% carbo (B)	n, 16.13% hy CH3CN	drogen and 4: (C)	5.17% nitrogen. Th C ₂ H ₅ CN	ne formu (D)	lla of the compound wou CH ₂ (NH ₂) ₂
Ben (A) (C)	zoic acid and 2, 4- aqueous Na litmus test	dinitropheno aHCO3	l can be disti	nguished by th (B) (D)	e reagent : Fehling's soluti cerric ammoniu	on m nitrat	e solution
An of h	organic compound ydrogen in the org	l weighing 20 anic compou) g is subjectend is	ed to combust	on with oxygen a	nd it gav	re 10 g of water. The per
(A)	67.2%	(B)	. 33.33%	(C)	2.85%	(D)	5.55%
The	percentage of sub	pnur in the	organic comp bod vielded () 35 g of bariu	0.2595 g of a sulp m sulphote is	onur con	taining organic compot
(A)	14 52%	(B)	16 52%	(C)	18 52%	(JI)	19 52%
(11)	6.4	(D)			1:1:	(D)	200 1 C1 M HCL D
6 g	of the organic con	npound on ne	ating with N	aOH gave NF	3, which is neutra	lized by	200 ml of 1 N HCl. Per
(A)	12%	(B)	60%	(\mathbf{C})	26.67%	(JI)	46 67%
(1-)		(1)		(0)	20.0770	(2)	1010770
Whi (A)	$\begin{array}{c} \text{Hoch}_2 \\ \text{Hoch}_2 \\$	g structures r O H H (B) OH OH	HOCH ₂ HOCH ₂ H HO HO H	-O OH H (C) H OH	HOCH ₂ H H O H H H H HO O H	(D) H	HOCH ₂ H H O H H HO OH HO H HO
Whi	ich of the followin	g monosacch	aride is not o	xidised with a	queous Br ₂ ?		
(A)	D-glucose	(B)	D-mannos	e (C)	D-fructose	(D)	D-galactose
Mut	arotation is charac	teristic for al	1				
(A)	Sugars that	can reduce 7	'ollen's reage	ent and Fehling	g's reagent		
(B)	Sugars that	are devoid o	f reducing pr	operties			
(C)	Polysaccha	rides, that are	e insoluble in	water			
(D)	Polyhydric	aldehydes ar	d ketones wi	thout asymme	tric centres		
D-g	lucose in dilute all	caline or acid	ic solution co	ontains			
(A)	50% each (of α-D-glucos	e and β-D-gl	ucose			
(B)	64% of α-E) -glucose and	$136\% \text{ of } \beta\text{-}D$	-glucose			
(C)	36% of α-L	p-glucose and	104% of β -D	-glucose			
(D)	33% each c	πα-D-glucos	e, p-D-gluco	se and open st	ructure		

177

Surf., Bio., Practical Org. Chem. & Polymers

APP | Chemistry

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 12. Denaturation of a native protein cannot be achieved by adding urea to the protein solution **(B)** adding HCl to the protein solution (A) **(C)** heating the protein solution (D) adding NaCl to the solution If K_{a_1} and K_{a_2} are the ionization constants of $H_3 \overset{+}{N}CH(R)COOH$ and $H_3 \overset{+}{N}CH(R)COO^-$, respectively, the pH of 13. the solution at the isoelectric point is : $pH = \left(pK_{a_1}pK_{a_2}\right)^{1/2}$ **(B)** (A) $pH = pK_{a_1} + pK_{a_2}$ $pH = \left(pK_{a_1} + pK_{a_2}\right)^{1/2}$ $pH = \left(pK_{a_1} + pK_{a_2}\right)/2$ **(C) (D)** 14. Natural silk is a polymer of Amino acids **(B)** Nucleoside **(C)** Nucleotide **(D)** Adipic acid (A) 15. Vulcanised rubbers are polymers of the type all of these linear **(B)** cross-linked (C) branch-chain **(D)** (A) Which of the following compound cannot be a monomer? 16. $CH_3 - CHOH - CH_2OH$ $NH_2 - CH_2 - NH_2$ (A) **(B)** $NH = CH - CH - CH_2 - NH_2$ (C) $CH_3 - CH_2 - NH_2$ **(D)** NH₂ 17. Which of the following sets contain only addition polymers? Polyethylene, polypropylene, terylene Polyethylene, PVC, orlon (A) **(B) (C)** Buna-S, nylon, polybutadiene **(D)** Bakelite, PVC, polyethylene 18. Observe the following laboratory tests for α -D(+) glucose and mention +ve or -ve from the code given below. 2, 4 DNP (I) $\rm NH_2OH/H^{\oplus}$ (II) α – D (+) glucose.

(A) ++++ (B) -++-

19. Which of the following is a non-reducing sugar?

(A)
$$HO \xrightarrow{CH_2OH O}_{OH H} \xrightarrow{HO}_{H CH_2OH} \xrightarrow{OH}_{OH H} \xrightarrow{OH}_{OH}$$

(C)
$$HO \xrightarrow{CH_2OH O}_{OH O} \xrightarrow{HO}_{OH O} \xrightarrow{CH_2OH}_{OH O}$$

APP | Chemistry

(D)

Surf., Bio., Practical Org. Chem. & Polymers

(C)

(B)

(B)

(D)

- 20. Basic solution of fructose contains
 - (A) Only fructose
 - **(C)** Fructose and glucose
- 21. Which of the following is an non-reducing sugar?

(A)
$$OHCH_2 - C - (CHOH)_3 - CH_2OH$$

- Compounds I and II can be distinguished by using reagent. 22. II.
 - 4-Amino-2-methylbut-3-en-2-ol I.

(A)
$$NaNO_2/HCl$$

(C)
$$HCl / ZnCl_2$$
 (anhydrous) (D)

23. The compound A gives following reactions Na metal

A(C₆H₈O₂)

$$O_3$$

 $H_2 gas \uparrow$
 $Q_3 \to B(C_6H_8O_4)$

Its structure can be :

(A)
$$CH_2 = CH - (CH_2)_2 - C - CH_2OH$$
 (B)

OH (C)

25. ises

Adsorption of Ca2+ and Mg2+ ions of hard water replacing Na+ ions (A)

(B) Adsorption of Ca2+ and Mg2+ of hard water replacing Al3+ ions None of these

Both (A) and (B) **(C) (D)**

- **(B)** Only glucose
- **(D)** Glucose, fructose and mannose

4-Amino-2, 2-dimethylbut-3-yn-1-ol Br_2/H_2O Cu₂Cl₂ / NH₄OH

 $OHC - (H_2C)_2 - HC = HC - COOH$

- 26. Which of the following statements is not correct?
 - (A) A colloidal solution is a heterogeneous two-phase system
 - (B) Silver sol in water is an examples of lyophilic solution
 - (C) Metal hydroxides in water are examples of lyophobic solution
 - (D) Liquid-liquid colloidal solution is not stable system
- 27. A reddish brown sol (containing Fe^{3+}) is obtained by
 - (A) the addition of small amount of FeCl₃ solution to freshly prepared Fe(OH)₃ precipitate
 - (B) the addition of $Fe(OH)_3$ to freshly prepared $FeCl_3$ solution
 - (C) the addition of NH_4OH to $FeCl_3$ solution dropwise
 - (D) the addition of NaOH to FeCl₃ solution dropwise

28. Which is not the example of coagulation?

	(A) (C)	curdling of mil	k and chrou	ne tanning	(B)	purification of v	vater by	addition of alu	ım
	(C)	rubber platting		ine taining	(D)	Iormation of de	lias ai ill	e liver beus	
29.	Gold ni	umber of some lyop	philic sol	s are:					
	I.	Casein	:	0.01	II.	Haemoglobin	:	0.03	
	III.	Gum Arabic	:	0.15	IV.	Sodium oleate	:	0.40	
	Which	has maximum prot	ective po	ower?					
	(A)	Ι	(B)	II	(C)	III	(D)	IV	
30.	Which	are not purely surf	ace phen	omena?					
	(A)	viscosity, surfa	ce tensio	n	(B)	adsorption, abso	orption		
	(C)	absorption, vis	cosity		(D)	adsorption, visc	osity		
31.	The dia	meter of colloidal	particle i	s of the order					
	(A)	10 ⁻³ m	(B)	10 ⁻⁵ m	(C)	10^{-15} m	(D)	10 ⁻⁷ m	

Paragraph for Questions 32 - 35

Carbohydrates are polyhydroxy aldehydes and ketones and those compounds which on hydrolysis give such compounds are also carbohydrates. The carbohydrates which are not hydrolysed are called monosaccharides. Other carbohydrates are oligosaccharides and polysaccharides. Monosaccharides with aldehydic group are called aldoses and those with free ketonic group are called ketoses. All carbohydrates are optically active. Number of optical isomer = 2^n

Where n = number of asymmetric carbons. Carbohydrates are mainly synthesized by plants during photosynthesis

32.	Maximum number of monosaccharide units present in oligosaccharides is :							
	(A)	8	(B)	10	(C)	15	(D)	40
33.	Aldose	sugar present in i	nucleic aci	d is :				
	(A)	arabinose	(B)	xylose	(C)	deoxyribose	(D)	all of these
34.	First m	ember of ketose s	ugar is :					
	(A)	ketotriose	(B)	ketotetrose	(C)	ketopentose	(D)	ketohexose
35.	In the r	nolecule, HOCH ₂	CH(OH)C	H(OH)CH(OH)C	CH(OH)CH	HO, the number of	f optical i	somers will be :
	(A)	16	(B)	8	(C)	32	(D)	4

Paragraph for Questions 36 - 37

In 1953, Karl Ziegler and Giulio Natta found that the structure of a polymer could be controlled if the growing end of the chain and the incoming monomer were co-ordinated with an aluminium-titanium intiator. These initiators are now called Ziegler-Natta catalysts. Long, unbranched polymers with either the isotactic or the syndiotactic depends on the particular Ziegler-Natta catalyst used. High-density polyethylene is prepared using a Ziggler-Natta process.

- 36. Which of the following statement is incorrect about Ziegler-Natta polymerisation?
 - It is an example of condensation polymerisaiton (A)
 - **(B)** It always give linear, stereo - regular polymers
 - **(C)** They make stronger and stiffer polymers
 - **(D)** The polymers formed have great resistance to cracking and heat
- 37. Which of the following option correctly represent the polymerisation process?

(A)
$$HC = CH - \frac{Ziegler - Nata}{Catalyst} - CH = CH - \left[CH = CH\right]_{n} - CH = CH - (polyacetylene)$$

(B)
$$(I, 3-Butadiene monomers) - \frac{Ziegler - Natta}{Catalyst} + \frac{Cis-poly(1, 3-butadiene)}{synthetic rubber}$$

(C)
$$CH_{2} = C - CH = CH_{2} - \frac{Ziegler - Natta}{Catalyst} + \frac{CI}{Catalyst} + \frac{CI}{CI} +$$

Paragraph for Questions 38 - 40

An amino acid is characterized by two pKa values the one corresponding to the more acidic site is designated as pKa1 and the other corresponding to the less acidic site is designated as pKa2. The isoelectric point also called isoinoic point (pI) is the pH at which concentration of zwitter ion is maximum. pI is the average of pKa1 and pKa2. Generally the value of pI is slightly less than 7. Some amino acids have side chain with acidic or basic groups. These amino acids have pKa₃ value also for the side chain. Acidic amino acids have acidic side chains and basic amino acids have basic side chains. pI for acidic amino acid is average of pKa1 and pKa2 pI for basic amino acid is the average of pKa2 and pKa3

	S.No.	Amino acid	pKa ₁	pKa ₂	pK _{a3} (si	de chain)			
	I.	Aspartic acid	1.88	9.6	3.0	65			
	II.	Glutamic acid	2.19	9.67	4.2	25			
	III.	Lysine	2.18	8.95	10.	53			
	IV.	Arginine	2.17	9.04	12.	48			
38.	In the ta	ble given above the	acidic am	ino acids ar	e		-		
	(A)	I, II	(B)	I, III	(C)	II, III	(D)	I, II & IV	
39.	The isoe	lectric point (pI) of	Aspartic a	icid will be					
	(A)	6.62	(B)	5.74	(C)	2.77	(D)	9.74	
40.	The isoe	lectric point of lysi	ne will be						
	(A)	6.35	(B)	9.74	(C)	2.77	(D)	10.76	
APF	P Chemi	stry			181	Surf	., Bio., Practi	cal Org. Chem.	& Po

Surf., Bio., Practical Org. Chem. & Polymers

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

41. Which of the following are correct statements

- Spontaneous adsorption of gases on solid surface is an exothermic process as entropy decreases during **(A)** adsorption.
- **(B)** Formation of micelles takes place when temperature is below Kraft Temperature (T_k) and concentration is above critical micelle concentration (CMC).
- A colloid of $Fe(OH)_3$ is prepared by adding a little excess (required to completely precipitate Fe^{3+} ions as **(C)** Fe(OH)₃)) of NaOH in FeCl₃ solution the particles of this sol will more towards cathode during electrophoresis.
- According to Hardy-Schulze rules the coagulation (flocculating) value of Fe³⁺ ion will be more than Ba²⁺ or Na⁺. **(D)**
- Compound (X) C₉H₁₀O is inert to Br₂ / CCl₄. Vigorous oxidation with hot alkaline KMnO₄ /OH yields C₆H₅COOH. 42. (X) gives precipitate with 2, 4-dinitrophenyl hydrazine. How can these isomers be distinguished by the usual chemical tests? Following are possible isomers of X. п СЦ

	I.	$C_6H_5 - CH_2 - CH_2 -$	CHO	II.	C_6H_5	-CH-CHO		
						CH3		
		O				O U		
	III.	$C_6H_5 - CH_2 - CH_2 - CH_2$	[3]	IV.	C ₆ H ₅	$-\overset{\text{II}}{\text{C}}$ - CH ₂ - C	CH ₃	
	(A)	I gives red ppt. with Feh	ling solution and II a	nd III (can be di	stinguished by i	odoform te	st
	(B)	I and II can be distinguis	shed by simple chemi	ical me	thod			
	(C)	I and II give red ppt. wit	h Fehling solution an	id III a	nd IV ca	n be distinguish	ed by iodof	form test
	(D)	II give red ppt. with Feh	ling solution and I an	nd IV c	an be dis	tinguished by id	odoform tes	st
43.	Which	is /are the correct method for	r separating a mixtur	e of be	nzoic ac	id, p-methyl ani	line and ph	enol.
	(A)	$\xrightarrow{aq. NaHCO_3} \xrightarrow{aq. Na}$	aOH →	(B)	aq. I	$\xrightarrow{\text{ICl}}$ aq. NaHe	$\xrightarrow{\text{CO}_3}$	
	(C)	$\xrightarrow{aq. NaOH} aq. NaHe$	$\xrightarrow{CO_3}$	(D)	aq. 1	$\xrightarrow{\text{NaOH}} \xrightarrow{\text{aq. He}}$	$\xrightarrow{c_1}$	
44.	Which	of the following statements	are true for physisorp	otion?				
	(A)	Extent of adsorption inc	reases with increase i	in press	sure	(B) It no	eds activat	ion energy
	(C)	It can be reversed easily				(D) It oc	curs at hig	h temperature
45.	If Cl ₂ g	gas is enclosed in presence	e of powdered charce	oal in	a closed	vessel, the pro-	essure of th	ne gas decreases. It i
	because							
	(A) (P)	the gas molecules are at	sorbed at the surface	of the o	horocal			
	(B) (C)	the gas molecules are ad	sorbed at the surface	n me c	(D)	the gas mole	cules are de	sorbed by the surface
46	When n	egatively charged colloids l	ike As ₂ S ₂ sol is adde	d to po	sitively	harged Fe(OH)	, sol in suit	table amounts
TU .	(A)	Both the sols are precipi	tated simultaneously	u to po	(B)	This process	is called m	utual coagulation
	(C)	They become positively	charged colloids		(D)	They become	negatively	v charged colloids
47	Which	of the following are multim	olecular colloids?					
• / •	(A)	Sulphur (B)	Egg albumin in wa	ater	(C)	Gold sol	(D)	Soap solution
19	Which	of the following are based o	n Tymdall affact?					
40.	(A)	Ultra microscone (B)	Deltas	(\mathbf{C})	Blue c	olour of sky	ന	Coagulation
	()		Denub	(0)	Diae	orour or sky	(2)	Couguiation
AP	P Chem	istry	182		S	urf., Bio., Prac	tical Org.	Chem. & Polymers

- **55.** The correct statements about peptides are :
 - (A) A dipeptide has one peptide link between two amino acids
 - (B) By convention N-Terminus is kept at left and C-terminus at right in the structure of a peptide
 - (C) If only one amino group and one carboxylic acid group are available for reaction, then only one dipeptide can forms
 - (D) A polypeptide with more than hundred amino acid residues (mol. Mass > 10,000) is called a protein
- 56. Which of the following are polyamide polymer ?
 - (A) protein (B) Nylon-6, 6
 - (C)Nylon-6(D)Polystyrene
- 57. Preparation of nylon from hexamethylene diamine and adipic acid is an example of :
 - (A) addition polymerisation (B) homopolymerisation
 - (C) condensation polymerisation (D) copolymerisation
- **58.** The correct statement(s) about starch :
 - (A) It is a pure single compound
 - (B) It is mixture of two polysaccharides of glucose
 - (C) it involves the $(C_1 C_4) \alpha$ glycosidic linkage between two α Dglucose units
 - **(D)** It involves branching by $(C_1 C_6)$ glycosidic linkage
- **59.** Which of the following pairs is (are) correctly matched
 - (A) $\alpha D(+)$ glucose and $\beta D(+)$ glucose $\rightarrow C-2$ epimers
 - (B) Glucose and fructose \rightarrow C-3 epimers
 - (C) Glucose \rightarrow mutarotation
 - **(D)** Sucrose \rightarrow Glucose + fructose
- **60.** Structures of some common polymers are given. Which are correctly presented ?
 - (A) Teflon $(CF_2 CF_2 -)_n$

(B) Neoprene
$$\begin{pmatrix} -CH_2 - C = CH - CH_2 - CH_$$

(C) Terylene
$$(OC - COOCH_2 - CH_2 - O -)_n$$

- **(D)** Nylon 6, $6 + NH(CH_2)_6 NHCO(CH_2)_4 CO]_n$
- 61. The correct structure of glycine at given pH are : (Isoelectric point is 6)

(A)
$$H_3^{\bigoplus} CH_2 - C - OH$$
 at pH = 2.0 (B) $H_3^{\bigoplus} CH_2 - C - O^{\ominus}$ at pH = 6.0
 $\downarrow O$ $\downarrow O$

APP | Chemistry

- **62.** The correct statements about anomers are :
 - (A) Anomers have different stereochemistry at C-1(anomeric carbon)
 - (B) αD -glucopyranose and βD -glucopyranose are anomers
 - (C) Both anomers of D-glucopyranose can be crystallised and purified
 - (D) When pure αD glucopyranose is dissolved in water its optical rotation slowly changes
- **63.** Which of the following are correctly matched ?
 - Nylon-6, 6 Condensation (B) Cellulose triacetate Natural polymer
 - (C) Polyisoprene Homopolymer (D) Sucrose Polysaccharide
- 64. Correct statement about peptide linkage in a protein molecule is/are correct ?
 - It is amide linkage (B) It has partial double bond character
 - (C) It is hydrophilic in nature (D) It connects protein molecules through H-bonds

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

65. MATCH THE FOLLOWING:

(A)

(A)

	Column I (Estimation / detection of elements		Column II (Methods)
(A)	Estimation of halogens	(p)	Kjeldahl's method
(B)	Estimation of carbon and hydrogen	(q)	Dumas method
(C)	Estimation of nitrogen	(r)	Carius method
(D)	Estimation of sulphur	(s)	Leibig's method

66. MATCH THE FOLLOWING:

	Column I		Column II
(A)	OH	(p)	CAN test
(B)	СН,ОН	(q)	Ester test
(C)	СНО	(r)	Oxidation test
(D)	NHCH,	(s)	Libermann's test

67. MATCH THE FOLLOWING :

	Column I		Column II
(A)	α -D-glucose and β -D-glucose	(p)	Reducing sugar
(B)	D-glucose and D-galactose	(q)	Non-reducing sugar
(C)	D-glucose and D-mannose	(r)	Anomer
(D)	Methyl α -D-glucoside and Methyl β -D-glucoside	(s)	Epimer
		(t)	Shows mutarotation

68. MATCH THE FOLLOWING :

	Column I		Column II
(A)	Glutamic acid	(p)	Neutral amino acid
(B)	Arginine	(q)	Acidic amino acid
(C)	Asparagine	(r)	Polar amino acid
(D)	Phenyl alanine	(s)	Optically active amino acid

69. MATCH THE FOLLOWING :

	Column I		Column II
(A)	Nylon 6, 10	(p)	Polyester
(B)	Glyptal	(q)	Polymide
(C)	Teflon	(r)	Condensation polymer
(D)	Bakelite	(s)	Addition polymer

70. MATCH THE FOLLOWING :

	Column I		Column II
(A)	Polythene	(p)	Addition polymer
(B)	Buna-S rubber	(q)	Condensation polymer
(C)	Melamine-formaldehyde resin	(r)	Homopolymer
(D)	Poly-hydroxy butyrate-co-β- Hydroxyvalerate	(s)	Copolymer

71. MATCH THE FOLLOWING :

	Column I		Column II
(A)	Ferric hydroxide	(p)	Lyophobic colloid
(B)	Micelles	(q)	Lyophilic colloid
(C)	Gelatin	(r)	Associated colloid
(D)	Arsenous sulphide	(s)	Irreversible

72. MATCH THE FOLLOWING :

	Column I		Column II
(A)	Coagulation	(p)	Scattering of light
(B)	Dialysis	(q)	Washing of precipitates
(C)	Peptization	(r)	Purification of colloids
(D)	Tyndall effect	(s)	Electrolyte

SUBJECTIVE INTEGER TYPE

Each of the following question has an integer answer between 0 and 9.

- **73.** Natural rubber is 1, 4-addition polymer of isoprene. Find out number of carbon atoms in longest continuous carbon chain of major product of reductive ozonolysis of natural rubber.
- 74. How many of the following observations are correct for amoxicillin (structure given below)?

- (i) It's degree of unsaturation is equal to 9
- (ii) It possess four chiral carbon atoms
- (iii) It possess nine sp^2 hybridized carbon atoms
- (iv) It produce blood red colour with neutral FeCl₃ solution in Lassaigne's test
- (v) It produce different colouration when treated with neutral $FeCl_3$
- (vi) It produce brisk effervascence when reacts with NaHCO₃
- (vii) It undergoes carbyl amine reaction
- (viii) It produce four mole of CH_4 gas per mole of it on reaction with CH_3MgBr in dry ether
- (ix) On complete hydrolysis it produce 2-amino-3(p-hydroxy phenyl) propanoic acid as one of the product.
- **75.** Observer the following compounds.

APP | Chemistry

Surf., Bio., Practical Org. Chem. & Polymers

76. Structure of Ascorbic acid is represented as follows.

How many of the following reagents can give positive test with ascorbic acid.

(VI)	(VII)	(VIII)	(IX)	(X)
NaOH + Phenolpthalein	dil. KMnO ₄	$\mathrm{Br}_{2}/\mathrm{H}_{2}\mathrm{O}$	$AgNO_3 + NH_4OH$	$I_2 + NaOH$
(I)	(II)	(III)	(IV)	(V)
$Cu_2Cl_2 + NH_4OH$	2, 4-DNP	Na Metal	$HCl + ZnCl_2$	FeCl ₃

77. How many of the following compounds reacts with NaHCO₃ and liberate $CO_2(g)$.

1.	Salicylic acid	2.	Pthalic acid
3.	Picric acid	4.	Resorcinol
5.	Carbolic acid	6.	Aspirin
7.	Anisol	8.	Tarteric acid

- **78.** Find the total number of tripeptides that can be formed by the combination of amino acids, glycine and alanine. (excluding stereoisomers)
- 79. The condensation of two amino acids, glycine and (\pm) alanine yields total number of products x. Find value of x?
- 80. The number of chiral centres presents in the following compound is :

81. Observe the following reaction and find out that how many number of reactant stereoisomers can be reduced to optically inactive meso products.

CHO 		CH ₂ OH
Снон		CHOH
Снон	NaBH ₄	Снон
Снон	-	Снон
CHOH		CHOH
I CH ₂ OH		 СН ₂ ОН

82. How many moles of formaldehyde is formed by the complete hydrolysis of following compound with ?

86. A polypeptide chain is given:

Number of optically active essential amino acids in this polypeptide chain is/are :

87. How many compound(s) gives blood red colour with FeCl₃ in Lassaigne test

Graph between $\log \frac{x}{m}$ and $\log P$ is a straight line inclined at an angle 45°. When pressure of 0.5 atm and 88. $\log k$ = 0.699, the amount of solute adsorbed per g of adsorbent will be :

190

		DAV CEN	NTENA	RY PUBLIC SCHO	OL, PA	SCHIM ENCLAV	'E, NEV	V DELHI-87
		Advanced	Probl	em Package		Coordinatio	n Com	pounds
				SINGLE CORRE	ECT AN	SWER TYPE		
Each	of the	following Questio	n has 4	choices A, B, C & D, ou	it of whi	ich ONLY ONE Choic	e is Cor	rect.
1.	The	pair in which both	h specie	es have same magnet	ic mom	ent [spin only]		
	(A)	$\left[\operatorname{Cr}(\mathrm{H}_{2}\mathrm{O})_{6} \right]^{2+}, [$	CoCl ₄]	2-	(B)	$\left[\operatorname{Cr}(\mathrm{H}_{2}\mathrm{O})_{6} \right]^{2+}, \left[\mathrm{H}_{2}\mathrm{O}^{2+}_{6} \right]^{2+}$	Fe(H ₂ O	$\left \right _{6} \left \right ^{2+}$
	(C)	$\left[\operatorname{Mn}(\mathrm{H}_{2}\mathrm{O})\right]^{2+}$	Cr í H	$(0)]^{2+}$	(D)	$[CoCl.]^2$. Fe(H	[.O]] ²⁺	
2.	An e	ffective atomic n	umber (² ⁷⁶] of Co(CO)₄ is 35 an	d hence	e is less stable. It a	ttains s	tability by :
	[Ato	mic number of C	o = 27]	()4				5 5
	I.	Oxidation of Co)		II.	Reduction of Co		
	III.	Dimerization			IV.	Trimerization		
	(A)	I, II	(B)	II, III	(C)	I, II, III	(D)	II, IV
3.	Whi	ch of the followir	ng com	olexes exhibits geom	netrical	isomerism? [gly =	= glycin	ato, $en = ethylene d$
	Py=	pyridine, $ox = ox$	(alate	. 6		10 7	01	, <u>,</u>
	(A)	$\left[Pt(gly)_{2} \right]^{2+}$	(B)	$\left[\operatorname{Pt}\left(\operatorname{en}\right)_{2}\right]^{2+}$	(C)	$\left[Pt(Py)_{4} \right]^{2+}$	(D)	$\left[Pt(ox)_{2} \right]$
4.	Whie	ch has maximum	EAN o	f the underlined aton	ns? (Cr	= 24, Co = 27, Fe	= 26, N	Ji = 28)
	(A)	[<u>Cr</u> (EDTA)]	(B)	$\left[\underline{Co}(en)_3\right]^{3+}$	(C)	$[Fe(C_2O_4)_3]^{3-}$	(D)	$\left[\underline{Ni}(CN)_4\right]^{2-}$
5.	Prim	ary and secondar	y valen	cy of Pt in $[Pt(en)_2 C]$	l ₂]Cl ₂ an	re:		
	(A)	2, 4	(B)	4, 6	(C)	6, 6	(D)	4, 4
6.	Arra	nge the following	g in ord	er of decreasing num	ber of ı	inpaired electrons	:	
	(I)	$[Fe(H_2O)_6]^{2+}$	(II)	$[Fe(CN)_{6}]^{3-}$	(III)	$[Fe(CN)_{6}]^{4-}$	(IV)	$[Fe(H_2 O)_6]^{3+}$
	(A)	IV, I, II, III	(B)	I, II, III, IV	(C)	III, II, I, IV	(V)	II, III, I, IV
7.	Whie	ch of the followin	ig comp	blex is diamagnetic ?				
	(A)	Sc^{3+} (aq)	(B)	Ti ³⁺ (aq)	(C)	V^{3+} (aq)	(D)	$\operatorname{Cr}^{3+}(\operatorname{aq})$
8.	Cons	sider the followin	g comp	lexes :				
	(I) Thei	K ₂ PtCl ₆ r electrical condu	(II) ctances	PtCl ₄ ·2NH ₃	(III)	$PtCl_4 \cdot 3NH_3$	(IV)	PtCl ₄ •5NH ₃
	(A)	256, 0, 97, 404	(B)	404, 0, 97, 256	(C)	256, 97, 0, 404	(D)	404, 97, 256, 0
0	If ov	cess of AgNO	olution	is added to 100 ml	ofal	0.024 M solution	of Dick	lorobis (ethylene d
<i>)</i> .	coba	lt (III) chloride, h	low ma	ny mol of AgCl be p	recipita	ted :		
	(A)	0.0012	(B)	0.0016	(C)	0.0024	(D)	0.0048
10.	Whi	ch has maximum	conduc	tance?				
	(A)	$PtCl_4 \cdot 6NH_3$	(B)	$PtCl_4 \cdot 5NH_3$	(C)	$PtCl_4 \cdot 4NH_3$	(D)	equal
APP	Che	mistry			191		C	oordination Compo

A compound has the empirical formula CoCl₃·5NH₃. When an aqueous solution of this compound is mixed with excess silver nitrate, 2 mole of AgCl precipitate is obtained per mol of compound. On reaction with excess HCl, no NH₄⁺ is detected. Hence, it is :

(A) $[Co(NH_3)_5 Cl_2]Cl$ (B) $[Co(NH_3)_5 Cl]Cl_2$ (C) $[Co(NH_3)_5 Cl_3]$ (D) $[Co(NH_3)_4 Cl_2]Cl NH_3$

- 12. 0.001 molal solution of a complex [M(NH₃)₄Cl₄] in water has a freezing point depression of 0.0054°C. If K_f for water is 1.8, the correct formula of the complex is :
 (A) [M(NH₃)₄Cl₃]Cl (B) [M(NH₃)₄Cl₂]Cl₂ (C) [M(NH₃)₄Cl]Cl₃ (D) [M(NH₃)₄Cl₄]
- **13.** Statement 1 :[Co(NH₃)₅NO₂]Cl₂ and [Co(NH₃)₅ONO]Cl₂ exhibit ionization isomerism Statement 2 :Both compounds form chloride ions in solution
 - (A) If both the statement are true and statement 2 is the correct explanation of statement 1
 - (B) If both the statement are true but statement 2 is not the correct explanation of statement 1
 - (C) If statement 1 is true and statement 2 is false
 - **(D)** If statement 1 is false and statement 2 is true
- 14. Which of the following statements is correct regarding the chirality (optical isomerism) of the cis and trans isomers of the type $M(aa)_2b_2$ (M stands for a metal, a and b are achiral ligands and aa means bidentate ligands

- (A) The trans form is achiral and optically inactive while the cis form is chiral and exists in two enantiomeric forms
- (B) The cis as well as the trans form are achiral and optically inactive
- (C) The trans form is chiral and exists in two enantiomeric forms while the cis form is achiral and optically inactive
- (D) The cis as well as the trans form are chiral and each of them exists in two enantiomeric forms
- **15.** Of the following statements, which one is correct ?
 - (A) $[CoF_6]^{3-}$ is a high spin complex and $[Co(NH_3)_6]^{3+}$ is a low spin complex
 - **(B)** $[\operatorname{CoF}_6]^{3^+}$ is a low spin complex and $[\operatorname{Co}(\operatorname{NH}_3)_6]^{3^+}$ is a high spin complex
 - (C) Both $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ are low spin complexes
 - **(D)** Both $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ are high spin complexes
- 16. The two compounds [Cr(NH₃)₅ Br]Cl and [Cr(NH₃)₅ Cl]Br can be distinguished by reagent A and the two compounds exhibit isomerism (B). Then (A) and (B)are :
 - (A) AgNO₃, ionization (B) AgNO₃, coordination
 - (C) BaCl₂, ionization (D) BaCl₂, coordination

APP | Chemistry

- A metal complex having composition $Cr(NH_3)_4 Cl_2Br$ has been isolated in two forms A and B. The form A 17. reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia, where as B gives a pale yellow precipitate soluble in concentrated ammonia. The hybridization of Cr in A and magnetic moment in B are respectively **(B)** $sp^{3}d^{2}$, 3.8 BM (C) d^2sp^3 , 3.8 BM (D) sp^3d^2 , 2.8 BM (A) $d^{2}sp^{3}$, 2.8 BM The complex $\left[M(CrO_4)Cl_2(NH_3)_2\right]$ forms two types of coloured crystals viz, red(A) and blue(B). A or B 18. reacts with 1 mole of AgNO₃ to give $\frac{1}{2}$ mole of a red precipitate. Further, 1 mole of A reacts slowly with 1 mole of Ag₂C₂O₄ to form 2 moles of a white precipitate but B does not react with Ag₂C₂O₄. Hence, which of the following could be incorrect? **(A)** The central atom is dsp²hybridised **(B)** Red form is trans isomer and blue form is cis Blue form is trans isomer and red form is cis (D) Oxalate is bidentate ligand **(C)** The ratio of the value of any colligative property of K₄[Fe(CN)₆] solution to that of Fe₄[Fe(CN)₆]₃ (Prussian 19. blue) solution is nearly (assume 100% dissociation of both) : (A) 0.62 **(B)** 0.71 **(D)** 1.2 **(C)** 1.4 20. Which of the following statements is(are) correct? $[Cu(NH_3)_4]^{2+}$ complex ion has tetrahedral geometry and paramagnetic I. $[Ni(CN)_{4}]^{2-}$ complex ion has square planar geometry II. $[CoF_6]^{3-}$ is an outer orbital complex ion III. $[Fe(CN)_6]^{3-}$ is an inner orbital complex ion IV. The correct option is : (A) I, II **(B)** I, II, III (C) II, III, IV **(D)** I, II, III, IV 21. The following are octahedral and tetrahedral complexes and their characteristics. $\left[\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6 \right]^{+3}$ II. $\left[\operatorname{Cr}(\operatorname{NH}_3)_6 \right]^{+3}$ III. $[CoCl_A]^{-2}$ I. All high spin d^5 complexes in octahedral system has CFSE = 0 (i) Complex I is high spin d⁵ octahedral complex (ii) Number of unpaired electrons in II and III are 3 each (iii) All Cr (III) octahedral complexes are high spin complexes like II (iv) The wrong statements are : Only (i) (C) (i), (ii), (iii), (iv) (D) None of these (A) **(B)** Only (ii) A solution containing 0.319 gm of complex $CrCl_3$. $6H_2O$ was passed through cation exchanger and the 22. solution given out was neutralized by 28.5 ml of 0.125 M NaOH. The correct formula of the complex will be [mol. Wt. of complex = 266.5] [CrCl(H₂O)₅]Cl₂.H₂O **(B)** $[Cr(H_2O)_6]Cl_3$ **(A)**
 - (C) $[CrCl_2(H_2O)_4]Cl.2H_2O$ (D) All are correct

APP	Chemistry
-----	-----------

23.	The c	correct order for th	he CFS	SE (numerica	al value) f	for the	following complex	es is :	
	Com	plex	Р		Q		R	S	
	Form	ula	[CoF	$[6]^{3-}$	[Co(CN)	6] ³⁻	$[Co(NH_3)_6]^{3+}$	[Co($H_2O_{6}]^{3+}$
	(A)	P > Q > R > S	(B)	Q > R > S	> P	(C)	S > R > P > Q	(D)	R > Q > P > S
24.	Whic	h of the following	g is tru	e about the c	complex [PtCl ₂ ([NH ₃)(H ₂ O)]; [Atom	mic no	o. of $Pt = 78$]
	(i)	It will have two	geome	etrical isome	ric forms,	, cis ai	nd trans		
	(ii)	The hybridizatio	on state	e of Pt (II) is	sp ³				
	(111)	It is a square pla	nar co	mplex					
	(1V)	It is a diamagnet	tic con	nplex					
	(v)	It is a tetrahedra	l comr	olex					
	(A)	(i), (iii), (iv)	(B)	(ii), (iv), (v	7)	(C)	(ii), (v), (vi)	(D)	(i), (v), (vi)
25.	Amo	ngst the following	g the m	nost stable co	omplex is	:			
	(A)	$[Fe(H_2O)_6]^{3+}$	(B)	$[Fe(C_2O_4)_3$] ^{3_}	(C)	$[Fe(H_2O)_5NO]^{2+}$	(D)	$[FeF_{6}]^{3-}$
26.	Whic	h one of the follo	wing l	high-spin con	mplexes h	as the	largest CFSE (Cry	stal fie	eld stabilization energy)?
	(A)	$[Mn(H_2O)_6]^{2+}$	(B)	$[Cr(H_2O)_6]$	2 ⁺	(C)	$[Mn(H_2O)_6]^{3+}$	(D)	$[Cr(H_2O)_6]^{3+}$
27.	IUPA	AC name of compl	lex K3	$[Al(C_2O_4)_3]$	is :				
	(A)	Potassium alumi	ino-ox	alate		(B)	Potassium trioxala	atoalur	ninate (III)
	(C)	Potassium alumi	inium	(III) oxalate		(D)	Potassium trioxala	atoalur	ninate (IV)
28.	Whic	h one of the follo	wing s	quare plana	r complex	will b	be able to show geo	metric	al isomerism?
	(A)	MA_3B	(B)	$M(AA)_2$		(C)	MABCD	(D)	MA ₄
29.	A co	mplex of platinum	n, amn	nonia and ch	loride pro	duces	four ions per mole	cule in	the solution. The structure
	consi	stent with the obs	ervati	on is :					
	(A)	[Pt(NH ₃) ₄]Cl ₄	(B)	$[Pt(NH_3)_2C]$	[4]	(C)	[Pt(NH ₃) ₅ CI]Cl ₃	(D)	$[Pt(NH_3)_4Cl_2]Cl_2$
30.	Whic	th complex is like	ly to s	how optical	activity?		_		
	(A)	Trans – [Co(NH	$\left[I_3 \right]_4 \operatorname{Cl}_2$	2]+		(B)	$\left[\mathrm{Cr}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}\right]^{3+}$		
	(C)	$Cis - [Co(NH_3)]$	$_2(en)_2$] ³⁺		(D)	Trans – $[Co(NH_3)]$	$e_2(en)_2$	2
31.	How	many moles of A	gCl w	ould be obta	ined, whe	en 100	ml of 0.1 M Co(N	H ₃) ₅ C	Cl_3 is treated with excess of
	AgN	O ₃ ?						-	
	(A)	0.01	(B)	0.02		(C)	0.03	(D)	none of these
32.	Whic	h of the following	g state	ments is corr	rect?				
	(A)	Geometrical ison geometry	merisn	n is not obse	rved in co	ompley	xes of coordination	numbo	er 4 having tetrahedral
	(B)	Square planar co	omplex	tes generally	v do not sł	now ge	eometrical isomeris	m	
	(C)	The square plana	ar com	plex of gene	eral formu	lae M	a ₃ b or Mab ₃ exhibit	ts cis-t	rans isomerism
	(D)	The platinum gly	ycinat	o complex, [$Pt(Gly)_2$	does	s not show geometr	ical iso	omerism

APP | Chemistry

33. How many isomers are possible for the complex ion $\left[\operatorname{Cr}(NH_3)(OH)_2 \operatorname{Cl}_3 \right]^{2-}$?

(A) 2 (B) 3 (C) 4 (D) 5

34. A complex of certain metal has the magnetic moment of 4.91 BM whereas another complex of the same metal with same oxidation state has zero magnetic moment. The metal ion could be :
 (A) Co²⁺
 (B) Mn²⁺
 (C) Fe²⁺
 (D) Fe³⁺

35. On treatment of $[Ni(NH_3)_4]^{2+}$ with concentrated HCl, two compounds I and II having the same formula, $[Ni(NH_3)_2Cl_2]$ are obtained, I can be converted into II by boiling with dilute HCl. A solution of I reacts with oxalic acid to form $[Ni(NH_3)_2(C_2O_4)]$ whereas II does not react. Point out the correct statement of the following :

- (A) I cis, II trans ; both tetrahedral (B) I cis, II trans ; both square planar
- (C) I trans, II cis ; both tetrahedral (D) I trans, II cis ; both square planar

36. Which of the following complex shows ionization isomerism :

(A) $\left[\operatorname{Cr}(\operatorname{NH}_3)_6\right]\operatorname{Cl}_3$ (B) $\left[\operatorname{Co}(\operatorname{en})_3\right]\operatorname{Cl}_2$ (C) $\left[\operatorname{Cr}(\operatorname{en})_3\right]\operatorname{Cl}_3$ (D) $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Br}\right]\operatorname{SO}_4$

Paragraph for Questions 37 - 39

When the degenerate orbitals of d sub-shell of an isolated atom / ion come under influence of magnetic field of ligands, the degeneracy is lost. The two sets $t_{2g} (d_{xy}, d_{yz}, d_{xz})$ and $e_g (d_{z^2}, d_{x^2 y^2})$ are either higher or lower energetic depending upon the nature of magnetic field.

Value of CFSE depends upon nature of ligand and spectrochemical series has been made experimentally. For tetrahedral complexes, Δ_t is about 4 / 9 times to Δ_0 . This energy lies in visible region and that is why electronic transitions are responsible for colour. Such transitions not possible with d⁰ and d¹⁰ configuration.

- **37.** The values of CFSE (Δ_0) for complexes given below follow the order :
 - (I) $\begin{bmatrix} Co(NH_3)_6 \end{bmatrix}^{3+}$ (II) $\begin{bmatrix} Rh(NH_3)_6 \end{bmatrix}^{3+}$ (III) $\begin{bmatrix} Ir(NH_3)_6 \end{bmatrix}^{3+}$ (A) I < II < III (B) I > II > III (C) I < II > III (D) I = II = III

38. The d – orbitals which are lower energetic in an octahedral magnetic field are :

- (A) d_{xy} and d_{z^2} (B) $d_{x^2-y^2}$ and d_{z^2} (C) d_{xy} , d_{xz} and d_{yz} (D) d_{z^2} only
- **39.** Ti^{3+} (aq) is purple while Ti^{4+} (aq) is colourlessbecause :
 - (A) There is no crystal field effect in Ti^{4+}
 - (B) The energy difference between t_{2g} and e_g of Ti^{4+} is quite high and does not fall in the visible region
 - (C) Ti^{4+} has d^0 configuration
 - (D) Ti^{4+} is very small in comparison to Ti^{3+} and hence does not absorb any radiation

APP | Chemistry

Coordination Compounds

Paragraph for Questions 40 - 42

Square planar complexes are formed by d^8 ions with strong field ligands. The crystal field splitting Δ_o is larger for second and third row transition elements and for more highly charged species. All the complexes having $4d^8$ and $5d^8$ configurations are mostly square planar including those with weak field ligands such as halide ions. Square planar complexes can show geometrical isomerism but they do not show optical isomerism due to the presence of plane of symmetry.

- 40. Which of the following statements is/are true for the complex $[Ni(PPh_3)_2Br_2]$?
 - (A) Hybridisation is the same as found with strong field ligands like CN⁻ (with +II oxidation state)
 - (B) Hybridisation is the same as found with strong field ligands like CO (with zero oxidation state)
 - (C) Hybridisation is the same as found with weak field ligands like halide ions (with + II oxidation states)
 - **(D) (B)** and **(C)** both
- 41. Amongst the following complexes which has square planar geometry?
 - (A) $[RhCl(CO)(PPh_3)_2]$ (B) $K_3[Cu(CN)_4]$
 - (C) $K_2[Zn(CN)_4]$ (D) $[Ni(CO)_4]$

42. Which one of the following square planar complexes will show geometrical isomerism?

- (A) $[Pt(en)_2]^{2+}$ (B) $[Pt(gly)_2]$
- (C) $[Pt(NH_3)_2Cl(NH_2CH_3)]Cl$ (D) (B) and (C) both

Paragraph for Questions 43 - 45

In metal carbonyls, there is synergic bonding interaction between metal and carbon monoxide. This leads to increase in strength of metal-ligand bond and decrease in bond order of CO in carbonyl complex as compared to bond order in carbon monoxide.

Simple carbonyls are invariable spin-paired complexes except for vanadium metal.

- **43.** Which of the following statement is false for Nickel carbonyl [Ni(CO)₄]?
 - (A) It is a colourless compound
 - **(B)** The Ni C O group is linear
 - (C) The four carbonyl group are lying at the corners of a regular tetrahedron
 - (D) The metal carbon bond length (for σ bond) does not alter
- 44. Which amongst the following metal carbonyls are inner orbital complexes with diamagnetic property
 - $\begin{array}{cccc} (I) & Ni(CO)_4 & (II) & Fe(CO)_5 & (III) & V(CO)_6 & (IV) & Cr(CO)_6 \\ \\ Select the correct answer from the codes gives below : & & & \\ \end{array}$
 - (A) I and II only (B) II, III and IV only (C) II and IV only (D) I, II and IV only
- **45.** Which of the following statement is correct for metal carbonyls?
 - (A) In general, the effective atomic number for a stable monomeric carbonyl is equal to the atomic number of the next inert gas except $[V(CO)_6]$
 - (B) The metal-carbon bond in metal carbonyls possess double bond character
 - (C) The C O bond length in $[Cr(CO)_6]$ is greater than that in $Ni(CO)_4$
 - **(D)** All of these

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

- 46. Select correct statement(s) :
 - (A) $Mn_3(CO)_{12}$ is Dodecacarbonyltrimanganese (0)
 - EDTA is a polydentet, flexidentate and chelating ligand **(B)**
 - $[Co(H_2O)_6]^{+2}$ is more stable than $[Ni(H_2O)_6]^{+2}$ **(C)**
 - **(D)** $[Cu(NH_3)_4]^{+2}$ is having dsp²hybridisation
- 47. Correct statement(s) in the following is(are) :
 - (A) Coordination number of a central metal cation in (3d series) is twice its valency
 - Octahedral complexes of Ma₃b₃ type have only two geometrical isomers **(B)**
 - [Mg(EDTA)]⁻² complex anion contains 5 chelated rings **(C)**
 - (D) [M ABCD] type of tetrahedral complexes always possess two stereo isomers
- In which pairs, both the compounds show geometrical isomerism? **48**.
 - (A) $\left[Pt(NH_3), Cl_2 \right] and \left[Co(en), Cl_2 \right]$ (B) $\left[Fe(NH_3), (CN)_4 \right]^2$ and $\left[CoCl_2(OX)_2 \right]^3$ (C) $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\left]\operatorname{SO}_4 \text{ and}\left[\operatorname{Cr}(\operatorname{en})_3\right]^{3+}\right]$ (D) $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]^+$ and $\left[\operatorname{Co}(\operatorname{NH}_3)_3(\operatorname{NO}_2)_3\right]$
- 49. Select the correct statements :
 - (A) Chelation effect is more important for penta and hexadented ligands for stability of complex
 - Greater the charge on the central metal cation, greater the value of Δ (CFSE) **(B)**
 - In complex ion $[CoF_6]^{3-}$, F^- is a weak field ligand, so that $\Delta_{oct} < P$ (Pairing energy) and it is low spin **(C)** complex
 - **(D)** $[CoCl_2(NH_3)_2(en)]^+$ complex ion will have four different stereoisomer
- 50. Which of the following ionic species will not impart colour to an aqueous solution? (A) Ti^{4+} (C) Zn^{2+} (**D**) Cr^{3+} (B) Cu^+
- Which of the following can show coordination isomerism? 51.
 - $\left[\operatorname{Fe}(\mathrm{NH}_3)_6 \right] \left[\operatorname{Pt}(\mathrm{CN})_6 \right]$ (A) $\left[Cu(NH_3)_4 \right] \left[PtCl_4 \right]$ **(B)**
 - **(D)** $\left[\operatorname{Pt}(\operatorname{en})_{3} \right] (\operatorname{SO}_{4})_{2}$ (C) $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]\left[\operatorname{Cr}(\operatorname{C}_2\operatorname{O}_4)_3\right]$
- 52. Which statement(s) is/are correct?
 - (A) $\left[Ag(NH_3)_2 \right]^+$ is linear with sp hybridization of Ag⁺ ion
 - (B) $NiCl_4^{2-}$, VO_4^{3-} , MnO_4^{-} have tetrahedral geometry
 - (C) $\left[Cu(NH_3)_4 \right]^{2+}$, $\left[Pt(NH_3)_4 \right]^{2+}$, $\left[Ni(CN)_4 \right]^{2-}$ have dsp² hybridization of the metal ion
 - (D) $Fe(CO)_5$ have bipyramidal structure with dsp³ hybridization of iron
- Which of the following complexes is / are paramagnetic? 53.
 - (A) $[Fe(CN)_6]^{4-}$ (C) $[Ti(H_2O)_6]^{3+}$ **(D)** $[Ni(en)_2]^{2+}$ **(B)** $[Cu(NH_3)_4]^{2+}$

- The complex $[Fe(H_2O)_5NO]^{2+}$ is formed in the brown ring test for nitrate when freshly prepared FeSO₄ 54. solution is added to aqueous solution of NO_{-}^{-} followed by addition of conc. H₂SO₄. Select correct statements about this complex :
 - colour change is due to charge transfer (A)
 - it has iron in +1 oxidation state and nitrosyl as NO⁺ **(B)**
 - it has magnetic molent of 3.87 B.M. confirming three unpaired electrons in Fe **(C)**
 - **(D)** It has octahedral geometry
- In the compound CoCl₃ · 5NH₃ 55.
 - all the Cl show primary valency (PV) (A)
 - two Cl show (PV) and one Cl secondary valency (SV) **(B)**
 - (C) two Cl show (PV) and one Cl (PV) as well as (SV)
 - all the NH₃ show secondary valency **(D)**
- 56. Identify the correct statements :
 - Δ_0 increasing order is $[\operatorname{CrCl}_6]^{3-} < [\operatorname{Cr}(\operatorname{NH}_3)_6]^{+3} < [\operatorname{Cr}(\operatorname{CN})_6]^{3-}$ **(A)**
 - CFSE for $\left[\text{Ti}(\text{H}_2\text{O})_6 \right]^{3+}$ is $-0.4\Delta_0$ **(B)**
 - $[\text{NiCl}_4]^{2-}$ as well as $[\text{Ni}(\text{CO})_4]$ are paramagnetic **(C)**
 - The halide ions are arranged as $\Gamma < Br^- < Cl^- < F^-$ in the spectro chemical series. **(D)**
- Aqueous solution of which of the following complexes impart certain colour? 57.
 - (A) $\left[\text{Ti}(\text{H}_2\text{O})_3\text{Cl}_3 \right]$ Cl (B) $\left[\text{Cu}(\text{NH}_3)_4 \right]$ Cl (C) $\operatorname{Na}_{2}\left[\operatorname{Zn}(\operatorname{CN})_{4}\right]$ **(D)** $\left[\operatorname{Cr}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Cl} \right] \mathrm{Cl}_{2}$
- Which of the following statements is(are)correct? 58.
 - (A) $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}, \left[\operatorname{Co}(\operatorname{CN})_6\right]^{3-}$ and $\left[\operatorname{Co}(\operatorname{NO}_2)_6\right]^{3-}$ are diamagnetic, involving d²sp³hybridisation
 - $\left[Zn (NH_3)_4 \right]^{2+}$, $\left[FeCl_4 \right]$ and $\left[Ni (CO)_4 \right]$ are diamagnetic, involving sp³hybridisation **(B)**
 - The magnetic moment of $\left[Fe(H_2O)_6 \right]^{3+}$ is 5.92 BM and that of $\left[Fe(CN)_6 \right]^{3-}$ is 1.73 BM **(C)**
 - The magnetic moment of K_4 [MnF₆] and K_3 [FeF₆] are same **(D)**
- 59. Which of the following statement is(are) correct with respect to the crystal field theory?
 - It considers only the metal ion d-orbitals and gives no consideration at all to other metal orbitals. (A)
 - It cannot account for the π bonding in complexes. **(B)**
 - The ligands are point charges which are either ions or neutral molecules **(C)**
 - The magnetic properties can be explained in terms of splitting of d-orbitals in different crystal fields **(D)**
- 60. A complex compound of one cobalt (III) ion, two ethylene diamine molecules, two chloride ions and one nitrite ion will show
 - (A) linkage isomerism **(B)**
 - ionization isomerism
 - geometrical isomerism **(D)** optical isomerism **(C)**

- 61. Consider the following statements
 - S_1 : Generally square planar complexes show geometrical isomerism but do not exhibit optical isomerism because they do not possess plane of symmetry.

$$S_2: \quad \Delta_t = \frac{4}{9}\Delta_o$$

 S_3 : In octahedral complexes each electron entering the t_{2g} orbitals stabilizes the complex ion by 0.4 Δ_o and each electron entering the e_g orbital destabilizes the complex by an amount of 0.6 Δ_o .

And select the correct statement from the codes given below :

- (A) S_1 and S_3 are correct (B) S_2 and S_3 are correct
- (C) S_1 is incorrect (D) S_2 and S_3 are incorrect
- **62.** Select the correct comparison of complexes on the basis of magnitude of Δ_o :
 - (A) $\left[\text{Co}(\text{CN})_{6} \right]^{3-} > \left[\text{Co}(\text{H}_{2}\text{O})_{6} \right]^{3+}$ (B) $\left[\text{Co}(\text{H}_{2}\text{O})_{6} \right]^{2+} < \left[\text{Co}(\text{H}_{2}\text{O})_{6} \right]^{3+}$ (C) $\left[\text{Co}(\text{H}_{2}\text{O})_{6} \right]^{3+} > \left[\text{Rh}(\text{H}_{2}\text{O})_{6} \right]^{3+}$ (D) $\left[\text{Co}(\text{NH}_{3})_{6} \right]^{3+} < \left[\text{CoF}_{6} \right]^{3-}$
- 63. In which of the following pairs both the complexes show optical isomerism?

(A)
$$\operatorname{cis} - \left[\operatorname{Cr}(\operatorname{en})_2 \operatorname{Cl}_2\right]$$
 and $\operatorname{cis} - \left[\operatorname{Co}(\operatorname{NH}_3)_4 \operatorname{Cl}_2\right]$

- **(B)** $\left[\operatorname{Co}(\operatorname{gly})_3\right]$ and $\operatorname{cis} \left[\operatorname{Co}(\operatorname{en})_2 \operatorname{Cl}_2\right]$
- (C) $\operatorname{cis}[\operatorname{Pt}(\operatorname{en})_2\operatorname{Cl}_2]$ and $[\operatorname{Ni}(\operatorname{NH}_3)_3\operatorname{Cl}_3]$
- **(D)** $\left[\operatorname{Co}(\operatorname{NO}_3)_3 (\operatorname{NH}_3)_3 \right]$ and cis $-\left[\operatorname{Pt}(\operatorname{en})_2 \operatorname{Cl}_2 \right]$
- **64.** Which of the following statement(s) is/are true ?
 - (A) The order of magnitude of Δ_0 in the following complexes is $[Co(H_2O)(NH_3)_5]^{3+} > [Co(NH_3)_6]^{3+} > [Co(CN)_6]^{3-}$
 - (B) The order of the stability of the complexes in aqueous solution is $[Cu(CN)_4]^2 > [Cu(NH_3)_4]^{2+} = [Cu(H_2O)_6]^{2+}$
 - (C) Irving William's order of stability is $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$
 - (D) The order of magnetic moments of the complex is $[Fe(H_2O)_6]^{3+} > [CoF_6]^{3-} > [Cr(CN)_6]^{3-}$
- **65.** Which statement(s) is/are correct?
 - (A) $[Ni(PPh_3)_2Cl_2]$ tetrahedral and paramagnetic
 - (B) $[Ni(CO)_4]$ tetrahedral and diamagnetic
 - (C) $[Ni(CN)_4]^{2-}$ square planar and diamagnetic
 - **(D)** $[Ni(CO)_4]$ square planar and diamagnetic
- **66.** Which of the following statement(s) is / are incorrect?
 - (A) Both $[Co(Ox)_3]^{3-}$ and $[CoF_6]^{3-}$ are paramagnetic
 - (B) $CoCl_3 \cdot 3NH_3$ complex is non-conductor of electricity
 - (C) The number of possible geometrical isomers for complex [Pt(NO₂)(Py)(OH)(NH₃)] is six
 - (D) The oxidation state of iron in brown ring complex $[Fe(H_2O)_5NO]SO_4$ is + II where NO is NO⁺

APP | Chemistry

Coordination Compounds

67. Which of the following complexes can exist as diastereoisomers?

(A)
$$\left[\operatorname{Cr}(\operatorname{NH}_3)_2\operatorname{Cl}_4\right]^-$$
 (B) $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Br}\right]^{2+}$ (C) $\left[\operatorname{FeCl}_2(\operatorname{NCS})_2\right]^{2-}$ (D) $\left[\operatorname{PtCl}_2\operatorname{Br}_2\right]^{2-}$

- **68**. Select the correct statements from the following
 - $[Sc(H_2O)_6]^{3+}$ and $[Ti(H_2O)_6]^{3+}$ both are colourless **(A)**
 - Co(NH₃)₄Br₂Cl show ionization and geometrical isomerism. **(B)**
 - $[Pd(NO_2)_2 (NH_3)_2]$ is square planar and shows geometrical as well as linkage isomerism. **(C)**
 - **(D)** $[PtCl_4]^{2-}$ is a square planar complex
- Which of the following complexes does show stereo isomerism? 69. $[Co(NH_3)_4Cl_2]^+$ (B) $[Co(NH_3)_3(NO_2)_3]$ (C) $[Cr(en)_3]^{3+}$ (D) $[Pt(gly)_2]$ **(A)**
- The complex $[Fe(H_2O)_5NO]^{2+}$ is formed in 'brown ring test' for nitrates. Choose the correct statements for 70. the complex
 - (A) Its magnetic moment is approximately 3.9 BM
 - The oxidation state of iron is + I **(B)**
 - **(C)** The hybridization of central metal ion is sp^3d^2
 - The brown colour of the ring is due to d d transition **(D)**

71. Select the correct statements :

- **(A)** Potassium ferrocyanide and potassium ferricyanide can be differentiated by measuring the solid state magnetic moment
- The complex [Co(NH₃)₅Br]SO₄ and [Co(NH₃)₅SO₄]Br can be differentiated by adding aqueous **(B)** solution of barium chloride
- **(C)** The complex [Co(NH₃)₅Cl]Br and [Co(NH₃)₅Br]Cl can be differentiated by adding aqueous solution of silver nitrate.
- $\left[Co(NH_3)_6 \right] Cl_3 and \left[Co(NH_3)_5 Cl \right] Cl_2$ can be differentiated by electrical conductivity of respective **(D)** aqueous solutions.
- $[Fe(en)_2(H_2O)_2]^{2+} + en \rightarrow complex$ (X). The correct statements about the complex (X) is : 72.
 - It is low spin complex It is diamagnetic **(A) (B)**
 - It shows geometrical isomerism **(D)** It shows optical isomerism
- 73. Which of the following are bidentate monoanion ligands?
 - Acetyl acetonato **(A) (B)** Oxalato ion **(C)**
 - Dimethyl glyximato **(D)** None of these
- 74. Which amongst the following are organometallic compounds? $Al_2(CH_3)_6$ (B) $K[PtCl_3C_2H_2]$ (C) N(CH₃)₃ (**D**) $B(CH_3)_3$ **(A)**
- Complexes $[Co(NH_3)_5SO_4]Br$ and $[Co(NH_3)_5Br]SO_4$ can be distinguished by : 75.

(A)	conductance measurement	(B)	using BaCl ₂
(\mathbf{C})	using AgNO2	(D)	dipole moment measurement

APP | Chemistry

(C)

200

Coordination Compounds

- 76. Which of the following statements are true?
 - (A) $MnCl_4^{2-}$ ion has tetrahedral geometry and is paramagnetic
 - **(B)** $[Mn(CN)_6]^{2-}$ ion has octahedral geometry and is diamagnetic
 - (C) $[Cu(CN)_4]^{3-}$ has square planar geometry and is diamagnetic
 - **(D)** $[Ni(Ph_3P)_2Br_3]$ has trigonal bipyramidal geometry and is paramagnetic
- 77. Other than the X-ray diffractions, how could be the following pairs of isomers be distinguished from the another by $\left[\operatorname{Cr}(\operatorname{NH}_3)_6\right]\left[\operatorname{Cr}(\operatorname{NO}_2)_6\right]$ and $\left[\operatorname{Cr}(\operatorname{NH}_3)_4\left(\operatorname{NO}_2\right)_2\right]\left[\operatorname{Cr}(\operatorname{NH}_3)_2\left(\operatorname{NO}_2\right)_4\right]$
 - (A) dipole moment measurement
- (B) measurement of molar conductance
- (C) measuring magnetic moments
- (D) observing their colours
- **78.** Which of the following ions are optically active?

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Set 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Set 2 can be matched with Set 1.

79. MATCH THE FOLLOWING :

Set – I (Complex Compound)

- (1) $[Co(H_2O)_3 F_3]$
- (2) $[Co(en)_3]Cl_3$
- (3) $[Co(en)_2(NO_2)_2]Cl$
- (4) $K_3[Cr(CN)_6]$
- (A) 1 P, 2 Q, 3 R, 4 S
- (C) 1 P, 2 Q, 3 P,Q,R,S 4 R

80. MATCH THE FOLLOWING :

Set – I (Complex compound)

- (1) $\left[\operatorname{Co}(\operatorname{NH}_3)_4(\operatorname{H}_2\operatorname{O})_2\right]\operatorname{Cl}_2$
- (2) $\left[Pt(NH_3)_2 Cl_2 \right]$
- (3) $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_5\operatorname{Cl} \right] \operatorname{Cl}$
- (4) $\left[\operatorname{Ni}(\operatorname{H}_2\operatorname{O})_6\right]\operatorname{Cl}_2$
- (A) 1-P, 2-S, 3-R, 4-Q
- (C) 1-S, 2-R, 3-Q, 4-P

Set – II (Type of Isomerism Shown)

- (P) Geometrical isomerism
- (Q) Optical isomerism
- (R) Linkage isomerism
- (S) Ionisation isomerism
- **(B)** 1 Q, 2 P, 3 S, 4 R
- **(D)** 1 R, 2 Q, 3 S, 4 P

Set - II (Related property)

- (P) Give precipitate by the action of AgNO₃(aq)
- (Q) Paramagnetic in nature
- (R) Exhibit geometrical isomerism
- (S) Does not conduct electricity in its aqueousstate
- **(B)** 1 P,Q,R 2 R,S 3 P,Q 4 P,Q
 - 1 R, 2 P, 3 S, 4 Q

(D)

- 81. MATCH THE FOLLOWING :
 - Set I
 - (1) $\left[\text{MnCl}_6 \right]^{2-}$
 - (2) $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}$
 - (3) $\left[\operatorname{Co}(\mathrm{NH}_3)_6 \right]^{3+}$
 - (4) $\left[\operatorname{Fe}(\mathrm{H}_2\mathrm{O})_6 \right]^{2+}$
 - (A) 1 Q, 2 P, 3 R, 4 S
 - (C) 1 Q, 2 S, 3 P, 4 R

82. MATCH THE FOLLOWING :

Set – I (Ligand)

- (1) Triphenyl phosphine
- (2) Ethylene diamine
- (3) SCN⁻
- (4) Dimethyl glyoximate
- (A) 1 Q, 2 P, 3 S, 4 R
- (C) 1 P, 2 S, 3 Q, 4 R

83. MATCH THE FOLLOWING : Set – I

- (1) $\left[\operatorname{Fe}(H_2O)_5 \operatorname{NO} \right] \operatorname{SO}_4$
- (2) $\left[Mn(CN)_6 \right]^{-4}$
- (3) $\left[\operatorname{Fe}(\operatorname{CO})_{5} \right]$
- (4) $\left[Ni(CN)_{4} \right]^{2-}$
- (A) 1 P, 2 R, 3 S, 4 Q
- (C) 1 R, 2 P, 3 Q, 4 S

Set – II

- (P) contain one unpaired electron
- $(\mathbf{Q}) \quad d^2 \mathbf{s} \mathbf{p}^3$
- (R) outer orbital complex
- (S) involve electron rearrangement
- **(B)** 1 P, 2 Q, 3 S, 4 R
- (D) 1 Q 2 P,Q,S 3 Q,S 4 R

Set – II (Related Character)

- (P) Ambidentate
- (Q) Monodentate
- (R) Chelating ligand
- (S) Bidentate
- **(B)** 1 Q, 2 R, S 3 P, Q 4 R, S
- **(D)** 1 Q, 2 R, 3 S, 4 P

Set – II

- (P) $\sqrt{3}$ BM, d²sp³
- (Q) zero BM, dsp^2
- (**R**) $\sqrt{15}$ BM, sp³d²
- (S) zero BM, dsp^3
- **(B)** 1 R, 2 S, 3 P, 4 Q
- **(D)** 1 R, 2 P, 3 S, 4 Q

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 84. Find out the numbers of isomers (structural and stereo) produced by the complex $|Pt(NH_3)_2(NO_2)Cl_3|$
- 85. What is the number of stereoisomers possible for the octahedral complex ion $\left[Co(CH_3NH_2), (Py), (C_2O_4)\right]^{+1}$
- 86. During of 'Fixing of image' in the photography process the following reaction takes place AgBr + $xNa_2S_2O_3 \rightarrow Na_y[Ag(S_2O_3)_x]$ (water soluble). The value of (x + y) is
- **87.** The molecular formula of an octahedral complex is Cr(Cl)(Br)(I).4H₂O. How many ionization isomer(s) is/are possible for the complex?

Coordination Compounds

- 88. In the reaction $[CoCl_2(NH_3)_4]^+ + Cl^- \rightarrow [CoCl_3(NH_3)_3] + NH_3$. How many isomers of the products (co-(CIS)) is obtained.
- 89. Effective atomic number of complex of $_{42}$ Mo is 54. The formula of its carbonyl complex is Mo(CO)_x. The value of 'x' is
- **90.** Number of isomers possible for the complex compound $\left\lceil Co(en)_2 Cl(NO_2) \right\rceil Cl$ are _____.
- 91. How many of the following complexes can exist as 'd' and 'l' isomers

$$\begin{bmatrix} \operatorname{Co}(\operatorname{NH}_3)_4 \operatorname{Cl}_2 \end{bmatrix}^+, \begin{bmatrix} \operatorname{Co}(\operatorname{NH}_3)_3 \operatorname{Cl}_3 \end{bmatrix}, \operatorname{trans} \begin{bmatrix} \operatorname{Co}(\operatorname{en})_2 \operatorname{Cl}_2 \end{bmatrix}^+, \\ \operatorname{Cis} \begin{bmatrix} \operatorname{Co}(\operatorname{en})_2 \operatorname{Cl}_2 \end{bmatrix}^+, \begin{bmatrix} \operatorname{Cr}(\operatorname{Ox})_3 \end{bmatrix}^{3-}, \begin{bmatrix} \operatorname{Cr}(\operatorname{en})_3 \end{bmatrix}^{3+}, \begin{bmatrix} \operatorname{Pt}(\operatorname{en})_2 \operatorname{Cl}_2 \end{bmatrix} \end{bmatrix}$$

92.Find the number of paramagnetic compound(s) with octahedral anion.
 $K_2[CoF_6]$: $O_2[AsF_6]$: $K_2[CoCl_4]$: $K_3[Co(CN)_6]$:
 $K_3[CoF_6]$: $K_3[CoF_6]$: $[Ni(NH_3)_6]SO_4$: $[Pt(NH_3)_6][Fe(CN)_6]$: $Na_2[Fe(CN)_5NO]$

		Advanced F	Problem	n Package	Metallurgy					
				SINGLE CORR	ECT AN	ISWER TYPE				
Each o	of the foll	owing Question	n has 4 cho	ices A, B, C & D, o	ut of wh	ich ONLY ONE Ch	oice is Co	orrect.		
1.	Froth t (A)	floatation proces Oxide ores	ss is used fo (B)	or the concentration Sulphide ores	n of : (C)	Chloride ores	(D)	Amalgams		
2.	In met (A)	allurgical proces Silica	sses the flu (B)	x used for removir Sodium chlorid	ng acidic e (C)	impurities is : Lime stone	(D)	Sodium carbonate		
3.	The m (A) (C)	ain function of r to remove the Both A and B	coasting is : e volatile m 3	atter	(B) (D)	oxidation of or to make slag	e			
4.	Which (A)	of the following Silver	g metals is (B)	obtained by leachi Titanium	ng its or (C)	e with dilute cyan Vanadium	ide soluti (D)	ion? Zinc		
5.	Electro (A) (C)	ctrolytic reduction method is used in the extrac Highly electronegative elements Transition metals				High electropo Noble metals	sitive ele	ments		
6.	In electro (A)	etro refining of lysis of an aque Silver	metal the ous solutio (B)	pure metal is m n of a complex me Copper	ade the etal salt. (C)	anode and a stri This method cann Aluminium	p of pur ot be use (D)	e metal as cathode during d for refining of : Gold		
7.	Zone r (A) (C)	efining process Concentration Purification o	is used for n of an ore of metal	the :	(B) (D)	Reduction of a metal oxide Purification of an ore				
8.	The ig (A) (C)	nition mixture in Magnesium p Magnesium a	n alumino t bowder and and alumini	hermite process co BaO ₂ um powders	ontains a (B) (D)	mixture of : Magnesium po Magnesium an	wder, alu d alumin	uminium and BaO ₂ ium oxide		
9.	Which (A)	of the followin Poling	g is not em (B)	ployed for refining Leaching	g of meta (C)	l? Electrolysis	(D)	Liquation		
10.	The pu (A) (C)	purpose of smelting an ore is : to oxidise it to separate volatile impurities			(B) (D)	to reduce it to obtain an all	оу			
11.	Roasti (A)	ng is done gener oxide ores	rally in cas (B)	e of the : silicate ores	(C)	sulphide ores	(D)	carbonate ores		
12.	Cupell (A)	ation process is Cu	used in the (B)	e metallurgy of : Ag	(C)	Zn	(D)	Al		
13.	The sla (A)	ag obtained duri Au ₂ S	ng the extr (B)	action of copper p FeSiO ₃	yrites is (C)	composed mainly CuSiO ₃	of : (D)	SiO ₂		

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 14. Which one of the following benefication processes is used for the minerals Al₂O₃.2H₂O? Froth floatation **(B)** (A) Leaching **(C)** Liquation **(D)** Magnetic separation 15. Among the following statements, the incorrect one is : Calamine and siderite are carbonates Argentite and cuprite are oxides **(A) (B) (C)** Zinc blende and iron pyrites are sulphides Malachite and azurite are basic carbonates **(D)** 16. The metal extracted by cyanide process is : Silver (D) Sodium (A) **(B)** Copper **(C)** Iron 17. Malachite is an ore of : (A) Iron **(B)** Zinc (C) Copper **(D)** Mercury 18. Heating an ore in the absence of air below its melting point is called : (D) (A) Leaching **(B)** Roasting Smelting Calcination **(C)** 19. In the commercial electrochemical process for aluminium extraction the electrolyte used is : Al(OH)₃ in NaOH solution (A) **(B)** an aqueous solution of Al₂(SO₄)₃ (C) a molten mixture of Al₂O₃ and Na₃AlF₆ a molten mixture of Al₂O₃ and Al(OH)₃ **(D)** The most electropositive metals are isolated from their ores by : 20. high temperature reduction with C (A) **(B)** self reduction **(C)** thermal decomposition **(D)** electrolysis of fused ionic salts 21. In order to refine blister copper it is melted in a furnace and is stirred with green logs of wood. The purpose is : (A) to expel the dissolved gases in blister copper **(B)** to bring the impurities to surface and oxidise them **(C)** to increase carbon content of copper **(D)** to reduce the metallic oxide impurities with hydrocarbon gases liberated from the wood 22. ΔG° v/s T plot in Ellingham diagram slopes downward for the reaction: $2Ag_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow Ag_2O_{(s)}$ $Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)}$ **(B)** (A) $C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$ **(D)** $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$ **(C)** 23. Which of the following is an important ore of uranium? Zinc blende **(B)** Pitch blende Galena **(D)** Malachite (A) **(C)** 24. By which process Cu and Ag are extracted respectively: Carbon reduction; Self-reduction (A) **(B)** Self-reduction; Carbon reduction **(C)** Electrolytic reduction; cyanide process **(D)** Self-reduction; Cyanide process

APP | Chemistry

Metallurgy

Paragraph for Questions 25 - 27

Copper is the most noble of the first row transition metals and occurs in small deposits in several countries. The main ores of copper include cuprite (Cu_2O), copper glance (Cu_2S) malachite ($Cu_2(OH)_2CO_3$) and chalcopyrite ($CuFeS_2$). However 80% of the world copper production comes from the ore chalcopyrite. The extraction of copper from chalcopyrite involves partial roasting, removal of iron, self-reduction, poling and electrolytic refining.

25.	Partial	roasting of cha	alcopyrite pr	oduces :				
	(A)	Cu_2S and I	FeO (B)	Cu_2O and	FeO (C)	CuS and F	$e_2O_3(\mathbf{D})$	Cu_2O and Fe_2O_3
26.	Iron is	removed from	chalcopyrite	e as :				
	(A)	FeO	(B)	FeS	(C)	Fe_2O_3	(D)	FeSiO ₃
27.	In self	-reduction the r	educing spe	cies is :				
	(A)	S	(B)	O ^{2–}	(C)	S ^{2–}	(D)	SO ₂
28.	Poling	process is used	1:					
	(A)	for the remov	val of Cu ₂ O) from Cu	(B)	for removal	of S from C	Cu ₂ S
	(C)	for the remov	val of FeO f	rom Cu	(D)	None of thes	se	
29.	In elec	tro refining pro	ocess impure	copper acts as	s :			
	(A)	Anode	(B)	Cathode	(C)	Both	(D)	None of these

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

30.	Which	of the following i	s(are) a c	arbonate mineral:				
	(A)	Trona	(B)	Dolomite	(C)	Malachite	(D)	Siderite
31.	Which	of the following o	ore(s) is(a	re) concentrated by	y forth flo	oatation process?		
	(A)	Galena (PbS)			(B)	Copper pyrite (CuFeS ₂)	1
	(C)	Cinnabar (HgS)			(D)	Argentite (Ag ₂	5)	
32.	Which	of the following r	eactions of	occurs during calci	nation?			
	(A)	$CaCO_3 \cdot MgCC$	$\rho_3 \rightarrow CaC$	$0 + MgO + CO_2$	(B)	$\text{FeS}_2 + 110_2 \rightarrow$	$2Fe_2O_3$	+8SO ₂
	(C)	$2\mathrm{Al}(\mathrm{OH})_3 \rightarrow \mathrm{A}$	$1_2O_3 + 3I_3$	H ₂ O	(D)	$Cu_2S + 2CuO -$	→ 4Cu + S	SO ₂
33.	Self-ree	duction process is	used for	the extraction of :				
	(A)	Cu	(B)	Hg	(C)	Pb	(D)	Zn
34.	Which	of the following o	ores conta	ins more than one	metals?			
	(A)	Copper pyrite	(B)	Dolomite	(C)	Carnalite	(D)	Cryolite
35.	Consid	er the following s	tatements	related to roasting	and ider	ntify correct states	ment(s).	
	(A)	Roasting is carr	ied out to	convert sulphide i	nto oxide	е.		
	(B)	Roasting is carr	ied out to	melt the ore.				
	(C)	Roasting is carr	ied out to	remove moisture,	water of	crystallization and	d to expe	l organic matter.
	(D)	Roasting is carr	ied out to	remove volatile ir	npurities			

36.	Magne throug	esium oxide is us h slag formation?	sed for th	ne lining in stee	el making	because it remo	ove impuri	ties of which of	f the following
	(A)	S	(B)	Si	(C)	Р	(D)	None of these	•
37.	Which	of the following	ores of co	opper is roasted	not calcine	d during recover	ry of coppe	r?	
	(A)	Copper pyrite	(B)	Chalcocite	(C)	Malachite	(D)	Cuprite	
38.	Metals which	of the following of	eacted by	reduction. The entrated ore is d	concentrat irectly used	ed ores is conv l for reduction?	rerted to ox	tides for reduction	on to metal. In
	(A)	Kutile	(B)	Bauxite	(C)	Haematite	(D)	Cassiterite	
39.	Which	of the following	minerals	of aluminium is	an ore of a	luminium?			
	(A)	Cryolite; Na ₃₄	AlF_6		(B)	Feldspar; KA	AlSi ₃ O ₈		
	(C)	Bauxite; Al ₂ O	$P_3 \cdot 2H_2O$	1	(D)	China clay;	$Al_2O_3 \cdot 2Si$	$iO_2 \cdot 2H_2O$	
40.	Identif	y correctly match	ed ores a	nd method of the	eir concent	ration.			
	(A)	Galena; Froth f	floatation	process	(B)	Bauxite; Lea	ching		
	(C)	Cassiterite; Gra	avıty sepa	ration	(D)	Magnetite; E	lectromagn	netic separation	
41.	In the	equation $4M + 8C$	CN ⁻ + 2H	$I_2O + O_2 \rightarrow 4[N]$	1(CN) ₂] +	- 40H ⁻ . The me	etal M is :		
	(A)	Al	(B)	Ag	(C)	Au	(D)	Fe	
72.	(A) (B) (C) (D)	Mond's proces Van Arkel's pr Cyanide proces Froth-Floatatio	s; Refinir ocess; Ul ss; Extrac	ng of Nickel trapure metal tion of silver ; Concentration	of sulphide	e ores.			
43.	In the	cyanide extraction	n process	of silver from a	rgentite (A	g_2S) ore :			
	(A)	O_2 acts as oxi	idizing ag	ent					
	(B)	Na[Ag(CN),] is form	ed as soluble co	mplex				
	(C)	Zn acts as redu	icing ager	ıt					
	(D)	Ore is concentr	rated by fi	roth floatation p	rocess				
44.	Leachi	ing is often used t	for conce	ntration of ore i	f the ore is	soluble in some	e suitable s	olvent. Identify	ore and solvent
	used fo	or leaching of the	ore?			~	Ŧ	·	
	(A)	Bauxite; NaOH	ſ		(B)	Silver; NaCN	√ 		
	(C)	Gold; KCN			(D)	Pitch blende;	; H_2SO_4		
45.	Which	of the following	is correct	ly matched?					
	(A)	Lead; self-redu	iction						
	(B)	Boron; Decom	position o	ofiodide					
	(C)	Nickel; Decom	position	of carbonyl com	plex				
	(D)	Silver; Comple	ex formati	on and displace	ment by me	etal			
	T1	al dagame agiti			c				
46.	Inerm	ai decomposition	is used fo	or purification of	t				

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

47. MATCH THE FOLLOWING :

Column 1 (metallurgical process)			Column 2 (ore)		
(A)	Smelting	(p)	Copper glance		
(B)	Self reduction	(q)	Silver glance		
(C)	Electrolytic reduction	(r)	Haematite		
(D)	Hydrometallurgy	(s)	Bauxite		

48. MATCH THE FOLLOWING :

Column 1			Column 2		
(A)	Au	(p)	Self reduction		
(B)	Al	(q)	Liquation		
(C)	Pb	(r)	Electrolysis		
(D)	Sn	(s)	Baeyer's process		

49. MATCH THE FOLLOWING :

Column 1			Column 2		
(A)	Mond's process	(p)	Purification of silver		
(B)	Van Arkel method	(q)	Purification of zinc		
(C)	Cupellation	(r)	Purification of nickel		
(D)	Distillation	(s)	Purification of titanium		
		(f)	Ultra pure metals		

50. MATCH THE FOLLOWING :

Column 1			Column 2 (Method of reduction)		
(A)	Iron & Tin	(p)	Carbon reduction method		
(B)	Copper & Lead	(q)	Self-reduction method		
(C)	Magnesium & Aluminium	(r)	Electrolytic reduction method		
(D)	Silver & Gold	(s)	Cyanide process		

51.

MAT	CH THE FOLLOWING :				
	Column 1		Column 2		
(A)	Electrolytic reduction	(p)	Aluminium		
(B)	Electrolytic oxidation	(q)	Chlorine		
(C)	Chemical reduction	(r)	Iron		
(D)	Chemical oxidation	(s)	Silver		
		(t)	Sulphur		

APP | Chemistry

Metallurgy

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- **52.** The number of valence electrons in the most abundant element in earth's crust is _____?
- **53.** How many of the following are sulphide ores? *Copper pyrites, Argentite, Zinc blende, cinnabar, galena, Iron pyrite, Haematite, Malachite, Dolomite.*
- 54. How many of the following are oxide ores?*Bauxite, Cuprite, Cassiterite, Haematite, Magnetite, Chromite, Cryolite, galena, Limestone, Rutile, Pyrolusite.*
- 55. What is the number of valence shell electrons in the most abundant metal?
- 56. What is the numerical value of oxidation state of sulphur in an ore of iron known as Fool's gold?
- 57. How many of the following metals are extracted by the electrolysis of their fused salts : Na, K, Mg, Ca, Al, Ag, Cu, Fe
- 58. What is the numerical value of oxidation state of the metal in the minerals cassiterite?
- **59.** How many of the following metals and method of their reduction are correctly matched?

1.	Al;	Electrolytic reduction	2.	Pb;	Self reduction
3.	Sn;	Carbon reduction	4.	Mg;	Electrolytic reduction
5.	Hg;	Self reduction	6.	Cu;	Self reduction
7.	Ag;	Chemical reduction	8.	Fe;	Carbon reduction
9.	Zn;	Carbon reduction			
Extra	ction o	of iron from magnetite ore involves how n	nany o	f the fo	llowing step(s) process(es) among given ?

(i)	Gravity separation	(ii)	Roasting	(iii)	Smelting	(iv)	Reduction by CO
(v)	Removal of impurity i	n form of s	lag				
(vi)	Collection of molten p	oig iron at b	ottom of blast f	urnace			

- (vii) Oxidation of carbon (viii) Reduction of MnO (ix) Reduction of SiO₂
- 61. How many of the following ores are carbonate ores :
 - (i)Siderite(ii)Limonite(iii)Zincite(iv)Dolomite(v)Calamine(vi)Malachite

60.

Advanced Problem Package

Hydrogen & s-Block Elements

SINGLE CORRECT ANSWER TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONLY ONE Choice is Correct. 1. In context with the industrial preparation of hydrogen from water gas $(CO + H_2)$ which of the following th

- In context with the industrial preparation of hydrogen from water gas (CO + H₂) which of the following is the correct statement.
 (A) CO and H₂ are fractionally separated using differences in their densities
 - (B) CO is removed by absorption in aqueous Cu_2Cl_2 solution
 - (C) H_2 is removed through occlusion with Pd
 - (D) CO is oxidized to CO_2 with steam in the presence of a catalyst followed by absorption of CO_2 in alkali
- **2.** The normality of 30 volume H_2O_2 is :

3. When hydrogen peroxide is added to ice cold acidified potassium dichromate, a blue colour is produced due to formation of :

(A)
$$CrO_3$$
 (B) Cr_2O_3 (C) CrO_5 (D) CrO_4^{2-}

- 4. Moist hydrogen peroxide cannot be dried over conc. H_2SO_4 because :
 - (A) it can catch fire (B) it is reduced by H_2SO_4
 - (C) it is oxidized by H_2SO_4 (D) it is decomposed by H_2SO_4

5. The correct order of solubility of the sulphates of alkaline earth metals in water is :

(A)
$$Be > Ca > Mg > Ba > Sr$$
 (B) $Mg > Be > Ba > Ca > Sr$

(C) Be > Mg > Ca > Sr > Ba (D) Mg > Ca > Ba > Be > Sr

6. On strong heating $MgCl_2 \cdot 6H_2O$, the product obtained is :

(A)
$$MgCl_2$$
 (B) MgO (C) $MgCl_2 \cdot 2H_2O$ (D) $MgCl_2 \cdot 4H_2O$

7. Which one of the following reactions represents the oxidizing property of H_2O_2 ?

(A)
$$2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$$

(B)
$$2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \longrightarrow 2K_4[Fe(CN)_6] + 2H_2O + O_2$$

- (C) $PbO_2 + H_2O_2 \longrightarrow PbO + H_2O + O_2$
- **(D)** $2KI + H_2SO_4 + H_2O_2 \longrightarrow K_2SO_4 + I_2 + 2H_2O$

8. The critical temperature of water is much higher than that of CO_2 because water molecule has :

(A)	Less number of o-atoms	(B)	No double bond
$\langle \mathbf{C} \rangle$	TT' 1 1' 1		NT C.1

- (C) High dipole moment (D) None of these
- 9. Which of the following statements is correct? Dielectric constant of H_2O_2
 - (A) Increases with dilution (B) Decreases with dilution
 - (C) In unaffected on dilution (D) None of the above

APP	Chem	istry			211		Ну	drogen & s-Block Elements
	(A)	H ₂ O	(B)	nitrogen	(C)	CO ₂	(D)	asbestose blanket
21.	A fire	of lithium, sodi	ium and pot	assium can be ex	tinguished	l by		
	(C)	Cl_2 with co	ld and dilute	e NaOH	(D)	Cl_2 with hot a	nd conce	ntrated NaOH
20.	NaOC (A)	l is used as a bl NaCl with H	eaching age I ₂ O	nt and sterilizing	g agent. It o (B)	can be synthesized NH ₄ Cl with N	l by the a IaOH	ction of
19.	Water (A)	is oxidized to c ClO ₂	oxygen by (B)	KMnO ₄	(C)	H_2O_2	(D)	F ₂
18.	The p correc (A) (B) (C) (D)	H of a solution t? The pH of re Hydrogen ga The pH of re Cl ₂ O is form	a of H_2O_2 esultant solu as is liberate esultant solu med in the re	is 6.0. Some ch tion becomes 8.0 d from resultant tion becomes les esultant solution	lorine gas) solution ss than 6.0	is bubbled into t and oxygen gas is	his solut liberated	ion. Which of the following is
17.	preser (A)	it in X and Y re	spectively a (B)	re : 1, 2	(C)	Zero, 1	(D)	Zero, zero
17	(A)	Na ₂ [Na ₄ (PO ₃	(B) (B) (B)	Na ₄ [Na ₂ (PO ₃)	6] (C)	$Na_2[Na_4(PO_4)_5]$	(D)	None of these
15. 16.	Which (A) (B) (C) (D) Calgo	n one of the follo Reduction of Reduction of Electrolysis Electrolysis n used as water	owing proce f CaO with o f CaO with l of a mixture of molten C softner is :	esses is used for t carbon nydrogen e of anhydrous C ca(OH) ₂	the manufa CaCl ₂ and	acture of calcium '	?	
14.	Beryll (A) (B) (C) (D)	ium and alumin Exhibiting n Forming pol Forming cov Exhibiting a	nium exhibit naximum co ymeric hydr valent halide mphoteric n	many properties valency in comp ides s ature in their oxi	s which are oounds ides	e similar. But, the	two elem	ents differ in :
13.	Decor (A)	nposition of H ₂ KOH	2O ₂ is preve (B)	nted by : MnO ₂	(C)	acetanilide	(D)	oxalic acid
12.	Which (A)	n of the followir MgCO ₃	ng carbonate (B)	es decomposes at CaCO ₃	t lowest ter (C)	nperature? SrCO ₃	(D)	BaCO ₃
11.	The pr (A)	oduct obtained BaCO ₃	on fusion o (B)	f BaSO ₄ and N BaO	(C)	: Ba(OH) ₂	(D)	BaHSO ₄
10.	A met NaOH (A)	al M forms wa I. Metal M is : Be	ter soluble (B)	MSO ₄ and iner Mg	t MO. MO (C)) in aqueous solut Ca	ion form (D)	is insoluble M(OH) ₂ soluble in Si

22.	The hyd	ydride ion H^- is stronger base than hydroxide ion OH^- . Which of the following reactions will occur if sodium le (NaH) is dissolved in water?							
	(A)	$H_{(aq)}^{-} + H_2O_{(l)}$ -	→H ₃ 0	D _(aq)	(B)	$H_{(aq)}^- + H_2O_{(l)}^-$	→ОН	$(aq) + H_{2(g)}$	
	(C)	$H_{(aq)}^{-} + H_2O_{(l)}^{-}$	→no :	reaction	(D)	None of these			
23.	Compar (A) (C)	red with the alkalin Smaller ionic rac Greater hardness	ne earth r lii	netals, the alkali n	netals ext (B) (D)	exhibit Higher boiling points Lower ionization energy			
24.	Which v (A)	will show highest RbF	lattice en (B)	ergy? CsF	(C)	NaF	(D)	KF	
25.	Which of (A)	of the following ha NaCl	as minim (B)	um value of catior KCl	n/anion ra (C)	dius ratio? MgCl ₂	(D)	CaF ₂	
26.	Sodium (A) (C) (D)	chloride imparts a low ionization po Sublimation of n Emission of ener	golden ye otential o netallic so gy absor	llow colour to the f sodium odium to give yell bed as a radiation	Bunsen (B) ow vapou in the ult	en flame. This can be interpreted due to : Photosensitivity of sodium oour ultraviolet region			
27.	Which of (A)	of the following in NaCl	nparts vio (B)	olet colouration to BaCl ₂	the Buns (C)	en burner nonlum CaCl ₂	inous flaı (D)	ne? KCl	
28.	The mo (A)	lecular formula of KAl ₂ S ₄ H ₄₈ O ₄₀	potash a (B)	lum is : K ₂ Al ₂ S ₄ H ₄₈ O ₃₉	9 (C)	K ₂ Al ₂ S ₄ H ₄₈ O ₄	₀ (D)	$\mathrm{KAl}_2\mathrm{S}_4\mathrm{H}_{48}\mathrm{O}_{40}$	
29.	Microco (A) (C)	osmic salt is : Na(NH ₄)HPO ₄ Na(NH ₃)HPO ₄	.4H ₂ O .4H ₂ O		(B) (D)	$Na(NH_4)_2PO_4 \cdot H_2O$ $K(NH_4)HPO_22H_2O$			
30.	Which of (A)	of the following co Cr(OH) ₃	ompound (B)	s on reaction with Zn(OH) ₂	NaOH an (C)	nd H_2O_2 gives ye Al(OH) ₃	ellow colo (D)	our? none of these	
31.	The me (A)	tal extracted by ele iron	ectrolysis (B)	of its fused salt is sodium	s : (C)	copper	(D)	lead	
32.	The stat (A) (C)	ne stability of the following alkali metal chlorides follows the order?A)LiCl > KCl > NaCl > CsCl(B)CsCl > KCl > NaCl > LiClC)NaCl > KCl > LiCl > CsCl(D)KCl > CsCl > NaCl > LiCl						21 21	
33.	Identify (A) (B) (C) (D)	tify the incorrect statement : Elemental sodium can be prepared and isolated by electrolyzing an aqueous solution of sodium chloride Elemental sodium is a strong oxidizing agent Elemental sodium is soluble in liquid ammonia Elemental sodium is easily oxidized							
34.	Chemic caustic	al (A) is used for soda and when CO	• water so D ₂ is buł	oftening to remov obled through (A),	e tempor it turns c	ary hardness. (A) loudy. What is the	reacts w e chemica	ith sodium carbonate to give al formula of (A)?	
	(A)	CaCO ₃	(B)	CaO	(C)	Ca(OH) ₂	(D)	Ca(HCO ₃) ₂	
		DAV CEN	TENARY	PUBLIC SCH	IOOL, PA	SCHIM ENCL	LAVE, NE	W DELHI-87	
-----	---------------------	--	-------------------------------------	-------------------------------	----------------------------	--	----------------------------	--	
35.	Which (A) (C)	n of the following MgO < BeO < BaO < CaO <	g has corre < CaO < B MgO < B	ct increasing bas aO eO	sic strength (B) (D)	? BeO < MgO · CaO < BaO <	< CaO < Ba SeO < Ma	aO gO	
36.	Amon	gst the following	hydroxide	e NaOH, KOH,	Ca(OH) ₂	and Zn(OH) ₂ , t	the weakest	t base is	
	(A)	NaOH	(B)	КОН	(C)	Ca(OH) ₂	(D)	Zn(OH) ₂	
37.	Electr	olysis of KCl.Mg	gCl ₂ .6H ₂ C) gives :					
	(A) (C)	Potassium onl Magnesium ar	y nd chlorine	e	(B) (D)	Magnesium o Potassium an	only d magnesiu	ım	
38.	An im (A)	portant ore of ma Malachite	agnesium i (B)	s : Cassiterite	(C)	Carnallite	(D)	Galena	
39.	Beryll	ium is placed abo	ove magne	sium in the seco	nd group.]	Beryllium dust, t	therefore, w	vhen added to MgCl ₂ solution	
	will :	-	-			·			
	(A) (C)	Have no effect Precipitate Mg	t g		(B) (D)	Will form pol Leads to the c	lymeric ber dissolution	yllium chloride of beryllium metal	
40.	Amon (A)	gst the metals Be Mg	e, Mg, Ca a (B)	and Sr of group Be	II of the per (C)	riodic table, the Ca	least ionic (D)	chloride would be formed by : Sr	
41.	Magne	esium burns in ai	r to give :						
	(A)	MgO	(B)	Mg_3N_2	(C)	MgCO ₃	(D)	MgO and Mg_3N_2	
42.	Which	n of the following	g is super p	hosphate of lime	e ?				
	(A)	$Ca_3(PO_4)_2$			(B)	CaHPO ₄			
	(C)	Ca(HPO ₃)			(D)	$Ca(H_2PO_4)_2$	$2 \cdot 2 \text{CaSO}_4$	·2H ₂ O	
43.	Halide	es of alkaline eart	h metals f	orms hydrates su	uch as Mg	Cl ₂ .6H ₂ O,CaCl ₂	2.6H ₂ O, Ba	$Cl_2.2H_2O$ and $SrCl_2.2H_2O$.	
	This s	hows that halides	s of group	2 elements :			_		
	(A) (C)	are hygroscop	ic in natur	e main	(B)	act as dehydra	ating agent		
	(C)		isture noi	11 811	(D)	all the above			
44.	Calciu (A)	Im is obtained by Reasting of lit	ne stone						
	(A) (B)	Electrolysis of	f solution	of calcium chlor	ide in wate	r			
	(C)	Reduction of c	calcium ch	loride with carb	on				
	(D)	Electrolysis of	f molten ai	nhydrous fused o	calcium chl	oride			
45.	The m	netallic luster exh	ibited by s	odium is explair	ned by				
	(A)	Diffusion of so	odium ion	s	(B)	Oscillation of	f mobile va	lence electrons	
	(C)	Excitation of f	free proton	18	(D)	Existence of I	body center	red cubic lattice	
46.	A solu	tion of sodium m	netal in liq	uid ammonia is	strongly re	ducing due to th	e presence	of:	
	(A)	Sodium atoms	5		(B)	Sodium hydri	ide		
	(U)	Sodium amide			(U)	Solvated elec	urons		
47.	Which	halide has highe	est melting	point?		NaE		Nal	
	(A)	NaCI	(в)	INADI	(U)	паг	(U)	1 nd1	
APP	Chem	istry			213		Ну	drogen & s-Block Elements	

		DAV CEN	TENARY	PUBLIC SCHO	DOL, PA	SCHIM ENCL	AVE, NE	W DELHI-87
48.	When	CO is passed ove	er solid Na	OH heated to 200	°C, it for	ms :		
	(A)	Na ₂ CO ₃	(B)	NaHCO ₃	(C)	HCOONa	(D)	All
49.	The pa	ir of compounds	which car	not exist together	is:			
	(A)	NaHCO ₃ and	NaOH		(B)	Na_2CO_3 and	l NaHCO ₃	
	(C)	Na_2CO_3 and	NaOH		(D)	NaHCO ₃ and	d NaCl	
50.	Sodiun	n carbonate react	ts with SO	P_2 in aqueous med	dium to g	ive :		
	(A)	NaHSO ₃	(B)	Na ₂ S ₂ O ₃	(C)	NaHSO ₄	(D)	Na ₂ SO ₄
51.	When	CO_2 is bubbled	into an aq	ueous solution of	Na ₂ CO ₃	the following i	s formed :	
	(A)	NaOH	(B)	NaHCO ₃	(C)	H ₂ O	(D)	OH-
52.	A delid give a mass. 2	quescent white c insoluble brown X and Y are	rystalline l layer of it	hydroxide X react s oxide. X is a po	ts with a swerful ca	nitrate Y to form utery and breaks	another h	ydroxide which decomposes to proteins of skin flesh to a pasty
	(A)	NaOH, AgNC) ₃		(B)	NaOH, Zn(N	$(O_3)_2$	
	(C)	NaOH, Al(NO	$(D_3)_3$		(D)	$Ca(OH)_2$, Hg	gNO ₃	
53.	Bleach	ing action of ble	aching pov	wder is due to the	liberation	n of :		
	(A)	0 ₂	(B)	OCI [_]	(C)	Cl ₂	(D)	Cl
54.	Sodiun	n is heated in air	at 300°C 1	to form X.X absor	bs CO ₂	and forms Na ₂ O	CO_3 and Y	? Which of the following is Y?
	(A)	H ₂	(B)	0 ₂	(C)	H_2O_2	(D)	O ₃
55.	Calciu	m cyanamide on	treatment	with steam under	pressure	gives NH ₃ and		
	(A)	Calcium carbo	onate		(B)	Calcium hydr	oxide	
	(C)	Calcium oxide	•		(D)	Calcium bica	rbonate	
56.	When	standard solutior	n of NaOH	is left in air for for	ew hours	:	6.1 1	
	(A) (C)	A precipitate v The strength o	vill be fori f the solut	ned ion will decrease	(B) (B)	The strength of The concentration	of the solut: ation of sod	ion will increase
57	Consid	ler the following	abbreviati	ons for hydrated a	alkali ion	s		
57.	Consid	$X = [\text{Li}(\text{H}_2\text{O})]$	1001011111	$Y = [K(H_2O)]$	1+ 1+	$Z = [C_s(H_2O)]$) 1+	
	What i	s the correct ord	er of size c	of these hydrated a	alkali ion:	s?	<i>)n</i>]	
	(A)	X > Y > Z	(B)	Z > Y > X	(C)	X = Y = Z	(D)	Z > X > Y
58.	Based the hig	on lattice energy hest melting poin	and other nt?	considerations w	hich one	of the following	alkali meta	al chlorides is expected to have
	(A)	RbCl	(B)	KCl	(C)	NaCl	(D)	LiCl
59.	When When golden (A)	a substance (A) another substanc yellow colour to Na,H ₂ ,NaOH	reacts with ce (D) read a smokel I and Zn	n water it produce cts with this solut ess flame of Buns	es a comb tion of (C en burner (B)	oustible gas (B) a C), it also product r. A, B, C, and D K, H ₂ , KOH	and a soluti ces the san respective and Al	on of a substance (C) in water. he gas (B). (A) imparts a deep ly are :
	(C)	Ca,H ₂ ,Ca(Ol	H) ₂ and S	n	(D)	CaC_2, C_2H_2	Ca(OH) ₂	and Fe
		· 2/ 、	/ 2			2, 2 2,	× 72	

	In the following reaction : $NaOH + S \longrightarrow A + Na_2S + H_2O; A$ is :							
	(A)	Na_2SO_4	(B)	Na ₂ SO ₃	(C)	Na ₂ S	(D)	$Na_2S_2O_3$
61.	Which	n property of Na	$_2S_2O_3$ mal	kes it useful in pl	hotography	<i>v</i> ?		
	(A)	Photochemica	al property		(B)	Complex for	mation prop	erty
	(C)	Oxidizing age	ent		(D)	Reducing ag	gent	
52.	Which	n sequence of rea	ctions show	ws correct chemi	cal relation	n between sodiu	um and its co	ompounds?
	(A)	Na + O ₂	\rightarrow Na ₂ O	^{HCl} (aq)→NaCl−	$\xrightarrow{\text{CO}_2}$ Na	$_2 \text{CO}_3 \xrightarrow{\Delta} \text{N}$	a	
	(B)	$Na \xrightarrow{O_2} N$	a ₂ O <u>H₂O</u>	\rightarrow NaOH $-$ CO ₂	\rightarrow Na ₂ CO	$_{3} \xrightarrow{\Delta} Na$		
	(C)	$Na + H_2O$	→NaOH·	HCl → NaCl —	$\xrightarrow{\text{CO}_2}$ Na ₂	$CO_3 \xrightarrow{\Delta} Na$	L	
	(D)	$Na + H_2O$ —	→NaOH	$\xrightarrow{\text{CO}_2} \text{Na}_2\text{CC}$	$P_3 \xrightarrow{\text{HCl}}$	NaCl Electro (molten)	^{olysis} → Na +	Cl ₂
		1.0 0.0		reaction with (la gives ·			
3.	Aqueo	ous solution of N	$a_2 s_2 c_3 c_3$		Jing gives.			
53.	Aqueo (A)	Na ₂ S ₄ O ₆	(B)	NaHSO ₄	(C)	NaCl	(D)	NaOH
3. 4.	Aqueo (A) One o	Na ${}_2S_4O_6$ f the elements pr	(B) resent in ca	NaHSO ₄ rnallite shows fla	(C)	NaCl ation. The colo	(D) our of the fla	NaOH me is :
53. 14.	Aqueo (A) One o (A)	Na ₂ S ₄ O ₆ f the elements pr orange	(B) resent in car (B)	NaHSO ₄ rnallite shows fla green	(C) ame colour (C)	NaCl ation. The colo yellow	(D) our of the fla (D)	NaOH me is : lilac
3. 4. 5.	Aqueo (A) One o (A) What	Na ${}_2S_4O_6$ f the elements pr orange are the products	(B) (B) resent in ca (B) formed wh	NaHSO ₄ rnallite shows fla green en an aqueous so	(C) ame colour (C) blution of r	NaCl ation. The colo yellow nagnesium bica	(D) our of the fla (D) arbonate is b	NaOH me is : lilac oiled ?
53. 54. 55.	Aqueo (A) One o (A) What (A)	Na ${}_2S_4O_6$ f the elements prorange are the products MgO,H $_2O,C$	(B) (B) resent in ca (B) formed wh	NaHSO ₄ rnallite shows fla green en an aqueous so	(C) ame colour (C) olution of r (B)	NaCl ation. The colo yellow nagnesium bica Mg(HCO ₃)	(D) our of the fla (D) arbonate is b 2,H ₂ O	NaOH me is : lilac oiled ?
3. 4. 5.	Aqueo (A) One o (A) What (A) (C)	Na $_2S_4O_6$ f the elements prorange are the products MgO,H $_2$ O,C Mg(OH) $_2$,H	(B) resent in ca (B) formed wh CO_2 $_2O$	NaHSO ₄ rnallite shows fla green en an aqueous so	(C) ame colour (C) blution of r (B) (D)	NaCl ation. The color yellow nagnesium bica Mg(HCO ₃) Mg,CO ₂ ,H	(D) our of the fla (D) arbonate is b $_2,H_2O$ $_2O$	NaOH me is : lilac oiled ?
3. 4. 5.	Aqueo (A) One o (A) What (A) (C) When	Solution of Na $_2S_4O_6$ f the elements prorange are the products MgO,H $_2O$,C Mg(OH) $_2$,H KI is added to a	(B) resent in ca (B) formed wh $2O_2$ $_2O$ cidified sol	NaHSO ₄ rnallite shows fla green en an aqueous so ution of sodium	(C) ame colour (C) olution of r (B) (D) nitrite ther	NaCl ation. The color yellow nagnesium bica Mg(HCO ₃) Mg,CO ₂ ,H	(D) our of the fla (D) arbonate is b $_2,H_2O$ $_2O$	NaOH me is : lilac poiled ?
3. 4. 5.	Aqueo (A) One o (A) What (A) (C) When (A)	Na ₂ S ₄ O ₆ f the elements pr orange are the products MgO,H ₂ O,C Mg(OH) ₂ ,H KI is added to a NO gas is libe	(B) resent in ca (B) formed wh CO_2 $_2O$ cidified sol erated and	NaHSO ₄ rnallite shows fla green en an aqueous so ution of sodium I_2 is set free	(C) ame colour (C) olution of r (B) (D) nitrite ther (B)	NaCl ation. The color yellow nagnesium bica Mg(HCO ₃) Mg,CO ₂ ,H 1: N ₂ gas is li	(D) but of the fla (D) arbonate is b $_2,H_2O$ $_2O$ berated and	NaOH me is : lilac oiled ? HI is produced
3. 4. 5.	Aqueo (A) One o (A) What (A) (C) When (A) (C)	has solution of N $_2S_4O_6$ f the elements prorange are the products MgO,H ₂ O,C Mg(OH) ₂ ,H KI is added to a NO gas is libe N ₂ O gas is l	(B) resent in ca (B) formed wh CO_2 $_2O$ cidified sol erated and iberated an	NaHSO ₄ rnallite shows fla green en an aqueous so ution of sodium I_2 is set free d I_2 is set free	(C) ame colour (C) olution of r (B) (D) nitrite ther (B) (D)	NaCl ation. The color yellow nagnesium bica Mg(HCO ₃) Mg,CO ₂ ,H 1: N ₂ gas is li N ₂ gas is li	(D) but of the fla (D) arbonate is b $_2, H_2O$ $_2O$ berated and berated and	NaOH me is : lilac oiled ? HI is produced HOI is produced
53. 54. 55. 56.	Aqueo (A) One o (A) What (A) (C) When (A) (C) The ic	has solution of Na $_2S_4O_6$ f the elements prorange are the products MgO,H $_2O$,C Mg(OH) $_2$,H KI is added to a NO gas is libe N $_2O$ gas is libe	(B) resent in car (B) formed wh CO_2 $_2O$ cidified sol erated and iberated and is least for	NaHSO ₄ rnallite shows fla green en an aqueous so ution of sodium I_2 is set free d I_2 is set free	(C) ame colour (C) olution of r (B) (D) nitrite ther (B) (D)	NaCl ation. The color yellow magnesium bica Mg(HCO ₃) Mg,CO ₂ ,H 1: N ₂ gas is li N ₂ gas is li	(D) but of the fla (D) arbonate is b $_2,H_2O$ $_2O$ berated and berated and	NaOH me is : lilac oiled ? HI is produced HOI is produced

All alkali metals dissolve in anhydrous liquid ammonia to give blue colour solution. It is the ammoniated electron which is responsible for the blue colour of the solution, and the electrical conductivity is due to the ammoniated cation, $[M(NH_3)_x]^+$ as well as the ammoniated electron, $[e(NH_3)_y]^-$, values of x and y depend on the extent of solvation by NH₃. Dilute solutions are paramagnetic due to free ammoniated electrons.

- **68.** What happens if alkali metal is allowed to react with concentrated liquid ammonia?
 - (A) Paramagnetic character of solvated electrons is retained
 - (B) Solvated electrons associated to form electron-pairs and paramagnetic character decreases
 - (C) Reducing character is increased
 - (D) Reducing character is not affected

69. Which of the following statement about solution of alkali metals in liquid ammonia is correct ?

- (A) The solution have strong oxidizing properties
- (B) Both the dilute solution as well as conc. solution are equally paramagnetic in nature
- (C) Charge transfer is responsible for the colour of the solution
- (D) None of these

70. Ammoniated solutions of alkali metals are reducing agents due to the presence of free ammoniated or solvated electrons that can reduce

I.	O_2 to O_2^{2-}			II.	$K_2[Ni(CN_4)]$ to K_2	₄ [Ni(CN) ₄]
Ш.	Aromatic ring	5		IV.	Non-terminal alkyne	
Choos	se the correct cod	e :				
(A)	III and IV	(B)	II and III	(C)	I, II, III and IV (D) I, III and IV

Paragraph for Questions 71 - 75

The thermal stability of the salts of the s-block elements is dependent upon three main factors. Firstly, the greater the charge of the ions involved, the stronger the interionic attraction and the more stable the salt. Also, the smaller the ions become in terms of their ionic radii the close they approach each other in the crystal lattice of their salts and the more stable the salt. Thirdly, if the ions in the lattice are of comparable size, the crystal lattice is arranged in a more uniform fashion and thus possesses greater thermal stability.

There is other factor that affects thermal stability. The larger the anions in the crystal become, for example CO_3^{2-} , unless the

cation is of comparable size, the anions decompose on heating to give smaller anions such as O^{2-} . This point is especially important when considering the thermal stability of the carbonates, nitrates and hydroxides of the s-block elements.

71. Which groups of the periodic table comprise the s-block elements?

(A)	Groups I, II and III	(B)	Groups I and III
(C)	Groups, II and III	(D)	Groups I and II

72. Given that the CO_3^{2-} anion is approximately the same size as the early Group I cations, what would occur if Na₂CO₃ were heated?

- (A) It would decompose to yield Na_2O .
- (B) It would decompose to yield Na_2O and CO_2 .
- (C) It would decompose to yield $NaHCO_3$ and CO_2 .
- (D) No decomposition would occur

73. Comparing calcium oxide and magnesium oxide, which of the two would be more stable?

- (A) Magnesium oxide would be more stable because the magnesium cation is smaller.
- (B) Magnesium oxide would be more stable because magnesium has a lower atomic mass than calcium.
- (C) Calcium oxide would be more stable because the calcium anion is smaller than the magnesium cation.
- (D) Calcium oxide would be more stable because calcium has a greater atomic mass than magnesium.

74. The nitrates of the Group I elements decompose to give nitrite (NO_2^-) and not oxide although O^{2-} is smaller than

 NO_2^- . Why?

- (A) Because only doubly charged anions like CO_3^{2-} decompose to the oxide.
- (B) Because the double charge on the oxygen would make the salt less stable than a singly charged nitrite anion.
- (C) Because the nitrite anion contains two oxygen atoms while the oxide anion contains only one.
- (D) Because the nitrite anion is probably about the same size as the Group I cations
- **75.** Li_2O is often considered to be covalent in nature because of the unusually high electronegativity of lithium. Which of the following would be a plausible Lewis dot structure for the compound?

(A) $\text{Li}-\text{Li}-\ddot{\text{O}}$ (B) $\text{Li}-\ddot{\text{O}}-\text{Li}$ (C) Li=O=Li (D) $\text{Li}-\ddot{\text{O}}\rightarrow\text{Li}$

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

- 76. Which one of the following reaction form gaseous product?
 - (A) $PbO_2 + H_2O_2 \longrightarrow$ (B) Acidified $KMnO_4 + H_2O_2 \longrightarrow$
 - (C) $PbS + H_2O_2 \longrightarrow$ (D) $Cl_2 + H_2O_2 \longrightarrow$
- 77. Which of the following statements is(are) **true** regarding saline hydrides?
 - (A) In the molten state they conduct electricity
 - (B) They dissolve in water giving off hydrogen
 - (C) They are used as reducing agents
 - (D) They are covalent in nature

78. Sodium sulphate is soluble in water but barium sulphate is insoluble because

- (A) The hydration energy of Na_2SO_4 is more than its lattice energy
- (B) The lattice energy of BaSO₄ is more than its hydration energy
- (C) The lattice energy has no role to play in solubility
- (D) The lattice energy of Na_2SO_4 is more than its hydration energy
- **79.** When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with :

(A)
$$H^+$$
 ions (B) Ca^{2+} ions (C) SO_4^{2-} ions (D) Mg^{2+} ions

80. Which of the following is(are) **correct**?

- (A) Mg burn in air releasing dazzling light rich in UV rays
- (B) $CaCl_2.6H_2O$ when mixed with ice gives freezing mixture
- (C) Mg cannot forms complexes
- (D) Be can forms complexes due to its very small size
- 81 Which one of the following salts does impart a colour to the flame or the flame test is/are shown by :
 - LiCl (B) KI (C) $MgCl_2$ (D) $CaCl_2$

APP | Chemistry

(A)

- 82. Which one of the following is(are) false?
 - (A) NaOH is used in the concentration of bauxite ore
 - **(B)** NaOH is a primary standard in volumetric analysis
 - **(C)** Manganous hydroxide is soluble in excess of NaOH solution
 - **(D)** NaOH solution does not react with Cl₂
- 83. Which of the following illustrate the anamolous properties of Li?
 - (A) The melting and boiling points of Li are comparatively high
 - Li is much softer than the other Group I metals **(B)**
 - **(C)** Li forms nitride Li₃N unlike Group I metals
 - **(D)** The ion of Li and its compounds are more heavily hydrated than those of the rest of the group
- 84. Which of the following is/are correct?
 - (A) In the Castner's process of sodium extraction, NaCl is used as an electrolyte.
 - **(B)** Sodium reduces CO₂ to carbon.
 - Mg reacts with cold water and liberate hydrogen gas. **(C)**
 - **(D)** Magnalium is an alloy of Mg and Al.
- 85. Which of the following statements is/are correct for alkali metal compounds ?
 - Superoxides are paramagnetic in nature. (A)
 - **(B)** The basic strength of hydroxides increases down the group.
 - The conductivity of chlorides in their aqueous solutions increases down the group. **(C)**
 - **(D)** The basic nature of carbonates in aqueous solutions is due to cationic hydrolysis.
- 86.

Which	of the following reactions liberate gaseous	product?	
(A)	$AlCl_3 + NaOH \longrightarrow$	(B)	$NaOH + P(white) + H_2O \longrightarrow$
(C)	Al + NaOH $\xrightarrow{\Delta}$	(D)	$Zn + NaOH \xrightarrow{\Delta}$
Which	one of the following statements is not true	for all the	alkali metals?
(A)	Their nitrates decompose on heating to g	ive NO ₂	and O_2 .
(B)	Their carbonates decompose on heating	to give CC	P_2 and the metal oxide.
(C)	They react with oxygen to give mainly the	ne oxide N	4 ₂ O.
(D)	They react with nitrogen to give nitrides.		
In whi	ch of the following reactions, MgO is form	ed?	
(A)	$Mg + CO_2 \longrightarrow$	(B)	$Mg + dil.HNO_3 \longrightarrow$
(C)	$MgCl_2 \cdot 6H_2O \xrightarrow{\Delta}$	(D)	$Mg + B_2O_3 \longrightarrow$
Which	is(are) true in respect of beryllium chemist	ry?	
(A)	Beryllium is amphoteric	(B)	It forms unusual carbide Be ₂ C
(C)	$Be(OH)_2$ is basic	(D)	Beryllium halides are electron deficient
In whi	ch of the following reactions, H_2O_2 is acti	ng as an o	xidizing agent?
(A)	$SO_2 + H_2O_2 \longrightarrow H_2SO_4$	(B)	$2KI + H_2O_2 \longrightarrow 2KOH + I_2$
(C)	$PbS+4H_2O_2 \longrightarrow PbSO_4+4H_2O_4$	(D)	$Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$

87.

88.

89.

90.

APP	Chemi	strv			219			Hy	drogen & s-Block Element
104.	(A)	Na	(B)	Li	(C)	Mg	The metal	(D)	Al
103.	A com (A)	bustible gas is lib S	erated v (B)	when caustic soda sol NH ₄ Cl	ution is (C)	heated w Al	ith : The metal	(D)	Zn
102.	The co (A)	mpound(s) solubl Calcium oxide	e in ace (B)	tic acid is(are) : Calcium carbonate	(C)	Calciu	m oxalate	(D)	Calcium hydroxide
101	The all (A) (C) (D)	kali metals : Form salt like h Show increased Show increasin	nydrides 1 chemio 1g metal	al reactivity with dr lic nature from Li to	(B) y oxyge Cs.	Form s n in going	salts which g from Li t	are pre to Cs.	dominantly ionic.
100.	The pr (A) (C)	operty of hydroge Its electropositi Its reducing cha	en which ive char aracter	n resembles with alka acter	ali metal (B) (D)	s is(are) : Its affi Electro	nity for no onic config	on metal guration	
99.	Which (A)	of the following AlCl ₃	exists in (B)	polymeric form? BeCl ₂	(C)	BeH ₂		(D)	LiH
98.	Which (A)	of the following Na and Na ₂ O ₂	pairs of (B)	substances would gi Ca and CaH ₂	ve same (C)	gaseous Ca and	product or l CaO	n reactio (D)	n with water? Mg_3N_2 and $NaNH_2$
97.	Phosph (A) (C)	nine, acetylene an Ca_3P_2 , Al_4C_3 , Ca_3P_2 , CaC_2 , CaC_3	d ammo Li ₃ N CaCN ₂	nia can be formed b	y treatin (B) (D)	g water w Ca ₃ P ₂ Ca ₃ P ₂	vith ,CaC ₂ ,Mg ,Mg ₂ C,N	g ₃ N ₂ H ₄ NO ₃	
96.	Hydrog (A) (C)	gen can reduce : heated cupric a heated stannic	cid oxide		(B) (D)	heated heated	ferric oxio aluminiur	de n oxide	
95.	(A) (C)	Saturation of w	ater wit ater wit	h Ca(HCO ₃) ₂ soluti h CaSO ₄	on	er? (B) (D)	Saturati Addition	on of wa n of Na	ater with MgCO ₃ ₂ SO ₄ to water
	(A)	Na ₂ SO ₃	(B)	PbS	(C)	KI		(D)	O ₃
94.	(A) (C) Which	Acts as redox s Pale blue liquid can be oxidized b	ubstanc l by H ₂ O	e 2 ?	(B) (D)	Two C Can be	—H bond e oxidized	s lie in o by O ₃	lifferent plane
93.	Which	is/are true about	H ₂ O ₂ 2	?	(0)	1.24		(2)	-20
92.	Which (A)	of the following C₂H∠	can exis (B)	t in different conforr H2O2	neric fo	rm? N2H₄		(D)	B₂H∠
	(C)	Hydrogen is lib	berated a	at anode	(D)	Sulphu	ric acid u	ndergoes	s oxidation
		Peroxoaisiiinni	iric acid	is formed at anode	(B)	- 50% F	I₂SO₄ is i	used	

105. In Down's method for the extraction of sodium, the melting point of the electrolyte is lowered by adding

(A) potassium chloride

(B) calcium chloride(D) potassium fluoride and sodium carbonate

(C) potassium fluoride (D) potassium

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

106. MATCH THE FOLLOWING :

	Column 1 (Prop. of metals)	Column 2 (Metals)		
(A)	Imparts colouration to flame	(p)	Ca	
(B)	Most reactive (in aqueous solution)	(q)	Mg	
(C)	Gives carbide when heated with 'C'	(r)	Na	
(D)	Metal nitrate $\xrightarrow{\Delta}$ metal oxide +NO ₂ +O ₂	(s)	Li	

107. MATCH THE FOLLOWING :

	Column 1 (Chemical Prop.)		Column 2 (Metals)
(A)	Metal sulphate $\xrightarrow{\Delta}$ metal oxide $+SO_2 + O_2$	(p)	Ba
(B)	Metal cation $+K_2CrO_4 \longrightarrow$ yellow ppt.	(q)	Sr
(C)	Metal +NH _{3(<i>l</i>)} \longrightarrow blue solution	(r)	Na
(D)	$MCl_2 + \text{ conc. } H_2SO_4 \longrightarrow \text{ white ppt.}$	(s)	Mg

108. MATCH THE FOLLOWING :

	Column 1 (Chemical eq. related to compounds)		Column 2 Compound in excess amount)
(A)	$S \longrightarrow S_2 O_3^{2-} + S^{2-}$	(p)	Na ₂ S ₂ O ₃
(B)	Ag^+ salt \longrightarrow soluble compound	(q)	NaOH
(C)	$Fe^{3+} \longrightarrow precipitate$	(r)	Na ₂ S
(D)	$FeCl_3 \longrightarrow FeCl_2$	(s)	Na ₂ SO ₃

109. MATCH THE FOLLOWING : .

	Column 1		Column 2
(A)	Complex formation	(p)	Be
(B)	Formation of covalent compounds	(q)	Mg
(C)	High solubility of salts	(r)	Са
(D)	Explosive reaction with acids	(s)	Sr

APP | Chemistry

110. MATCH THE FOLLOWING :

	Column 1 (Hydride)		Column 2 (Type of hydride)
(A)	BeH ₂	(p)	Complex
(B)	AsH ₃	(q)	Lewis acid
(C)	B ₂ H ₆	(r)	Covalent
(D)	LiAlH ₄	(s)	Polymeric
		(t)	Ionic

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 111. 0.789 g of crystalline barium hydroxide is dissolved in water. For the neutralization of this solution, 20 ml of $\frac{N}{4}$ HNO₃ is required. How many molecules of water are present in one g mole of this base.
- 112. How many mole of H_2O molecules are formed on heating one mole of $MgCl_2 \cdot 6H_2O$ to make it anhydrous?
- **113.** Trona, a natural hydrated mixed carbonate and bicarbonate of sodium is found in nature. In one molecule, how many sodium bicarbonate molecules are present?
- **114.** Alkali metals are paramagnetic but their ions are diamagnetic. Decide how many of the following are paramagnetic due to the presence of unpaired electrons in anion?

Na₂O₂,KO₂,K₂Cr₂O₇,K₂MnO₄,KMnO₄,NaNO₂,NaHCO₃

- **115.** How many of the following compounds of s-block elements are used as bleaching agent? NaOH, Na₂O₂, NaOCl, CaOCl₂, KNO₂, Na₂S₂O₃, NaCN, Na₂SO₄, KO₂
- **116.** How many of the following can show flame test? *Caustic potash, Glauber's salt, Alum, Microcosmic salt, Hypo, Rock salt, Washing soda, Epsom salt, Carnallite, Lime stome.*
- **117.** How many of the following on heating evolve an acidic gaseous substance?

 $LiNO_3, NaNO_3, Mg(NO_3)_2, CaCO_3, NaHCO_3, MgCl_2 \cdot 6H_2O, Na_2CO_3, Li_2CO_3.$

118. Consider the following sequential process.

 $Na_{2}CO_{3} \xrightarrow{SO_{2}} (A) \xrightarrow{Na_{2}CO_{3}} (B) \xrightarrow{Elemental} S(C) \xrightarrow{Cl_{2}} (D).$

What is numerical value of oxidation state of sulphur in (D)?

- **119.** How many of the following chemical reagents imparts brick red colouration to the flame during flame test? *Lime stone, Dolomite, Carnallite, Bleaching powder, Alum, Gypsum, Rock salt, Hydrolith, Nitrolim.*
- **120.** How many of the following are double salts containing s-block element(s)? Dolomite, Carnallite, Bleaching powder, Alum, Gypsum, Microcosmic salt.

APP | Chemistry

121. Lime stone(X) $\xrightarrow{\Delta}$ Solid (A) + gas (B)

Other Binary Compound of Calcium(Y) $\xrightarrow{H_2O}$ Solution (C) + Gas (D)

Gas (B) turns solution (C) milky but does not react with $\,K\!MnO_{4}\,/\,H^{+}$

Gas (D) produce white ppt. in Tollen's reagent and it also produce benzene when passed through red hot iron tube The difference of oxidation state of same central atom in (B) & (D) is :

122. Number of non-radioactive alkali metals forming superoxide as major product on heating with excess $O_2 = x$ Number of II-A metals of periodic table whose hydrated halides suffer hydrolysis on heating = y Number of non radio active alkali metals which dissolve in liquid ammonia and produce blue colour solution = u The value of (x + y - u) would be

		Advanced P	roblem	Package		p-Block	Eleme	ents-l
				SINGLE CORR		SWER TYPE		
of t	the follo	owing Question	has 4 choi	ices A, B, C & D, o	ut of wh	ich ONLY ONE Cho	oice is Co	rrect.
	AlCl ₃ f (A) (C)	umes in moist air It is very volati HCl is formed	r because ile in moist a	: .ir	(B) (D)	It is covalent It is highly hyg	roscopic	
	AlCl ₃ e (A) (C)	exist as dimer bec Al has greater High nuclear c	cause : ionization harge	potential	(B) (D)	Al has larger ra Incomplete octo	dius et	
	Reactiv (A) (C)	vity of Borazole i Borazole is nor Borazole is ele	s greater t npolar cor ctron defi	han of Benzene b npound cient compound	ecause : (B) (D)	Borazole is pol Of localized ele	ar compo ectrons in	und borazole
	Which (A) (B) (C) (D)	of the following BCl ₃ and AlCl BCl ₃ and AlCl BCl ₃ and AlCl Both BCl ₃ and	statement 3 are both 3 are both 3 are both AlCl ₃ are	s is correct ? Lewis acids and H Lewis acids and A equally strong Le not Lewis acids.	BCl ₃ is str AlCl ₃ is s wis acids	ronger than AlCl ₃ tronger than BCl ₃		
	Which (A) (B) (C) (D)	of the following The hydroxide The hydroxide The hydroxide The hydroxide	is a corre of alumin of boron of boron of alumin	ct statement? hium is more acidi is basic, while tha is acidic, while th hium and boron ar	ic than the it of alum at of alum e amphot	at of boron. inium is amphoten ninium is amphote eric.	ic. ric.	
	In dibo (A) (B) (C) (D)	rane B ₂ H ₆ : 4 bridge hydro 2 bridged hydr 3 bridged and t None of these	gens and t ogens and hree term	two terminal hydr four terminal hydr inal hydrogen are	ogens are drogens a present	e present re present		
	The typ (A) (C)	be of hybridizatic sp-hybridizatic sp ³ - hybridiza	on of boro on tion	n in diborane is :	(B) sp^2 - hybridization (D) sp^3d^2 - hybridization			
	In grap (A) (C)	hite electrons are Localized on e Localized on e	e : very third ach carbo	carbon atom n atom	(B) (D)	Present in antib Spread out betw	oonding o veen the	rbitals structure
	Which (A)	of the following CO	combines (B)	with haemoglobi	n of the b (C)	blood to form carb COCl ₂	oxyhaem (D)	oglobin? PbO
	The abi (A)	ility of a substand Isomerism	ce to assur (B)	me two or more cr Polymorphism	rystalline (C)	structures is calle Isomorphism	d : (D)	Amorphism

11.	Which	n of the followin	ng is a tetral	basic acid?		· · ·				
	(A) (C)	Orthophosph Metaphosph	oric acid		(B) (D)	Hypophosp Pvrophospl	oric acid			
12	In P.($\mathbf{D}_{\mathbf{c}}$ the number	of oxygen a	itoms bonded to	each phosphorus atom is :					
	(A)	1.5	(B)	2	(C)	3	(D)	4		
13.	Nitric	acid on standin	ig becomes l	brownish in colo	our which n	nay be attribut	ed to the pres	sence of :		
	(A)	NO_2^+ ion	(B)	$NO_{\overline{3}}$ ion	(C)	NO ₂	(D)	HNO ₂		
14.	Group eleme	15 of the period nts of general for	odic table co ormula M ₂ 0	nsists of the eler O ₃ become :	ments N, P,	As, Sb and B	i. On passing	from N to Bi the oxides of th		
	(A) (C)	Stronger red More basic	lucing agent	s	(B) (D)	More ionic More volat	ile			
15.	The ba	asic character o	f hydrides o	f the V(15) grou	p elements	ts decreases in the order:				
	(A)	$SbH_3 > PH_2$	$_3 > AsH_3 >$	NH ₃	(B)	$NH_3 > SbH_3 > PH_3 > AsH_3$				
	(C)	$NH_3 > PH_3$	> AsH ₃ $>$ S	SbH ₃	(D)	$SbH_3 > As$	$H_3 > PH_3 >$	NH ₃		
16.	Which	n of the followin	ng species h	as the highest di	pole mome	ent?		CLU		
17	(A)	NH ₃	(B)	PH ₃	(C)	AsH ₃	(U)	SDH ₃		
1/.	(A)	N ₃ H	(B)	H ₂ O	(C)	NO ₂	(\mathbf{D})	CO_2		
18.	The co	ompound havin	g lowest boi	iling point is						
	(A)	NH ₃	(B)	PH ₃	(C)	AsH ₃	(D)	SbH ₃		
19.	Which	n of the followin	ng bonds wi	ll be the most po	olar?	NE		N NI		
•••	(A)	N-CI	(В)	U-F	(C)	IN-F	(D)	IN—IN		
20.	Which (A)	1 of the following $PbCl_4 < Pbc$	ng 1s in the 1 Cla < CaCla	ncreasing order	of the ionic (B)	c character? PbCla < Pl	$C_{4} < C_{2}$	< NaCl		
	(C)	$PbCl_2 < Pbc$	$Cl_4 < NaCl$	< CaCl ₂	(D)	$PbCl_4 < PbCl_5 < NaCl < CaCl_5$				
21	Pure n	itrogen gas is c	+ btained from	- n ·		4	2	2		
41.	(A)	$NH_3 + NaN$	102		(B)	$NH_4Cl + N$	VaNO ₂			
	(C)	$N_2O + Cu$	_		(D)	$(NH_4)_2 Cr_2$	2O ₇			
22.	Which	n of the followi	ng evolve hy	ydrogen on react	ing with co	old dilute nitric	c acid?			
	(A)	Mg	(B)	Al	(C)	Fe	(D)	Cu		
23.	Which	n of the followin	ng is manufa	actured from the	molecular	nitrogen by ba	acteria?			
	(A)	Nitrates	(B)	Nitrites	(C)	Amino acid	ls (D)	Ammonia		
24.	The co	orrect order of t	he decreasir	ng oxidizing pov	vers of ClC	D_4^-, BrO_4^-, IO_4^-	is:			
	(A)	$ClO_4^- > BrO$	$_4 > 10_4^-$		(B)	$BrO_4^->ClO_4^-$	$D_4^- > IO_4^-$			
	(C)	$IO_4^- > BrO_4^-$	$>ClO_4^-$		(D)	$IO_4^- > CIO_2^-$	$\frac{1}{4}$ > BrO ₄ ⁻			

(A)	The melting poi	nt of iro	n is low	(B)	The reaction is	highly er	ndothermic	
In the	thermite process, i	ron oxid	e is reduced to m	olten iron	by aluminium po	wder beca	iuse :	
(C)	$PCl_5 + H_2O$ —	\rightarrow		(D)	$P_4S_{10} + H_2O -$	\longrightarrow		
(A)	$Ca_3(PO_4)_2 + H$	$I_2SO_4 -$	\rightarrow	(B)	$P_4O_6 + H_2O -$	\rightarrow		
Which	of the following r	eaction o	loes NOT give H	H_3PO_4 ?				
(A)	Н Н ОН	(B)	н ОН ОН	(C)	но ОН ОН	(D)	о но он оон	
The st	ructural formula of	Hypopł	osphorus acid is	:				
Sodiur (A) (C)	n tripolyphosphate Sodium dihydro Orthophosphate	used in gen pho	industrial deterge sphate	ent and so (B) (D)	Triphosphate Source of the above			
(A) (C)	Reduction and c	oxidation		(D) (D)	Neutralization			
White	phosphorus reacts	with cau	istic soda. The pr	oducts are	PH_3 and NaH_2	₂ PO ₂ . Th	us reaction is an example of	
Ultrap (A) (C)	ure silicon is prepa Fractional distil Crystallization	red by : lation		Zone-refining None of the ab	ove			
(A)	NaBO ₃	(B)	B_2O_3	(C)	$Na_2B_4O_7$	(D)	$Na_2B_4O_7.10H_2O$	
In Bor	ax bead test for qu	antitativ	e analysis which	componer	nt of the bead read	ts with ba	sic radical to form metabora	
Orthol (A)	ooric acid on strong Metaboric acid	g heating (B)	g to red hot gives Borax	: (C)	Boron trioxide	(D)	Tetraboric acid	
The m (A)	ost stable allotropi Yellow P	c form o (B)	f phosphorus is : Red P	(C)	White P	(D)	Black P	
РН ₄ I (А)	+ NaOH on reaction PH ₃	on forms (B)	: NH ₃	(C)	P ₄ O ₆	(D)	P ₄ O ₁₀	
(A) (C)	Hypophophorus Hypophophoric	acid acid		(B) (D)	Ortho phospho Ortho phospho	rus acid ric acid		
P_4O_{10}	is treated with wa	ter to gi	ve :		C		6	
	P ₄ O ₁₀ (A) (C) PH ₄ I (A) The m (A) Orthole (A) Orthole (A) Ultrap (A) (C) White (A) (C) Sodiur (A) (C) The str (A) (C) The str (A) (C) In the form (D) Egypti	P ₄ O ₁₀ is treated with wa (A) Hypophophorus (C) Hypophophorus (C) Hypophophoric PH ₄ I + NaOH on reaction (A) PH ₃ The most stable allotropi (A) Yellow P Orthoboric acid on strong (A) Metaboric acid In Borax bead test for qu (A) NaBO ₃ Ultrapure silicon is prepa (A) Fractional distil (C) Crystallization White phosphorus reacts (A) Oxidation (C) Reduction and construction White phosphorus reacts (A) Oxidation (C) Reduction and construction White phosphorus reacts (A) Oxidation (C) Reduction and construction White phosphorus reacts (A) Oxidation (C) Orthophosphate The structural formula of (A) Sodium dihydroi (C) Orthophosphate The structural formula of (A) Ca ₃ (PO ₄) ₂ + H (C) PCl ₅ + H ₂ O — In the thermite process, in (A) The melting poin (C) Large amount o (D) Aluminium is an Egyptian blue CaCuSi ₄ O	P ₄ O ₁₀ is treated with water to gi (A) Hypophophorus acid (C) Hypophophoric acid PH ₄ I + NaOH on reaction forms (A) PH ₃ (B) The most stable allotropic form of (A) Yellow P (B) Orthoboric acid on strong heating (A) Metaboric acid (B) In Borax bead test for quantitative (A) NaBO ₃ (B) Ultrapure silicon is prepared by : (A) Fractional distillation (C) Crystallization White phosphorus reacts with car (A) Oxidation (C) Reduction and oxidation Sodium tripolyphosphate used in (A) Sodium dihydrogen pho (C) Orthophosphate The structural formula of Hypoph (C) Orthophosphate The structural formula of Hypoph (C) PCl ₅ + H ₂ O \longrightarrow In the thermite process, iron oxid (A) The melting point of iron (C) Large amount of heat is (D) Aluminium is an ampho	P ₄ O ₁₀ is treated with water to give : (A) Hypophophorus acid (C) Hypophophoric acid PH ₄ I + NaOH on reaction forms : (A) PH ₃ (B) NH ₃ The most stable allotropic form of phosphorus is : (A) Yellow P (B) Red P Orthoboric acid on strong heating to red hot gives (A) Metaboric acid (B) Borax In Borax bead test for quantitative analysis which (A) NaBO ₃ (B) B ₂ O ₃ Ultrapure silicon is prepared by : (A) Fractional distillation (C) Crystallization White phosphorus reacts with caustic soda. The pr (A) Oxidation (C) Reduction and oxidation Sodium tripolyphosphate used in industrial deterge (A) Sodium dihydrogen phosphate (C) Orthophosphate The structural formula of Hypophosphorus acid is (A) Ca ₃ (PO ₄) ₂ + H ₂ SO ₄ \longrightarrow (C) PCl ₅ + H ₂ O \longrightarrow In the thermite process, iron oxide is reduced to m (A) The melting point of iron is low (C) Large amount of heat is liberated in the fa (D) Aluminium is an amphoteric element Egyptian blue CaCuSi ₄ O ₁₀ is an example of :	P_4O_{10} is treated with water to give : (A) Hypophophorus acid (B) (C) Hypophophoric acid (D) PH ₄ I + NaOH on reaction forms : (A) PH ₃ (B) NH ₃ (C) The most stable allotropic form of phosphorus is : (A) Yellow P (B) Red P (C) Orthoboric acid on strong heating to red hot gives : (A) Metaboric acid (B) Borax (C) In Borax bead test for quantitative analysis which componer (A) NaBO ₃ (B) B ₂ O ₃ (C) Ultrapure silicon is prepared by : (A) Fractional distillation (B) (C) (A) Fractional distillation (B) (C) (D) White phosphorus reacts with caustic soda. The products are (A) Oxidation (D) (C) Reduction and oxidation (D) (D) Sodium tripolyphosphate used in industrial detergent and so (A) Sodium dihydrogen phosphate (B) (C) Orthophosphate (D) (D) The structural formula of Hypophosphorus acid is : (A) Ca ₃ (PO ₄) ₂ + H ₂ SO ₄ → (B) (C) PCl ₅	P4Q10is treated with water to give :(A)Hypophophorus acid(B)Ortho phosphor(C)Hypophophoric acid(D)Ortho phosphorPH41+ NaOH on reaction forms :(A)PH3(B)NH3(C)P406The most stable allotropic form of phosphorus is :(A)Yellow P(B)Red P(C)White POrthoboric acid on strong heating to red hot gives :(A)Metaboric acid (B)Borax(C)Boron trioxideIn Borax bead test for quantitative analysis which component of the bead react(A)NaBO3(B)B₂O3(C)Na₂B₄O7Ultrapure silicon is prepared by :(A)Fractional distillation(B)Zone-refining(C)Crystallization(D)None of the abWhite phosphorus reacts with caustic soda. The products are PH3 and NaH2(A)Oxidation(B)Reduction(C)Reduction and oxidation(D)None of the ab(A)Sodium dihydrogen phosphate(B)Triphosphate(A)Sodium dihydrogen phosphate(B)Triphosphate(C)Orthophosphate(D)None of the abThe structural formula of Hypophosphorus acid is :(A)Ca ₃ (PO ₄) ₂ + H ₂ SO ₄ →(A)Ca ₃ (PO ₄) ₂ + H ₂ SO ₄ →(B)P ₄ O ₆ + H ₂ O -(C)PCl ₅ + H ₂ O →(D)P ₄ Sl ₀ + H ₂ O -(G)Hermite process, iron oxide is reduced to molten iron by aluminium po(A)The melting point of iron is low(B)The reaction	P ₄ O ₁₀ is treated with water to give : (A) Hypophophorus acid (B) Ortho phosphorus acid (C) Hypophophoric acid (D) Ortho phosphorus acid PH ₄ I + NaOH on reaction forms : (A) PH ₃ (B) NH ₃ (C) P ₄ O ₆ (D) The most stable allotropic form of phosphorus is : (A) Yellow P (B) Red P (C) White P (D) Orthoboric acid on strong heating to red hot gives : (A) Metaboric acid (B) Borax (C) Boron trioxide (D) In Borax bead test for quantitative analysis which component of the bead reacts with be (A) NaBO ₃ (B) B ₂ O ₃ (C) Na ₂ B ₄ O ₇ (D) Ultrapure silicon is prepared by : (A) Fractional distillation (B) Zone-refining (C) Crystallization (D) None of the above White phosphorus reacts with caustic soda. The products are PH ₃ and NaH ₂ PO ₂ . Th (A) Oxidation (B) Reduction (C) Reduction and oxidation (D) Neutralization Sodium tripolyphosphate used in industrial detergent and softening of water is obtained (A) Sodium dihydrogen phosphate (B) Triphosphate (C) Orthophosphate (D) None of the above The structural formula of Hypophosphorus acid is : (A) Ca ₃ (PO ₄) ₂ + H ₂ SO ₄ → (B) P ₄ O ₆ + H ₂ O → (C) PCl ₅ + H ₂ O → (D) P ₄ S ₁₀ + H ₂ O → In the thermite process, iron oxide is reduced to molten iron by aluminium powder beeze (A) The melting point of iron is low (B) The reaction is highly er (C) Large amount of heat is liberated in the formation of Al ₂ O ₃ (D) Aluminium is an amphoteric element Egyptian blue CaCuSi ₄ O ₁₀ is an example of :	

38.	Calgon	used for wate	er softeni	ng is Na ₂ [Na ₄	(PO ₃) ₆]	and it is prepar	ed by h	eating microcosmic salt.	The		
	microc	osmic salt is :									
	(A)	Na ₂ HPO ₃	(B)	NaH ₂ PO ₄	(C)	Na ₂ HPO ₄ .4H ₂	2 O (D)	$Na(NH_4)HPO_4.4H_2O$			
39.	Which	one of the follow	ving is an	electron-deficier	nt molecule	e according to the	octet rule	e?			
	(A)	CH ₄	(B)	H ₃ N:BH ₃	(C)	AlH ₃	(D)	GeH ₄			
40.	In the s	structure of B ₄ O	$_{5}(OH)_{4}^{2-}$:							
	(A) (P)	All four B ator	ns are trig	onal planar	anaa ana tui	aonal nlanar					
	(D) (C)	Three B atoms	are tetrah	edral and one is	trigonal pl	anar					
	(D)	Two B atoms a	are tetrahe	dral and the othe	er two are t	rigonal planar					
41.	Hydrol	ysis of $(CH_3)_2S$	SiCl ₂ and	CH ₃ SiCl ₃ leads	to :						
	(A)	Linear chain a	nd cross-li	nked silicones, r	espectivel	у					
	(B) (C)	Cross-linked a	nd linear of the second	chain silicones, r	espectively	7					
	(C) (D)	Cross-linked s	ilicones or	ıly							
42.	Fluorin	e is more electro	onegative	han either boron	or phosph	orus. What conclu	ision can	be drawn from the fact that	t		
	BF3 ha	as no dipole mon	nent but P	F ₃ does?							
	(A)	BF ₃ is not sph	erically sy	mmetrical, PF ₃	is spherica	ally symmetrical.					
	(B) BF_3 molecule must be linear.										
	 (C) The atomic radius of P is larger than the atomic radius of B. (D) The PE melagula must be planar triangular. 										
	(D)	The Br ₃ mole	cule must	be planar triang	ular.						
43.	The bo	nds present in be	orazole are) - 6	(\mathbf{C})	6 - 6 -	(D)				
44	(A) From I	$120, 3\pi$	(D)	be prepared eve	(C)	00,0 <i>n</i>	(D)	9 0, 9 <i>n</i>			
44.		$B_2 \Pi_6$ and the following $B_2 \Omega_2$	(B)	H.BO.	ері.	$\mathbf{B}_{\mathbf{r}}(\mathbf{C}\mathbf{H}_{\mathbf{r}})$	(JII)	NaBH .			
45	(A) Which	$D_2 O_3$	(D)	113DO3	(C)	B ₂ (CH ₃) ₆	(D)	NaDI14			
43.	(A)	Al ₂ Cl ₆	(B)	Al ₂ Me ₆	(C)	AlCl ₂ · 6H ₂ O	(D)	None of these			
For Ou	estions	2 0 46 - 48	()	2 0		5 2	()				
(A)	Statem	<u>+0 - +0</u> ent-1 is True, Sta	atement-2	is True; Stateme	nt-2 is a co	prrect explanation	for State	ment-1			
(B)	Statem	ent-1 is True, Sta	atement-2	is True; Stateme	nt-2 is a no	ot a correct explan	ation for	Statement-1			
(C)	Statem	ent-1 is True, Sta	atement-2	is False	(D)	Statement-1 is	False, Sta	atement-2 is True			
46.	Statem Statem	ent-1 : Boric ac ent-2 : A cis-dio	id acts as a ol forms h	a strong acid in t ydrogen bonding	he presenc ; with oxyg	e of a cis-diol. gen of boric acid.					
47.	Statem Statem	ent-1 : White pl ent-2 : White pl	10sphorus 10sphorus	is a reactive allo exists as monato	trope of plomic solid.	nosphorus.					
48.	Statem	ent-1 : Pyropho	sphoric ac	id $(H_4P_2O_7)$ is	a reducing	tetrabasic acid.					
	Statem	ent-2 : The redu	icing prop	erty of acids of p	hosphorus	is due to hydroge	n atom a	ttached to phosphorus atom	1.		

APP | Chemistry

p-Block Elements-I

Paragraph for Questions 49 - 51

Phosphorus exists as a number of allotropes, the most reactive being white phosphorus. This was first prepared from the reduction of the phosphate present in urine.

Solid white phosphorus contain P_4 molecules, with each P atom at the vertex of a regular tetrahedron. White phosphorus spontaneously ignites in air to form a mixture of phosphorus (III) oxide and phosphorus (V) oxide.

The structure of each oxide is also based on a regular tetrahedron. The phosphorus atoms remain at the vertices but are no longer bounded to each other. Instead the P atoms are joined by bridging oxygens.

Phosphorus (V) oxide has a further oxygen atom bounded to each phosphorus atom at the vertex of the tetrahedron. Each oxide reacts with water to form an acid. Phosphorus (V) oxides forms phosphorus (V) acid, H_3PO_4 .

A quantitative method for determining phosphate levels in aqueous solution involves adding ammonium molybdate, $(NH_4)_2MoO_4$, to form a precipitate of ammonium molybdophosphate. The structure of this solid is based on a cuboctahedron (shown in figure). A molybdenum atom lies at each vertex of the cuboctahedron and these are joined by oxygen atoms with every edge of the cuboctahedron being bridged by an oxygen atom. A further oxygen atom is joined to every vertex. A single phosphate unit lies at the centre of the structure with each of its four oxygen atoms coordinating to three molybdenum atoms.

47. The incontect statement about structure of white phospholus is	49.	The incorrect statement a	bout structure o	f white phosphorus is
--	-----	---------------------------	------------------	-----------------------

(A)	It has six P—P single bonds.	(B)	It has four P—P single bonds.
(C)	It has four lone pairs of electrons.	(D)	It has PPP angle of 60°

50. Which statement is wrong about structure of phosphorus (V) oxide?

- (A) It has 6 P—O—P bonds. (B) Each 'P' atom is sp³ hybridised.
- (C) It has two types of P—O bond lengths (D) It has POP angle of 180°

51. The number of molybdenum atoms and oxygen atoms in the molybdophosphate ion respectively, are :

(A) 9, 15 (B) 12, 40 (C) 12, 36 (D) 12, 24

Paragraph for Questions 52 - 54

Nitric acid acts as an oxidizing agent especially in concentrated solution. In solution more dilute then 2M the oxidizing power of nitrate group is greatly diminished and only the protons of dissociated acid reacts with the active metals. This behaviors should not be too surprising since the power of NO_3^- ion as an oxidant is very sensitive to the concentration of acid. During oxidation HNO₃ is reduced successively as $HNO_3 \rightarrow NO_2 \rightarrow HNO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2 \rightarrow NH_2OH \rightarrow NH_3$.

52. When FeS is dissolved in conc. HNO_3 than the oxidation product obtained is/are :

(A)	H_2S and F	H_2S and $Fe(NO_3)_3$			FeSO ₄			
(C)	$Fe_2(SO_4)_3$			(D)	only H_2S			
When	Sn metal is tre	eated with di	lute nitric aci	d then the proc	lucts obtained	l are :		
(A)	$Sn(NO_3)_4$	and NO ₂		(B)	$Sn(NO_3)_2$ and NO_2			
(C)	$Sn(NO_3)_2$	and NH ₄ NO ₂	3	(D)	$Sn(NO_3)_2$ and NO			
Which	n of the followi	ing metal bec	comes passive	e on treatment	with nitric ac	id?		

53.

54.

Paragraph for Questions 55 - 58

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorus.

- **55.** Among the following, the correct statements is :
 - (A) Phosphates have no biological significance in humans
 - (B) Between nitrates and phosphates, phosphates are less abundant in earth's crust
 - (C) Between nitrate and phosphates, nitrates are less abundant in earth's crust
 - (D) Oxidation of nitrates is possible in soil
- 56. Among the following, the correct statement is :
 - (A) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional
 - (B) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional
 - (C) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional
 - (D) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electron occupies spherical 's' orbital and is less directional

Disproportionation reaction

Bond angle in NH₃ is 107°

None of these

(B)

- 57. White phosphorus on reaction with NaOH give PH₃ as one of the products. This is a :
 - (A) Dimerization reaction
 - (C) Condensation reaction (D) Precipitation reaction
- **58.** Which of the following is **correct**?
 - (A) Bond angle in NH_3 is 109.5° (B)
 - (C) Bond angle in NH_3 is 120° (D)
- Paragraph for Questions 59 61

It is well known that there are two major forms of carbon, that is, carbon has two main allotropes: graphite and diamond. These differ greatly from each other with respect to the physical properties as shown in table. The physical properties of silicon are also shown in Table 1 for comparison as carbon and silicon belong to the same group in the periodic table.

Physical properties	Graphite	Diamond	Silicon
Density (g cm ⁻³)	2.26	3.51	2.33
Enthalpy of combustion to yield CO ₂ (kJ/mol)	-393.3	-395.3	-910
Melting point (°C)	2820	3730	1410
Boiling point (°C)		4830	2680
Conductivity (electrical)	Fairly good	Non-conductor	Good
Conductivity (thermal)	Good	Fairly good	Good

Graphite possesses what is commonly known as a layer structure: carbon atoms from three covalent bonds with each other. These layers are held together via weak Van der Waals' forces which permit some movement of the layers relative to one another.

The most common compound of carbon is carbon dioxide which makes up 0.03% of the atmosphere. The triple point of carbon dioxide occurs at 217 K and 515 kP_a. One of the unique properties of carbon is that it can form multiple bonds between itself and other atoms, including other atoms. Thus, large polymers involving carbon atoms are possible.

59. It is possible to convert graphite into diamond via various chemical processes. Based on the information in the passage, which of the following would facilitate increased amounts of diamond assuming that the system is in equilibrium?

(A)	High pressures	(B)	High temperatures
(C)	A catalyst	(D)	Through set of chemical reactions

- **60.** The properties of the layer-like structure of solid graphite stated in the passage would lend it to which of the following industrial uses?
 - (A) Insulator (B) Structural (C) Corrosive (D) Lubricant
- 61. Using the information in the table, calculate the enthalpy change for the following process : $C_{graphite} \longrightarrow C_{diamond}$

(A) $+1.8 \text{ kJ mol}^{-1}$ (B) -1.8 kJ mol^{-1} (C) $+1.0 \text{ kJ mol}^{-1}$ (D) -1.0 kJ mol^{-1}

Paragraph for Questions 62 - 64

Borates and silicates are having similarity in their various forms where they exist as ortho, pyro, chain & sheet types. Orthobrates (BO_3^{3-}) have trigonal planar shape while orthosilicates (SiO_4^{4-}) have a tetrahedral shape.

62.	Borax	$(Na_2B_4O_7.10H_2O)$ has :									
	(A)	2 triangular units (B)	2 tetrahedral un	nits (C)	four –OH units	All of these					
63.	Pyrob	orates have :									
	(A)	No corner shared		(B) One							
	(C)	Two corners shared		(D)	A linear chain	structure					
64.	The cl	The chain silicates have the general formula :									
	(A)	$(SiO_3)_n^{2n-}$ (B)	$Si_2O_7^{6-}$	(C)	$\left(\mathrm{Si}_{2}\mathrm{O}_{5}\right)_{n}^{2n-}$	(D)	$\left(Si_4O_{11}\right)_n^{6n-}$				

Paragraph for Questions 65 - 67

In addition to the two most common oxides carbon monoxide and carbon dioxide a few other compounds may be formed containing carbon and oxygen only. Each oxide may be prepared by the dehydration of the appropriate acid.

Carbon dioxide may be prepared by simply protonating the carbonate salt to yield unstable carbonic acid, which readily loses water to form carbon dioxide.

Carbon monoxide may be prepared by dehydrating methanoic acid with concentrated sulfuric acid at about 140°C.

Diiodine pentoxide I_2O_5 , is a white crystalline powder that has the useful property of reacting quantitatively with carbon monoxide to yield iodine and one other product. 'Carbon suboxide' is a foul-smelling gas obtained by fully dehydrating propane-1, 3-dioic acid.

A fourth oxide of carbon has the formula $C_{12}O_9$ and may be obtained by fully dehydrating mellitic acid [benzene hexacarboxylic acid $-C_6(COOH)_6$].

- 65. A 150 cm³ sample of gas (at room temperature and pressure, r.t.p.) that was known to contain carbon monoxide was heated over excess I_2O_5 at 170°C. The iodine generated required exactly 8.00 cm³ of 0.100 mol dm⁻³ sodium thiosulfate solution to react with it. The percentage by volume of carbon monoxide present in the sample of gas is (assume 1 mole of any gas occupies 24.0 dm³ at r.t.p.) : (A) 42% (B) 32% (C) 24% (D) 64%
- 66. Which of the following formulation represents the correct ground state Lewis structure for carbon suboxide?
 (A) :Ö:C:C:C::Ö:(B) :Ö::C:C:C::Ö:(C) :Ö::C::C::C::Ö:(D) :Ö:C:C:C::Ö:
- **67.** The structural formula of $C_{12}O_9$ is :

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

- **68.** Among the following the correct statement(s) is/are
 - (A) Diamond and graphite are two allotropes of carbon.
 - (B) Graphite shows high electrical conductivity in one direction only.
 - (C) Density of diamond is more than the density of graphite.
 - (D) Graphite has higher C–C bond order than diamond.
- **69.** Which of the following reaction will give anhydrous $AlCl_3$?
 - (A) By heating $AlCl_3.6H_2O$
 - (B) By passing dry HCl on heated aluminium powder
 - (C) By passing dry chlorine on heated aluminium powder
 - (D) By passing dry chlorine over heated mixture of aluminium and coke
- 70. A gas which cannot be collected over water is :

APP	l Chemi	istrv			230			p-Block Elements-I		
	(C)	Graham's s	alt : Na	$[\operatorname{Na}_4(\operatorname{PO}_3)_6]$	(D)	Alum	$: [K(H_2O)_6]_2S$	$O_4.[Al(H_2O)_6]_2(SO_4)_3$		
	(A)	Trona :]	$Na_3(CO_3)($	(HCO ₃).2H ₂ O	(B)	Borax	: $Na_2[B_4O_5(O$	0H) ₄].8H ₂ O		
72.	Which	n of the follow	ing is/are co	prrectly matched?						
	(A) (C)	Ammonia i Ammonia i	s more pois s more stab	le than phosphine	(D)	Ammor	nia is more solubl	nan phosphine e in water than phosphine		
71.	Which	n one of the fol	lowing stat	ement is/are correc	t:	Ammonia is more basis than phosphine				
	(A)	N ₂	(B)	O_2	(C)	SO ₃	(D)	PH ₃		

- **73.** In which of the following reaction HNO_3 behave as a base?
 - (A) $NH_3 + HNO_3 \longrightarrow NH_4NO_3$ (B) $4HNO_3 + P_4O_{10} \longrightarrow 4HPO_3 + 2N_2O_5$ (C) $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + HSO_4^- + H_2O$ (D) None of these

74. Which of the following ionic compounds when dissolves in water, it reacts to make two moles of H_3O^+ per mole of compound?

(A) $NO_2^+BF_4^-$ (B) $NO_2^+NO_3^-$ (C) $NO_2^+ClO_4^-$ (D) $NH_4^+NO_3^-$

75. Which of the following compound reacts with nitrobenzene to give m-dinitrobenzene?

(A)
$$NO_2BF_{4(s)}$$
 (B) $NO_2CIO_{4(s)}$ (C) $N_2O_{5(s)}$ (D) $HNO_3\&H_2SO_4$

76. A colourless, gaseous, paramagnetic nitrogen oxide (A), is allowed to react with excess O_2 and the mixture passed through a trap at -120° C, in which condenses a colourless solid (B). Identify compounds (A) and (B).

- (A) NO and NO₂ respectively (B) NO and N₂O₄ respectively
- (C) NO and N_2O_3 respectively (D) NO_2 and N_2O_4 respectively

77. Which of the following oxides of nitrogen is responsible for photochemical degradation of ozone?

(A) N_2O (B) NO (C) NO_2 (D) None of these

78. A colourless, diamagnetic solid nitrogen oxide (X) reacts with F_2 to form a colourless gas (Y). Compound (Y) reacts with gaseous boron trifluoride to form a colourless solid (Z). When compound (Z) is dissolved in water, it reacts to make two moles of H_3O^+ per mole of (Z). Ideantify compound (X), (Y) and (Z).

	(A)	$X = NO_2; Y = 1$	NO_2F ;	$Z = NO_2^+ BF_4^-$	(B)	$X = N_2$	$O_4; Y =$	$= NO_2F$; $Z = NO_2^+ BF_4^-$	
	(C)	X = NO; Y = N	V_2F_4 ; Z	$= F_3 N^+ - BF_3^-$	(D)	$X = N_2$	$O_5; Y =$	= NF ₃ ; Z	$= F_3 N^+ - BF_3^-$	
79.	Which o	of the following is	due to H	-bonding?						
	(A)	H_3PO_4 is a syru	apy liquio	1	(B)	Boiling	point of	H ₂ O is	more than HF	
	(C)	Boiling point of	PH ₃ is l	ess than NH_3 .	(D)	None of	fthese			
80.	Which o	of the following hy	dride of	nitrogen is/are ac	idic in na	ture?				
	(A)	NH ₃	(B)	N_2H_4	(C)	N_3H		(D)	NH ₂ OH	
81.	In which	In which of the following reaction POCl ₃ is formed?								
	(A)	$PCl_5 + CH_3CC$	ОН—	\rightarrow	(B)	$PCl_5 + H_2SO_4 \longrightarrow$				
	(C)	$PCl_5 + P_4O_{10} -$	\longrightarrow		(D)	PCl ₅ +	- SO ₂	\rightarrow		
82.	In which	h of the silicate the	ere is Si–	–O—Si linkage.						
	(A)	Orthosilicates	(B)	Pyrosilicates	(C)	Ring sil	icates	(D)	Chain silicates	
83.	Which c	of the following is	correct r	egarding N_2O ?						
	(A)	It is called laughi	ng gas			(B)	It supp	ort combu	stion	
	(C) It is used as propellant gas in whipped cream				m	(D) It is isoelectronic with CO_2				

84. Which of the following reaction is used for preparation of N_2O ?

(A)
$$\operatorname{NH}_4\operatorname{NO}_3 \xrightarrow{\Delta}$$
 (B) $\operatorname{NO} + \operatorname{SO}_2 + \operatorname{H}_2\operatorname{O} \xrightarrow{\Delta}$

(C)
$$\operatorname{Zn} + \operatorname{HNO}_3(dil) \longrightarrow$$
 (D) $\operatorname{NH}_2\operatorname{OH} + \operatorname{HCl} + \operatorname{NaNO}_2 \longrightarrow$

85. On the basis of molecular orbital theory which of the following is/are paramagnetic?

(B) C₂ (vapour) S₂ (vapour) O_2 (A) B₂ (vapour) **(C) (D)**

86. Which of the following is/are correct?

- (A) Graphite is thermodynamically most stable allotropic form of carbon.
- **(B)** Black phosphorous is thermodynamically most stable allotropic form of phosphorous.
- **(C)** Rhombic sulphur is thermodynamically most stable allotropic form of sulphur.
- **(D)** White tin is stable at high temperature.
- 87. Ammonium compound which on heating give NH₃ is/are

(A) $(NH_4)SO_4$ **(B)** $(NH_4)_2CO_3$ (C) NH_4NO_2 **(D)** NH₄Cl

- With respect to graphite and diamond, which of the following statement(s) given below is/are correct? 88.
 - (A) Graphite is softer than diamond
 - **(B)** Graphite has layer structure while diamond is a network solid.
 - **(C)** Graphite has sp² hybridized carbon atoms
 - **(D)** Diamond has sp3 hybridized carbon atoms

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

MAT	CH THE COLUMN :		
	Column 1 (Mixtures)		Column 2 (Solution used for separation)
(A)	N_2 and CO	(p)	Water
(B)	N_2 and O_2	(q)	H_2SO_4
(C)	N_2 and NH_3	(r)	Ammonical Cu ₂ Cl ₂
(D)	PH ₃ and NH ₃	(s)	Pyrogallol
MAT	CH THE COLUMN :		
	Column 1 (Reaction of Metal with HNO ₃)		Column 2 (Main product)
(A)	Mg + very dil. HNO ₃	(p)	NO
(B)	Zn + dil. HNO ₃	(q)	H ₂
(C)	Sn + dil. HNO ₃	(r)	N ₂ O
(D)	$Pb + dil. HNO_3$	(s)	NH ₄ NO ₃
	MAT (A) (B) (C) (D) MAT (A) (A) (B) (C) (D)	MATCH THE COLUMN :Column 1 (Mixtures)(A) N_2 and CO(B) N_2 and O_2 (C) N_2 and NH_3 (D) PH_3 and NH_3 MATCH THE COLUMN :Column 1 (Reaction of Metal with HNO3)(A) Mg + very dil. HNO3(B) Zn + dil. HNO3(C) Sn + dil. HNO3(D) Pb + dil. HNO3	MATCH THE COLUMN : Column 1 (Mixtures) (A) N_2 and CO (p) (B) N_2 and O_2 (q) (C) N_2 and NH_3 (r) (D) PH_3 and NH_3 (s) MATCH THE COLUMN : Column 1 (Reaction of Metal with HNO ₃) (A) Mg + very dil. HNO ₃ (p) (B) Zn + dil. HNO ₃ (q) (C) Sn + dil. HNO ₃ (r) (D) Pb + dil. HNO ₃ (s)

9

91.	MAT	CH THE COLUMN :		
	(A)	Column I	(\mathbf{n})	Column 2
	(A) (B)	Pyro phosphoric acid	(p) (a)	An hydrogen are ionizable in water
	(D) (C)	Boric acid	(q) (r)	Monobasic in water
	(C) (D)	Hypo phosphorus acid	(1)	sp ³ hybridized central atom
	(2)	ngpo priorprior aora	(t)	Reducing agent
2.	MAT	CH THE COLUMN :		
		Column 1		Column 2
	(A)	CO_2	(p)	Acidic oxide
	(B)	SO_2	(q)	Colourless
	(C)	NO ₂	(r)	Paramagnetic
	(D)	N ₂ O	(s)	Coloured
3.	MAT	CH THE COLUMN :		
		Column 1		Column 2
	(A)	$Na_2B_4O_7.10H_2O$	(p)	Basic solution
	(B)	Na ₂ CO ₃	(q)	Acidic solution
	(C)	$K_2SO_4.Al_2(SO_4)_3.24H_2O$	(r)	Can react with NaOH
	(D)	NH ₄ Cl	(s)	Swells up on heating
۱.	MAT	CH THE COLUMN :		
		Column 1		Column 2
	(A)	B(OH) ₃	(p)	Acidic
	(B)	Al(OH) ₃	(q)	Amphoteric
	(C)	Ga(OH) ₃	(r)	Insoluble in water
	(D)	Tl(OH) ₃	(s)	Basic
5.	MAT	CH THE COLUMN :		
		Column 1		Column 2
	(A)	Orthosilicate	(p)	Co-ordination number of Si is four
	(B)	Pyrosilicate	(q)	One or more oxygen atoms are shared
	(C)	Single chain silicate	(r)	SiO_4^{4-}
	(D)	Ring silicate	(s)	Si ₂ O ₇ ^{6–}
			(t)	$(SiO_3^{2-})_n$

96.	MAT	MATCH THE COLUMN :								
		Column 1 (Reagent)		Column 2 Reaction)						
	(A)	O ₃	(p)	$SnCl_2 \rightarrow SnCl_4$						
	(B)	H_2O_2	(q)	Arsenite \rightarrow Arsenate						
	(C)	HNO ₃	(r)	$PbS \rightarrow PbSO_4$						
	(D)	H ₃ PO ₃	(s)	$MnO_4^- \to Mn^{2+}$						
			(t)	$AgNO_3 \longrightarrow Ag$						

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 97. The number of $R_2Si(OH)_2$ units required to prepare a linear silicone polymer containing eight Si–O–Si linkages, is
- **98.** Asbestos $[CaMg_3O(Si_4O_{11})]$ is an example of "amphiboles", which is a special type of chain silicates in which two strands are cross-linked. The magnitude of charge on silicate anion is
- 99. How many of the following amines can be used for the symmetrical cleavage of diborane? $B_2H_6 + 2L \rightarrow 2BH_3 \leftarrow L$ CH_3NH_2 , $(CH_3)_2NH$, $(C_2H_5)_3N$, $(CH_3)_3N$, $(C_2H_5)_2NH$, $C_2H_5NH_2$, C_5H_5N , (i-Pr)₃N, quinuclidine
- 100. The number of oxygen atoms in empirical formula of the silicate having structure as shown in figure, is....

- How many of the following ammonium salts on dry heating evolve ammonia gas?
 NH4NO3, NH4NO2, NH4HS, NH4Cl, NH4COONH2, (NH4)2Cr2O7, (NH4)2CO3, (NH4)2C2O4, NH4ClO4
- **102.** Each B–H–B bridge in B_2H_6 is formed by the sharing of x electrons. The numerical value of x is
- **103.** What is the number of free electrons present on each carbon atom in graphite?
- **104.** In pyrophosphoric acid, $H_4P_2O_7$ number of $d\pi p\pi$ bonds are _____.
- **105.** The brown complex obtained in the detection of nitrate radical is formulated as $[Fe(H_2O)_5NO]SO_4$. What is the oxidation number of Fe in this complex.
- 106. How many moles of CO are obtained when one mole of potassium ferrocyanide is heated with conc. sulphuric acid?
- **107.** The number of P–P bonds in a molecule of white phosphorus (P_4) are_____.
- **108.** Methylchlorosilanes, Me_nSiCl_{4-n} , can be hydrolysed to form a silicone Polymer. What should be the value of n to obtained a cross linked polymer?

- **109.** The number of π -bonds in $(B_3N_3H_6)$ borazine are _____.
- **110.** The number of P–O–P bonds in cyclic trimeric metaphosphoric acid are _____.
- 111. What is the co-ordination number of aluminium in dimeric structure of anhydrous aluminium chloride?
- 112. Beryl, $Be_3Al_2Si_6O_{18}$ is a silicate. How many oxygen atom of structural unit SiO_4^{4-} are shared with neighboring unit in Beryl.
- 113. The number of acidic ionizable hydrogen atom(s) in acidic nitrogen hydride is (are)
- 114. 0.01 mol of an ionic compound nitronium tetrafluoroborate dissolved in water and titrated with *x*M NaOH to a phenolphthalein end point, which requires 20 ml of the titrant. What is the numerical value of *x*.
- 115. What is the co-ordination number of silicon in silica (SiO_2) ?

		Advanced P	roblem	n Package		p-Block	Eleme	nts - II
				SINGLE CORR	ECT AN	ISWER TYPE		
۱ 0	f the foll	owing Question	has 4 cho	ices Α, Β, C & D, οι	ıt of wh	ich ONLY ONE Ch	oice is Co	rrect.
	Bleach	ing powder conta	ains a salt	of an oxoacid as or	ne of its	components. The	e anhydrid	e of that oxoacid is :
	(A)	Cl ₂ O	(B)	Cl_2O_7	(C)	ClO ₂	(D)	Cl ₂ O ₆
	H ₂ S d	loes not produce	metallic s	ulphide with :				
	(A)	CdCl ₂	(B)	ZnCl ₂	(C)	COCl ₂	(D)	CuCl ₂
	Amon	gst H_2O, H_2S, H_2	2Se and H	H_2 Te, the one with	highest	boiling point is :		
	(A)	H ₂ O because o	of hydroge	en bonding	(B)	H ₂ Te because	of higher	molecular weight
	(C)	H ₂ S because of	f hydroge	n bonding	(D)	H ₂ Se because	of lower r	nolecular weight
	Which	of the following	has great	est reducing power	?			
	(A)	HI 	(B)	HBr	(C)	HCI	(D)	HF
	As the	atomic number of	of halogen	increases, the halo	gens :	Pacoma lights	r in colou	*
	(A) (C)	Gain electron	less easily		(в) (D)	Become less d	ense	1
	(C) W1 · 1			.1	(2)			
	which	l one of the follow	ving oxya	LCO	ine least	oxidizing in natu	re?	
	(A)	HOCI	(В)	HCO ₂	(C)		(U)	
	Which	one of the follow	ving oxide	es of chlorine is obt	tained by	y passing dry chlo	orine over	silver chlorate at 90°?
	(A)	Cl ₂ O	(B)	Cl_2O_6	(C)	ClO_2	(D)	Cl_2O_7
	Which	of the following	hydrogen	halide is most vol	atile?	up.		
	(A)	HF	(B)	HCI	(C)	HBr	(D)	
	The ou	itermost electroni	ic configu	ration of the eleme	nt which	1 does not show p	ositive ox	idation state at all pertain
	(A)	$2s^2 2p^3$	(B)	2s ² 2p ⁴	(C)	$2s^2 2p^3$	(D)	$2s^22p^6$
	A gree	enish yellow gas	reacts wi	th an alkali metal	hydroxi	de to form a hala	te, which	can be used in fire work
	safety	matches. The gas	s and hala	te respectively are				
	(A)	$Br_2, KBrO_3$	(B)	$Cl_2, KClO_3$	(C)	I_2 , NalO ₃	(D)	Cl_2 , Na ClO_3
	Reduc	tion of thiosulpha	te with ic (\mathbf{P})	odine gives :	(\mathbf{C})	Tetrathionate	ion (D)	Sulphide ion
	(A)				(C)			
	The bo	ond energies of F	$_2, Cl_2, Br_2$	and I_2 are 155, 24	44, 193 a	and 151 kJ/mol. I	he weake	st bond will be in :
	(A)	Br ₂	(B) C	l ₂	(C)	F_2	(D)	I_2
	The sc	lution of which o	of the follo	owing has maximu	n pH?			
	(A)	NaClO	(B)	NaClO ₂	(C)	NaClO ₃	(D)	NaClO ₄
	The co	orrect order of aci	dic streng	th is :				
	(A)	$Cl_2O_7 > SO_3$	$> P_4 O_{10}$		(B)	$CO_2 > N_2O_5$	$>SO_3$	

	(C)	Octahderal			(D)	Square planar		
	(A)	Trigonal			(B)	Trigonal bipy	ramidal	
7.	The ge	cometry of ICl_2^-	is :					
	(D)	To remove Ag	S			in osaiphate cor	P10/1	
	(C) (R)	Convert Ag to	Ag salt decompose	ed AoBr as a solubl	le silver	thiosulphate cor	nnlex	
	(A)	Reduce AgBr	to metallic	e silver				
6.	Sodiun	n thiosulphate (N	$\operatorname{Na}_2\operatorname{S}_2\operatorname{O}_3$	$5H_2O$ is used in p	hotogra	phy to :		
	(A)	HC1	(B)	HOC1	(C)	HClO ₃	(D)	HClO ₄
5.	The bl	eaching action of	f moist chl	orine is due to the	formatio	on of:		
	(C)	I_2 + 2NaCl —	$\rightarrow Cl_2 +$	2NaI	(D)	Cl ₂ +2NaBr	$\longrightarrow Br_2$	+ 2NaCl
	(A)	$3Br_2 + 5NaF$	\longrightarrow Br	$F_5 + 5$ NaBr	(B)	I ₂ +NaCl —	\rightarrow ICl + N	JaI
4.	Which	of the following	reactions	is possible :				
	(A)	HI	(B)	I_2	(C)	HIO ₃	(D)	conc. H ₂ SO ₄
3.	What i	s formed when K	I is heated	d with conc. H_2SO_2	₁ :			
2.	(A)	Hg	(B)	ne by : Ag	(C)	Na	(D)	None of these
•	(A)		(В)	K ₂ SO ₃	(C)	AI_2O_3	(D)	MIIO ₂
1.	An ino	rganic compound	d first melt	ts, then resolutifies	and the	n liberates a gas.	. It may be	:
	(A)	1:1	(B)	1:2	(C)	2:1	(D)	9:4
0.	When solutio	same amount of n, the ratio of vo	f zinc is t lumes of h	treated separately hydrogen evolved is	with ex s :	cess of sulphur	ic acid and	d excess of sodium hydroxic
	(A)	He	(B)	Ne	(C)	Ar	(D)	Kr
9.	The m	ost abundant iner	rt gas in th	e atmosphere is :				
	(A)	XeO ₄	(B)	XeF ₄	(C)	XeOF ₄	(D)	XeO_2F_2
8.	(D) Which	is planar molecu	ile?	gas found in the du	nospiiei			
	(A) (C) (D)	Radon is obtai Xenon is the n	ned from t nost reactiv	the decay of radiun we among the rare g	n (B) gases	Helium is an a	inert gas	
7.	Which	of the following	statement	s is false :		,	2 1	
6.	Which (A) (C)	of the following Their ionizatio They don't for	statement on energies on any che	is not true about n s are very high emical compounds	oble gas (B) (D)	ses? Their electron They are not o	affinities easily lique	are nearly zero fied
	(A)	$\mathrm{K}^{\scriptscriptstyle+1},\mathrm{H}^{\scriptscriptstyle+},\mathrm{F}^{\scriptscriptstyle-}$	(B)	$(\mathrm{KF})^+, (\mathrm{HF})^-$	(C)	$\mathrm{KH}^{\scriptscriptstyle +},\mathrm{F}^{\scriptscriptstyle -}$	(D)	$\mathrm{K}^+,\mathrm{HF}_2^-$

		DAV CEN	ΓENARY	PUBLIC SCH	IOOL, PA	SCHIM ENCI	LAVE, NE	W DELHI-87	
28.	A one apprec	e litre flask is f eiably on adding	ull of bro to the flask	wn bromine vaj x some :	pour. The	intensity of br	own colour	e of vapour will not	decrease
	(A) (C)	Pieces of marl Carbon tetracl	ole 1loride		(B) (D)	Animal charc Carbon disul	oal powder phide		
29.	A whit be :	te solid reacts wi	th dil. HCl	l to give colourle	ess gas that	decolourises ac	lueous bron	nine. The solid is most	t likely to
	(A) (C)	Sodium carbo Sodium acetat	nate e		(B) (D)	Sodium chlor Sodium thios	ride ulphate		
30.	There	is S—S single bo	ond in :						
	(A)	$H_2S_2O_7$	(B)	$H_2S_2O_8$	(C)	$H_2S_2O_6$	(D)	$H_2S_2O_3$	
31.	Which	of the following	oxide of o	chlorine is param	nagnetic?				
	(A)	Cl ₂ O	(B) C	10 ₂	(C)	Cl_2O_6	(D)	Cl_2O_7	
32.	Inter h	alogen compoun	ds are :						
	(A)	Ionic compou	nd		(B)	Co-ordinate o	compound		
	(C)	Nonpolar mol	ecular com	npounds	(D)	Covalent con	npounds		
33.	Hydro (A)	lysis of one mole	e of peroxo	o dilsulphuric aci	d produces	5:			
	(A) (B)	Two moles of	peroxo mo	aciu onosulpuric acid					
	(C)	One mole of s	ulphuric a	cid and one mole	e of peroxy	mono sulphurio	c acid		
	(D)	One mole of s	ulphuric a	cid, one mole of	peroxy mo	no sulphuric ac	id and one i	nole of hydrogen perc	oxide
34.	Which	of the following	structure	of highly reactiv	e molecule	e SF ₃ Cl is most	stable?		
		θF		θF		F .F		F	
		F-Š		CI-S<		\odot		$F \rightarrow S \sim C1$	
	(A)	Ċ1	(B)	F	(C)	Ċl	(D)	$\dot{\mathrm{F}}$	
35.	Which	of the following	molecula	r species having	16 th group	element as cent	ral atom is	NOT known ?	
	(A)	SF ₃ Cl	(B)	SeF ₃ Cl	(C)	TeF ₃ Cl	(D)	OF ₃ Cl	
36.	The ox	xidation of SO_2	to H ₂ SO	4 in acid rain is t	thought to	occur by the foll	lowing mec	hanism.	
		$SO_2(aq) + 2$	$H_2O(1)$ —	\rightarrow HSO ₃ ⁻ (aq) -	$+ H_3O^+$ (ad	q)			
		$2HSO_3^-(aq)$	$+O_2(aq)-$	\longrightarrow S ₂ O ₇ ²⁻ (aq	$) + H_2O(1)$)			
		$S_2O_7^{2-}(aq) +$	3H ₂ O(l)-	$\longrightarrow 2SO_4^{2-}(aq$	$(1) + 2H_{3}O^{2}$	+(aq)			
	Which	species in this n	nechanism	can be given the	e following	designation?			
		Reactant		Catalyst	Intern	nediate			
	(A)	$SO_2(aq)$		$H_2O(l)$	HSO	$_{3}(aq), \mathrm{H}_{3}\mathrm{O}^{+}(aq)$	I)		
	(B)	SO ₂ (aq)		$HSO_3^-(aq)$	$S_2O_7^{2-}$	(aq)			
	(C)	$SO_2(aq), H_2$	O(l)	$S_2O_7^{2-}(aq)$	HSO	$\overline{a}(aq)$			
	(D)	$SO_2(aq), H_2$	O(l)	none	HSO	$\bar{s}_{3}(aq), S_{2}O_{7}^{2-}(aq)$	q)		

APP | Chemistry

p-Block Element-II

- **37.** Moist air is less dense than dry air at the same temperature and barometric pressure. Which is the best explanation for this observation?
 - (A) H_2O is a polar molecular but N_2 and O_2 are not
 - (B) H_2O has a higher boiling point than N_2 or O_2
 - (C) H_2O has a lower molar mass than N_2 or O_2
 - (D) H_2O has a higher heat capacity than N_2 or O_2
- **38.** Which element is used to form cross links between the strands of latex rubber?

	(A)	Fe	(B)	N	(C)	Р	(D)	5			
39.	Which	of the following	is a photo	oconductor?							
	(A)	Graphile	(B)	Selenium	(C)	Silicon	(D)	caesium			
40.	Which	Which of the following are isostructural?									
	(I)	Ring silicate S	Si ₃ O ₉ ^{6–}		(II)	Trimeric cycli	c metapho	osphate, $P_3O_9^{3-}$			
	(III)	Trimeric cycli	c sulphur	trioxide, S ₃ O ₉	(IV)	Inorganic benz	zene, bora	zine $B_3N_3H_6$			
	(A)	I, II and III	(B)	II, III and IV	(C)	I, II and IV	(D)	All			

Paragraph for Questions 41 - 44

It has been known for a number of years that the noble gas atoms form strong bonds to certain other atoms. In 1962 M. Bartlett found that molecular oxygen forms a compound with PtF_6 that can be represented as $O_2^+ PtF_6^-$, since xenon has nearly the same ionization energy as oxygen. Bartlett observed a reaction between xenon & PtF_6 and be demonstrated that xenon is not totally an inert gas. The most stable and best characterized of the noble-gas compounds are the xenon fluorides, oxyflourids and oxides. The oxygen compounds of xenon are obtained by hydrolysis of the fluorides. XeO₃ is easy to synthesize but it is very explosive when dry. In aqueous solution however it is well behaved and have large positive enthalpy of formation. The structures of the xenon compounds fit the patterns established by other isoelectronic species, so far as is known for example, XeO₃ is isoelectronic with the IO_3^- ion and has the same trigonal pyramidal structure.

APP	Chemi	stry			239			p-Block Element-II
	(C)	XeO_6^{4-} & square	e pyran	nidal	(D)	BrF_5 & octable	edral	
	(A)	BrF_5 & square	pyramid	al	(B)	XeO_6^{4-} & octa	hedral	
44.	XeOF	F_4 is isoelectronic v	with con	pound 'A'. T	he compound	I 'A' and shape of	f XeOF ₄ a	are respectively :
	(A)	$K_2Cr_2O_7$	(B)	XeF ₂	(C)	XeO ₃	(D)	XeO_6^{4-}
43.	Which	of the following c	an be us	ed as general o	oxidizer due	to lack of extra co	mplicatio	on of oxidation reactions.
	(C)	Reducing agent			(D)	All of these		
	(A)	Flouride ion dor	or		(B)	Flouride ion ac	ceptor	
42.	XeF ₆	can act as :						
	(A)	Xe and XeO_2	(B)	XeO and I	XeO_2 (C)	$XeO_2 \& XeO$	P_6^{4-} (D)	Xe & Xe O_6^{4-}
	The co	mpounds (X) and	(Y) are i	respectively :				
41.	XeO ₃	$(aq.) + OH^{-} \rightarrow X$	X + Y					

Paragraph for Questions 45 - 49

Several features of sulfuric acid are given below

Preparation of sulfuric acid:

Sulfuric acid is commonly prepared by the combustion of elemental sulfur to sulfur dioxide, followed by the catalytic oxidation of sulfur dioxide to sulfur trioxide. Sulfur trioxide is then absorbed into a 98% aqueous solution of H_2SO_4 and water is added to maintain a 98% concentration. SO_3 reacts with the water in the aqueous solution according to reaction-1

 $SO_3(g) + H_2O \longrightarrow H_2SO_4(l)$ Reaction -1

Properties of sulfuric acid: Concentrated sulfuric acid is 98% H_2SO_4 and 2% water by mass. It has a density of 1.84 g/ml and a boiling point of 338°C.

Preparation of other acids: HCl(g) and HNO_3 may be prepared by the reaction between sulfuric acid and the sodium salt of the corresponding conjugate base (Cl^- or NO_3^- respectively)

Formation of SO_2 : Sulfuric acid forms SO_2 gas when it reacts with several compounds. For example, I_2 and SO_2 are formed when I^- reacts with concentrated H_2SO_4 ; Br_2 and SO_2 are formed when Br^- reacts with concentrated H_2SO_4 . Cu²⁺ and SO_2 are formed in hot solutions of Cu(s) in H_2SO_4 . This last reaction is unusual, because most metal reacts with solutions of H_2SO_4 to form hydrogen gas and a metal sulfate.

- 45. When sulfuric acid reacts with copper. How does the oxidation number of the sulfur change?
 (A) From +4 to +6 (B) From +6 to +4 (C) From +6 to +8 (D) From +8 to +6
- 46. The apparatus shown below can be used to prepare HNO_3 (boiling point = 86°C). The yield of HNO_3 collected in the tube can be maximized by maintaining the temperatures of the flask and tube, respectively, at&....
 - (A) 0°C and 100°C
 - (B) 100°C and 0°C
 - (C) 350° and 150°C
 - **(D)** 350° and 100°
- 47. Which of the following is the balanced equation describing the combustion of elemental sulfur?
 - (A) $2H_2S + 3O_2 \longrightarrow 2SO_2 + 2H_2O$ (B) $H_2S + 2O_2 \longrightarrow SO_3 + H_2O$ (C) $2SO_3 \longrightarrow 2S + 3O_2$ (D) $S + O_2 \longrightarrow SO_2$

48. In the second step of preparing H_2SO_4 from elemental sulfur (the catalytic oxidation of SO_2), which strategy is most likely to increase the yield of SO_3 formed?

- (A) Reducing the reaction temperature (B) Reducing the reaction pressure
- (C) Removing SO_3 from the reaction mixture (D) Removing O_2 from the reaction mixture

p-Block Element-II

49. Which of the following expression can be used to determine the number of moles of water in 1 ml. of concentrated H_2SO_4 ?

(A)	$\frac{1.84 \times 0.98}{98} + \frac{1.84 \times 0.02}{18}$	(B)	$\frac{1.84 \times 0.02}{18}$
(C)	$\frac{1.84\times0.98}{18}$	(D)	$\frac{1.84 \times 0.98 \times 18}{98}$

c · .

Paragraph for Questions 50 - 52

ı .

- -

1 1.

The noble gases have closed-shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion force between the atoms and the absence of other interactions.

The direct reaction of xenon with fluorine leads to a series of compounds with oxidation number +2, +4 and +6. XeF₄ reacts violently with water to give XeO₃. The compounds of xenon exhibit rich stereochemistry and their geometries can be deduced considering the total number of electron pairs in the valence shell.

50.	Argon 1	s used in arc weld	ling beca	use of its :					
	(A)	Low reactivity v	vith meta	1	(B)	Ability to lower the melting point of metal			
	(C)	Flammability			(D)	High calorific va	lue		
51.	The stru	ucture of XeO ₃	is :						
	(A)	Linear	(B)	Planar	(C)	Pyramidal	(D)	T-shaped	
52.	XeF ₄ a	nd XeF ₆ are exp	ected to l	be :					
	(A)	Oxidizing	(B)	Reducing	(C)	Both (A) & (B)	(D)	Strongly basic	

Paragraph for Questions 53 - 55

A, B, C and D all are different triatomic compounds that exist as gases under normal conditions. A and B have a linear geometry whereas C and D are bent molecules. Elemental analysis establishes the presence of common constituents in gases B and C. Gas B does not react with water while A and D both forms weak diprotic acids on hydrolysis, gas C readily disproportionate in water to give a strong acid and a diatomic species E. Each of the species A to D can be prepared by one of the following preparative routes.

 $NH_4NO_{3(s)} \xrightarrow{250^{\circ}} CaCO_{3(s)} \xrightarrow{\Delta} S_{8(s)} + O_{2(g)} \xrightarrow{\Delta} E_{(g)} + O_{2(g)} \xrightarrow{\Delta} S_{8(s)} + O_{2(g)} +$

When equimolar quantities of C and E are passed through a solution of aqueous caustic soda a salt F is formed. Treatment of F with sulphuric acid produces a weak acid G and sodium sulphate. G readily decomposes to give a strong acid, water and substance E.

53. Which gas is used as a mild anesthetic and a propellant for whipped cream?

		(A)	E	(B)	В	(C)	С	(D)	D
--	--	-----	---	------------	---	-----	---	-----	---

p-Block Element-II

54. The correct statements are :

- 1. A, C and D all turns moist blue litmus to red.
- 2. C, D, G and E all turns orange colouration of acidified potassium dichromate solution to green.
- 3. The decomposition reaction of G is a disproportionation reaction.
- 4. Both D and E are paramagnetic.
- 5. Both A and D turns lime water milky. (A) 1, 2, 3, 5 **(B)** 1, 2, 4, 5 **(C)** 1, 3, 4, 5 **(D)** 1, 2, 3, 4 Which two gases on reacting in equimolar amounts at -30°C form BLUE LIQUID ? **(B)** B and C (A) A and B (D)

55.

C and E (C)

B and E

Paragraph for Questions 56 - 58

Rather than carrying highly pressurized heavy oxygen cylinders, most aeroplanes rely on chemically generated oxygen in the event of an emergency.

These generators are typically composed of a mixture of sodium chlorate (V), NaClO₃, iron fillings and barium peroxide, BaO2. Once initiated, the sodium chlorate (V) undergoes thermal decomposition producing oxygen gas. The iron combines with some of the oxygen to produce enough heat to sustain the reaction. The barium peroxide removes toxic side products which include chlorine and chloric (I) acid, HClO. Barium chloride and oxygen are common products in these two reactions. When a mask is deployed for inhaling purpose, the flow rate of oxygen gas is designed to change over time as the aeroplane

arrives to a safe altitude. Shown below in graph is the typical specification for the flow rate from one such oxygen generator.

Ten seconds after being activated, the flow rate is at its maximum of 3.6 dm³ min⁻¹. This lasts for approximately 50 seconds before falling as shown in the graph.

A portable, self-contained closed circuit breathing apparatus contains a chemical supply of oxygen similar to that in an aeroplane. It also contains a means to remove exhaled carbon dioxide. Very often potassium superoxide (KO_2) is used for this. KO_2 reacts with water, liberating further oxygen, and the by-product of this reaction absorbs the CO_2 .

- 56. The mass of sodium chlorate needed to produce nearly 60 dm^3 of oxygen under the condition at which molar volume of a gas is 24 dm^3 , is :
 - (A) 365 g (B) 178 g (C) 399 g (D) 266 g

57. The approximate volume of oxygen produced by the generator by using the graph to estimate will be : (A) 15 dm^3 (B) 18 dm^3 (C) 16 dm^3 (D) 12 dm^3

58. The correct balanced equation for the reaction between barium peroxide and chloric(I) acid is :

(A)
$$BaO_2 + 2HCIO \rightarrow Ba(CIO)_2 + H_2O_2$$
 (B) $BaO_2 + 2HCIO \rightarrow BaCl_2 + \frac{1}{2}O_2 + H_2O_2$

(C) $BaO_2 + 2HCIO \rightarrow Ba(CIO)_2 + \frac{1}{2}O_2 + H_2O$ (D) $BaO_2 + 2HCIO \rightarrow BaCl_2 + 1\frac{1}{2}O_2 + H_2O$

Paragraph for Questions 59 - 61

Sodium sulphite (Na₂SO₃) is added to meat as a preservative. The presence of Na₂SO₃ can be detected by adding dil. H₂SO₄ when the pungent smelling gas evolved turns the lime water milky. The gas evolved was detected as sulphur dioxide. The SO₂ evolved was dissolved in water and it requires I₂ solution in order to oxidize SO₂ to SO_4^{2-} in titration

 $SO_2 + 2H_2O + I_2 \longrightarrow 4H^+ + SO_4^{2-} + +2I^-$

In order to check the results of titration, excess barium chloride is added to the final solution. The resulting precipitate is collected and weighed.

59. SO₂ and CO₂ both turns lime water milky. Which of the following reagent can be used to distinguish these two gases?

(I)	$K_2 C r_2 O_7 / H_2 S O_4$	(II)	KMnO ₄ /H+	(III)	I ₂ solution
-------------	-----------------------------	------	-----------------------	-------	-------------------------

- (A) I, II, III correct (B) I, III only correct
- (C) II, III only correct (D) III only correct

60. SO_2 gas is used as a bleaching agent. Its bleaching action is :

- (A) Temporary and due to its oxidizing nature (B) Temporary and due to its reducing action
- (C) Permanent and due to its oxidizing action (D) Permanent and due to its reducing action

61. Which of the following compounds is formed, when Na₂SO₃ is boiled with sulphur.

(A) Na_2SO_4 (B) $Na_2S_2O_5$ (C) $Na_2S_2O_6$ (D) $Na_2S_2O_3$

Paragraph for Questions 62 - 64

A and B are elements in the same group of the periodic table. In nature they are not found as free elements but found as ions in various minerals and sea water. Ionic salts containing either A or B reacts with phosphoric acid (H_3PO_4) to give, H_xA or H_xB a gaseous product, respectively, on heating. Aqueous solution of H_xA is weakly acidic while of H_xB is strongly acidic. H_xA can also be formed when the above reaction was carried out using sulfuric acid instead of H_3PO_4 , however, ionic salts containing B gave B_2 under these conditions. Compound A_2 can be produced via electrolysis of the molten salt KHA_y whereas B_2 is stable in an aqueous medium.

Diatomic molecules A₂ and B₂ exist as a gas and a volatile solid, respectively, under normal conditions.

Reaction of A_2 with B_2 produces one of four compounds of the type BA_n depending on the stoichiometry of the reaction. All four are reactive species.

62.	The eler	nents 'A' and 'B'	are :	N and D	(\mathbf{C})	EandI	(D)	Cl and Pr		
63.	(A) Incorrec (A) (B) (C) (D)	ect statement for A and B is : Electron gain enthalpy of B is less than that of A. Element B shows positive oxidation state in its compound. A_2 disproportionates in water or alkali.					(D)			
64.	Shape of	f BA ₂ molecules	s is ·	8		8				
•	(A) (C)	Triangular plana T–shape	r		(B) (D)	Trigonal pyrami Tetrahedral	idal			
			MUI			ISWERS TYP	E			
Each of	the follo	wing Question ha	as 4 choic	es A, B, C & D, ou	t of whic	h ONE or MORE	Choices m	ay be Correct:		
65.	Which c	of the following is	are corr	ect balanced equa	tion(s) fo	r the formation of	$f P_2 O_7^{4-}$?			
	(A)	$2H_3PO_4$ <u>250.2</u>	$\Delta \xrightarrow{\Delta} H$	$H_4P_2O_7 + H_2O_7$	(B)	$5H_3PO_4 + POCl_3 \longrightarrow 3H_4P_2O_7 + 3HCl$				
	(C)	$P_4O_{10} + 4H_2O \longrightarrow 2H_4P_2O_7$			(D)	$H_3PO_4 + H_3PO_3 \longrightarrow H_4P_2O_7 + H_2$				
66.	Which c	of the following ic	ons have s	ingle S–S linkage	?					
	(A)	$S_2O_8^{2-}$	(B)	$S_2O_6^{2-}$	(C)	$S_2O_5^{2-}$	(D)	$S_2O_3^{2-}$		
67.	The eler	ment which exist(s) in the l	iquid state at or ne	ear norma	al room temperatu	re is(are)	:		
	(A)	Bromine	(B)	Mercury	(C)	Gallium	(D)	Lithium		
68.	Which a	mong the followi	ng is/are	paramagnetic?						
	(A)	O ₂	(B)	ClO ₂	(C)	S ₂	(D)	KO ₂		
69.	Which c (A) (B) (C) (D)	ich of the following is(are) not the characteristic of inter-halogen compounds? They are more reactive than halogens They are quite unstable, but none of them is explosive They are covalent in nature They have low boiling point								
70.	Which c	of the following is $3NaClO \xrightarrow{\Delta}$	correct NaClO ₃	about the reaction +2NaCl	?					
	(A) (B) (C) (D)	It is a disproport Oxidation numb This reaction is a It is a comproport	ionation r er of Cl d used for tl rtionation	eaction ecreases as well a he manufacture of reaction	s increase `halates	es in this reaction				

APP | Chemistry

APP	l Chemis	strv			245					p-Block Element-
	(A)	conc. H_2SO_4	(B)	P ₄ O ₁₀	(C)	CaO		(D)	OSCI	2
2.	Which	of the following ρ_1	can be us	2 ed for dehvdrating	g readily l	vdrolvsa	ble inorga	unic hali	des?	
	(A) (C)	$20_3 \longrightarrow 30_2$ N.O. $\xrightarrow{\Delta}$ N	JO + NO	_	(B) (D)	$S_1 = \frac{\Delta}{2}$	$\rightarrow 21$	10 ₂		
1.	which	of the following $\frac{\Delta}{20} \rightarrow 30$	uissociati	on results in an in	(R)	paramagr	$\underline{\Delta}$	NO		
1	(C) W ^{1 · 1}		1:			(U)	neating	g annnoi	num tom	Take with $\Gamma_2 O_5$
	(A) (C)	Reaction of excess KCN with CuSO ₄ solut				(B) Heating ammonium oxalate with P_2O_5 (D) Heating ammonium formate with P_2O_5				
0.	Which	of the following	is/are use	d for preparation of	of pseudo	halogen,	cyanogen	$(CN)_2$?	
0	(C)	$SO_2 < SO_3 < \Sigma$	KeO ₄	1.0	(D)	ClO_2	$< ClO_3 <$	ClO_{4}	0	
9.	Which (A)	of the following $B_2 < C_2 < SO_3$	is(are) co	rrect order of incr	easing nu (B)	mber of p NO < 0	oi-bonds? CO < XeO) ₃		
8.	Which (A) (C)	of the following \Rightarrow Diamond \rightarrow C White phospho	allotropic Traphite rous \rightarrow B	transformation ta	kes place (B) (D)	on decre Rhomb White	asing tem bic sulphu tin \rightarrow Gr	perature $r \rightarrow m_{e}$ ey tin	? onoclinic	sulphur
7.	The fol the foll (A)	lowing substance owing have parar Carbon	es are cov nagnetic (B)	alent or molecula diatomic form? Boron	r solids a	nd also e Sulphu	xist in dia r	atomic f (D)	òrm in va None c	pour phase. Which of these
6.	Thiony (A) (B) (C) (D)	 /l chloride (SOCl₂) is an important chemical reagent, for which of the following change it can be used? Hydrated ferric chloride → anhydrous ferric chloride Ethyl alcohol → Ethyl chloride Acetic acid → Acetyl chloride White phosphorous → Phosphorous trichloride 						can be used?		
5.	Which (A)	of the following $Quartz (SiO_2)$	(B)	vork solids? Diamond	(C)	Sulphu	r	(D)	Iodine	
4.	Which (A)	of the following Diamond	is/are cov (B)	alent solids? Black phosphor	rous	(C)	Boron		(D)	Iodine
3.	Which (A)	of the following Carbon	exist in di (B)	fferent allotropic Phosphorous	forms? (C)	Sulphu	r	(D)	Tin	
	(A) (C)	It is known as h It is used to ren	iypo 10ve stair	of I_2	(B) (D)	It is us It can b	ed in phot be used as	ography an anti	y to form o chlor	complex with AgBı
2.	Select t	the correct statem	ent about	Na ₂ S ₂ O ₃ .5H ₂ C)					
1.	(A) (B) (C) (D)	E is manufacture Electrolysis of Electrolysis of Electrolysis of Oxidation of H	d from : brine solu Fused KC bleaching Cl by O ₂	tion 21 powder using CuCl ₂ as	catalyst.					
1.	Chlorir (A)	ne is manufacture	d fr	com :	rom :	rom :	rom :	rom :	rom :	rom :

		DAV CENT	ENARY	PUBLIC SCHO	DOL, PA	SCHIM ENCL	AVE, NE	W DELHI-87		
83.	Identif	fy correct statemen	t(s) relat	ted to two stable al	llotropes	of oxygen i.e. di	oxygen (C	O_2) and ozone (O_3) :		
	(A)	In ozone centra	l oxygen	atoms is sp ² hyb	ridized.					
	(B)	Ozone has a not	nzero dip	pole moment.						
	(C)	Dioxygen is we	akly attr	acted to strong ma	ignetic fie	eld.				
94	84 Identify correct statement(s)									
04.	(A)	Polvatomic S _o	allotropi	ic form of sulphur	is more s	table than diaton	nic S ₂ .			
	(B)	Polyatomic O_3 allotropic form of oxygen is less stable than diatomic O_2 .								
	(C)	S_2 and O_2 bot	th are par	ramagnetic.	(D)	S_8 and O_3 both are diamagnetic.				
85.	Which	substance has a z	ero stanc	lard free energy of	formatio	m.				
	(A)	Pb(s)	(B)	Hg(<i>l</i>)	(C)	$Cl_2(g)$	(D)	$\operatorname{Br}_2(l)$		
86.	Which	of the following	oair(s) ha	ave identical struct	ure?					
	(A)	XeF_2 and I_3^-	(B)	XeOF ₂ and Cl	lF ₃ (C)	XeO_3F_2 and	PF ₅ (D)	XeOF ₄ and IF ₅		
87.	Which	of the following u	uses of n	oble gases is corre	ctly mate	hed?				
	(A)	He : Helium is mixed with O_2 in 4 : 1 ratio to provide an artificial atmosphere for divers.								
	(B)	Ne : Neon is used in discharge tubes for advertisement display purposes.								
	(C) (D)	Ar : Argon is used to provide an inert atmosphere in high temperature metallurgical process. He : Helium is used in filling balloons for meteorological observations.								
88.	Which	of the following r	reaction(s) represent strong	oxidizin	g power of xenor	n fluorides	?		
	(A)	$XeF_6(s) + 3H_2O(l) \longrightarrow XeO_3(aq) + 6HF(g)$								
	(B)	$XeF_2(s) + 2H_2$	O(l)	\rightarrow 2Xe(g) + 4HI	$F(g) + O_{g}$	$_{2}(g)$				
	(C)	$XeF_4(s) + Pt(s)$	$) \longrightarrow $	$PtF_4(s) + Xe(g)$						
	(D)	$2XeF_6(s) + 3S$	$iO_2(s)$ -	\longrightarrow 2XeO ₃ (s) +	-3SiF ₄ (g)				
89.	Which	of the following i	s correct	regarding structu	re of xen	on fluorides?				
	(A)	XeF_2 is linear			(B)	XeF_4 is square planar				
	(C)	XeF_6 is distort	ed octah	edral	(D)	XeF_8^{2-} is squ	are antipri	sm		
90.	XeF ₄	is expected to be								
	(A)	oxidizing	(B)	reducing	(C)	unreactive	(D)	fluorinating agent		
91.	Forma	tion of ozone from	n oxygen	is endothermic he	ence O ₃	is prepared by				
	(A)	(A) Heating oxygen at 298 K.								
	(B) (C)	Passing dry stre	am of ox e in wate	tygen through a si r.	Ient elect	rical discharge.				
	(D)	(D) Treating H_2O_2 with fluorine.								

APP | Chemistry

		DAV CEN	NTENARY	PUBLIC SCH	IOOL, PA	SCHIM ENC	LAVE, NEV	W DELHI-87	
92.	Which	of the followin	ig compound	l(s) is/are therm	odynamica	lly unstable at 2	298 K?		
	(A)	O ₃	(B)	H_2O_2	(C)	XeO ₃	(D)	O_2F_2	
93.	Which	of the followin	ig compound	ls can't be prepa	ared by dire	ect combination	of the cons	tituent elements	at 298 K?
	(A)	N ₂ O	(B)	XeO ₃	(C)	XeF ₂	(D)	P_4O_{10}	
94.	Which	of the followin	g reaction is	are used for pr	eparation o	f xenon oxide,	XeO ₃ ?		
	(A)	$2Xe + 3O_2 -$	→2XeC) ₃	(B)	$XeF_2 + \frac{3}{2}O$	$_2 \longrightarrow XeO$	$D_3 + F_2$	
	(C)	$XeF_6 + 3H_2$	$0 \longrightarrow Xe$	$O_3 + 6HF$	(D)	$Xe + Al_2O_3$	\longrightarrow XeO	$_{3} + 2A1$	
95.	Select	the correct state Boiling point	ement(s). t of HF is lo	wer than the boi	iling point (of H.O			
	(B)	HF has stron	ger hydroge	n bonds than wa	ater				
	(C) (D)	HF is stronge Liquid HF is	er acid than more viscou	water 15 than water					
96.	Which	of the followin	ig is correct	regarding oxide	s of haloge	ns?			
	(A)	OF ₂ is oxyg	en fluoride	0 0	C				
	(B)	ClO_2 is use	d as a bleach	ning agent for pa	aper pulp				
	(C) (D)	I_2O_5 is used BrO is less	l in the estin	nation of carbon	i monoxide				
07	(D) Which	DIO_3 is ited	a reaction (s) of halogen wit	h water is a	correctly repres	ented?		
) 1.	(A)	$2F_2(g) + 2H$	$I_2O(l)$	\rightarrow 4HF(aq) + O	$_{2}(g)$	correctly repres			
	(B)	$Cl_2(g) + H_2$	$_{2}O(l) \longrightarrow$	HCl(aq) + HO	Cl(aq)				
	(C)	$Br_2(l) + H_2(l)$	$O(l) \longrightarrow H$	HBr(aq) + HOI	Br(aq)				
	(D)	$2I_2(s) + 2H$	$_{2}O(1) \longrightarrow$	4HI(aq) + O ₂	(g)				
98.	Which	of the followin	ig can be use	ed as bleaching	agent?				
	(A)	ClO ₂	(B) H ₂	$_{2}O_{2}$	(C)	Cl ₂	(D)	SO ₂	
99.	Which	of the followin	ig is/are corr	ect?					
	(A)	All the chlor	ine oxides a	re endothermic	and unstabl	e			
	(B)	XeO_3 is end	dothermic an	d unstable.	n haatin a				
	(C) (D)	H_2O_2 dispr	oportionate	on heating.	m neating.				
100	Which	of the followin	I og is/are corr	ect statement(s)	12				
100.	(A)	Formation of	f ozone from	oxygen is an er	,. ndothermic	process.			
	(B)	Ozone is viol	let black in s	solid form.					
	(C)	Ozone molec	cule is angul	ar.					
	(D)	Ozone is pola	ar molecule.						

- 101. Which of the following is/are correctly matched?
 - (A) $Al_2Cl_6;sp^3$ hybridized central atom (B)
 - (C) $S_2F_{10};sp^3d^2$ hybridized central atom (D) $Be_2Cl_4;sp^2$ hybridized central atom
- B) B_2H_6 ; sp³ hybridized central atom
 - MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

102. MATCH THE COLUMN :

	Column 1		Column 2
(A)	Bond energies of the hydra acids of the halogens fluorine, chlorine, bromine, iodine	(p)	2 3 4 5 (Period No.)
(B)	Boiling points of the hydrides of the 16 group elements oxygen, sulphur, selenium, tellurium	(q)	2 3 4 5 (Period No.)
(C)	The stability of monochlorides of group 13 elements boron, aluminium, gallium, indium	(r)	2 3 4 5 (Period No.)
(D)	Melting points of the dioxides of the group 14 elements carbon, silicon, germanium, tin	(s)	2 3 4 5 (Period No.)

103. MATCH THE COLUMN :

	Column 1	Column 2				
(A)	Maximum solubility in water	(p)	F ₂			
(B)	Corrosive liquid	(q)	Cl ₂			
(C)	Maximum intermolecular distance	(r)	Br ₂			
(D)	Enthalpy of dissociation (maximum)	(s)	I ₂			
104. MATCH THE COLUMN :

	Column 1 (Gaseous Substance)	Column 2 (Absorbent)				
(A)	Cl ₂	(p)	Potash solution			
(B)	0 ₂	(q)	Ammonical cuprous chloride			
(C)	СО	(r)	FeSO ₄ solution			
(D)	NO	(s)	Alkaline pyrogallol solution			

105. MATCH THE COLUMN :

	Column 1	Column 2			
(A)	XeF ₄	(p)	Pyramidal		
(B)	XeF ₆	(q)	Trigonal bipyramidal		
(C)	XeO ₃	(r)	Distorted octahedral		
(D)	XeO ₂ F ₂	(s)	Square planar		

106. MATCH THE COLUMN :

	Column 1	Column 2			
(A)	F ₂	(p)	Shows only one non zero oxidation state		
(B)	Cl ₂	(q)	Coloured		
(C)	Br ₂	(r)	Readily dipsroportiotes in alkali		
(D)	I ₂	(s)	Stronger oxidizing agent		
		(t)	More negative electron gain enthalpy		

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 107. Among the following, the number of elements showing only one non-zero oxidation state is ______.
 O, Cl, F, N, P, Sn, Tl, Na, Mg
- **108.** Find out total number of lone pairs in KI₃.
- **109.** To an aqueous solution containing anion a few drops of acidified KMnO₄ are added. How many of the following anions if present will not decolourize the KMnO₄ solution.

 $I^-, CO_3^{2-}, NO_2^-, Cl^-, S^{2-}, SO_3^{2-}, SO_4^{2-}, Br^-, C_2O_4^{2-}.$

- **110.** An acid is formed by heating orthophosphoric acid at 250 260°C. The number of series of salts formed by this acid are ______.
- 111. The ratio of lone pairs and the number of S–S bonds in S_8 molecules is _____.
- 112. How many of the following are pseudo halides? $I_3^-, CN^-, SCN^-, OCN^-, CNO^-, NNN^-, HCOO^-, S_2^{2-}, ICI_2^-$

- How many of the following oxoacids are mono basic acids?
 H₃BO₃, H₂CO₃, H₂SO₃, H₂SO₄, H₃PO₄, H₃PO₃, H₃PO₂, HPO₃
- 114. The number of non-ionizable hydrogen atoms attached to phosphorus atom in hypophosphorus acid are _____
- 115. How many of the following chlorides can be hydrolysed? BCl₃, CCl₄, SiCl₄, NCl₃, PCl₃, AsCl₃, SbCl₃, SCl₄, ICl₃
- 116. How many of the following oxides are mixed anhydrides? $N_2O_3, NO_2, P_4O_6, P_4O_8, P_4O_{10}, Cl_2O_7, SO_3, I_2O_5, N_2O_5, Cl_2O_6.$
- How many of the following on heating liberate O₂?
 HgO, Pb₃O₄, Ag₂O, Ag₂CO₃, AgNO₃, NaNO₃, LiNO₃, KClO₃, Mg(NO₃)₂,
- **118.** How many of the following oxides are only acidic in nature? MgO, Al₂O₃, SO₂, Cl₂O₇, CO₂, N₂O₅, Mn₂O₇, CrO₃, V₂O₅
- How many of the following oxides are neutral? Na₂O, CaO, Al₂O₃, CO, NO, CO₂, N₂O, Cl₂O, B₂O₃.
- **120.** Total number of lone pair of electrons in XeF_2 are_____.
- 121. Xe reacts with fluorine in 1 : x ratio at high temperature and pressure to form XeF_4 . What is the value of x?
- 122. Treating Ba_2XeO_6 with concentrated sulphuric acid produces an explosive unstable gaseous substance XeO_4 . The number of $d\pi - p\pi$ bonds in XeO_4 are_____.
- 123. Solution containing $(SO_3^{2^-}) \xrightarrow{\text{dil.HCl}} Gas'A' \xrightarrow{K_2Cr_2O_7, H^+} \text{solution turns Green. What is change in }$

oxidation state of Sulphur on reaction with Orange solution?

		Advanced P	roblem	n Package		C	I-Block	Elem	ents
				SINGLE COR	RECT AN	SWER T	YPE		
1	of the fo	llowing Questi	on has 4	choices A, B, C	& D, out	of which	ONLY C	NE Cho	pice is Correct.
	Colour dipped	less solutions of in each one of t	the follow hese which	ving four salts are h solution will tu	e placed se rn blue?	parately i	n four dif	fferent te	est tubes and a strip of cop
	(A)	KNO3	(B)	AgNO ₃	(C)	Zn(N	O ₃) ₂	(D)	ZnSO ₄
	$Cr_2O_7^2$	$\xrightarrow{X}{Y} 2CrO_4^2$	-, X and	Y are respectivel	y :				
	(A)	$X = OH^-, Y$	$= H^+$		(B)	X = H	$^{+}, Y = 0$	H^{-}	
	(C)	$X = OH^-, Y$	= H ₂ O ₂		(D)	X = H	₂ O ₂ , Y	$= OH^{-}$	
	Solutio	n of MnO_4^- is	purple - co	oloured due to :					
	(A) (C)	d-d-transition Due to both d	-d-transitio	on and charge trai	nsfer	(B) (D)	Charge None o	transfer f these	from O to Mn
	The tra (A) (B) (C)	nsition elements Availability of Variable oxids All electrons a	s are more f d-orbital ation state are paired	metallic than rep s for bonding s are not shown b in d-orbitals	oresentativ oy transitio (D)	e elements on element <i>f</i> -orbita	s (s and p ts ils are ava	-block e ailable fo	lements) due to : or bonding
	During	estimation of or	xalic acid	using KMnO ₄ , t	the self inc	licator is :			
	(A)	KMnO ₄	(B)	oxalic acid	(C)	K ₂ SO	4	(D)	MnSO ₄
	The mo (A)	ost common oxio +3	dation stat (B)	e of lanthanides i +2	s : (C)	+4		(D)	+5
	Y← ^{KI}	—CuSO ₄ — dil	$\xrightarrow{H_2SO_4}$	X (Blue colour),	X and Y a	re :			
	(A)	$X = I_2, Y = [C]$	$Cu(H_2O)_4$	l ²⁺	(B)	X=[C	u(H ₂ O) ₄	$]^{2+}, Y =$	= I ₂
	(C)	$X = [Cu(H_2O)]$	$[0)_4], Y = I_2$,	(D)	X=[C	u(H ₂ O) ₆	$]^{2+}, Y =$: I ₂
	Transit of	ion elements are	e usually c	haracterized by v	ariable ox	idation sta	ates but Z	in does n	ot show this property bec
	(A) (C)	Completion of Completion of	f np-orbita f ns-orbita	ıls ls	(B) (D)	Compl Inert pa	etion of (air effect	n-1)d or	bitals
	CuSO	solution reacts	s with KC	N to give :					
	(A)	$Cu(CN)_2$	(B)	CuCN	(C)	K ₂ [Cu	$(CN)_2$]	(D)	$K_3[Cu(CN)_4]$
	Thahi	gher oxidation st	tates of tra	nsition elements O, N	are found (C)	to be in th O, Cl	e combin	nation wi (D)	ith A and B, which are : F, Cl
	(A)	F, O	(D)	,					
	(A) In the e	F, O equation: $4M + 8$	(B) 3CN ⁻ + 2H	$H_2O + O_2 \longrightarrow$	4[M(CN)	2] + 4OF	I ⁻ , meta	1 M is :	

APP | Chemistry

d-Block Elements

	8 8,	mpound	which shows the I	owest do	egree of paramagne	etism per	mole at 298 K is :	
(A)	$CuSO_4.5H_2O$	(B)	$NiSO_4.6H_2O$	(C)	FeSO ₄ .6H ₂ O	(D)	$MnSO_4.4H_2O$	
Solid	$CuSO_4.5H_2O$ ha	wing co	valent, ionic as we	ell as co	o-ordinate bonds. C	Copper a	tom/ion forms	co-ordinate
bonds	with water.							
(A)	1	(B)	2	(C)	3	(D)	4	
The m	ain product obtaine	ed when	a solution of sodiu	m carbo	onate reacts with m	ercuric c	hloride is :	
(A)	$Hg(OH)_2$	(B)	HgO	(C)	HgCO ₃	(D)	$HgCO_3 \cdot Hg(OI)$	$H)_2$
The ac	queous solution of	CuCr ₂ C	0_7 is green because	e it conta	ins :			
(A)	Green Cu ²⁺ ion	ns		(B)	Green $Cr_2O_7^{2-}$	ions		
(C)	Blue Cu ²⁺ ions	and gre	en $Cr_2O_7^{2-}$ ions	(D)	Blue Cu^{2+} ion	s and yel	llow $Cr_2O_7^{2-}$ ions	
Manga	anese steel is used t	for maki	ng railways becaus	se :				
(A)	it is hard with hi	igh perce	entage of Mn	(B)	it is soft with hi	gh perce	ntage of Mn	
(C)	it is hard with sr	nall con	centration of mang	anese w	ith impurities			
(D)	It is soft with sir		-2	inese wi	un impurities	k		
In nitr	oprusside ion, the i	the helm	sts as Fe ² and N(Das NO	D' rather than Fe	and N	O respectively. The	ese forms of
(A)	Magnetic mome	ent in sol	id state	(B)	Thermal decom	position	method	
(B)	By reaction with	n KCN		(D)	By action with	K_2SO_4		
Transi	tion elements in lo	wer oxic	lation states act as	Lewis a	cid because :			
(A)	They form comp	olexes		(B)	They are oxidiz	ing agen	ts	
(B)	They donate ele	ctrons		(D)	They do not sho	w cataly	tic properties	
The sh	hape of gaseous Sn	Cl ₂ is :						
(A)	tetrahedral	(B)	bent	(C)	linear	(D)	distorted tetrahed	ral
The sc	olubility of silver b	romide i	n hypo solution is o	due to th	e formation of :			
(A)	Ag_2SO_3	(B)	$Ag_2S_2O_3$	(C)	$[Ag(S_2O_3)]^-$	(D)	$[Ag(S_2O_3)_2]^{3-}$	
An ext	tremely hot copper	wire rea	ects with steam to g	give :				
(A)	CuO	(B)	Cu ₂ O	(C)	Cu_2O_2	(D)	CuO ₂	
Which	of the following is	s obtaine	ed when SO_2 gas	is bubble	ed through a solution	on of Cu	ıCl ₂ .	
(A)	Cu	(B)	Cu_2Cl_2	(C)	CuSO ₄	(D)	CuS	
On str	ongly heating Ag	NO_3 , the	e gases evolved are	e:				
(A)	N_2O and NO	(B)	NO_2 and O_2	(C)	NO and O_2	(D)	NO_2 and NO	
A whi	te solid halide of m	ercury f	orms a black mixt	ure with	ammonium hydrox	ides. Th	e halide is:	
(A)	$HgCl_2$	(B)	HgI_2	(C)	Hg_2I_2	(D)	Hg_2Cl_2	
	 Solid bonds Solid bonds (A) The m (A) The ac (A) (C) Manga (A) (C) Manga (A) (C) Manga (A) (C) (D) In nitrions at (A) (C) (D) In nitrions at (A) (B) Transi (A) (B) Transi (A) (B) The straight (A) (A) (B) The straight (A) (A) 	(A)Current 20SolidCuSO4.5H2Obonds with water.(A)1The main product obtained(A)Hg(OH)2The aqueous solution of(A)Green Cu^{2+} ions(C)Blue Cu^{2+} ionsManganese steel is used 1(A)it is hard with bit(C)it is hard with sr(D)it is soft with snIn nitroprusside ion, the image ions are established with(A)Magnetic mome(B)By reaction withTransition elements in loi(A)They form comp(B)They donate eleeThe shape of gaseous Sn(A)tetrahedralThe solubility of silver bit(A)Ag2SO3An extremely hot copper(A)CuOWhich of the following is(A)CuOWhich of the soluting AgN(A)N2O and NOA white solid halide of m(A)HqCl	(A)Cuboquerty (C)Solid CuSO4.5H2O having co bonds with water.(A)1(B)The main product obtained when (A)(A)Hg(OH)2(B)The aqueous solution of CuCr2C(A)Green Cu ²⁺ ions(C)Blue Cu ²⁺ ions and greeManganese steel is used for makin (A)(A)it is hard with high perced(C)it is hard with small cond(D)it is soft with small cond(D)it is soft with small cond(D)it is soft with small cond(B)By reaction with KCNTransition elements in lower oxide(A)They form complexes(B)They donate electronsThe shape of gaseous SnCl2 is :(A)tetrahedral(B)They donate electronsThe solubility of silver bromide in(A)CuO(B)Which of the following is obtained(A)CuO(B)On strongly heating AgNO3, the(A)N2O and NO(B)A white solid halide of mercury form(A)HaCl(B)	Solid CuSO ₄ .5H ₂ O having covalent, ionic as we bonds with water. (A) 1 (B) 2 The main product obtained when a solution of sodiu (A) Hg(OH) ₂ (B) HgO The aqueous solution of CuCr ₂ O ₇ is green because (A) Green Cu ²⁺ ions and green Cr ₂ O ₇ ²⁻ ions Manganese steel is used for making railways becaus (A) it is hard with high percentage of Mn (C) it is hard with small concentration of mang (D) it is soft with small concentration of mang (D) it is paration with KCN Transition elements in lower oxidation states act as (A) They form complexes (B) They donate electrons The shape of gaseous SnCl ₂ is : (A) tetrahedral (B) bent The solubility of silver bromide in hypo solution is of (A) Ag ₂ SO ₃ (B) Ag ₂ S ₂ O ₃ An extremely hot copper wire reacts with steam to g (A) CuO (B) Cu ₂ O Which of the following is obtained when SO ₂ gas (A) Cu (B) Cu ₂ Cl ₂ On strongly heating AgNO ₃ , the gases evolved are (A) N ₂ O and NO (B) NO ₂ and O ₂ A white solid halide of mercury forms a black mixtu	(h)Cubo 4.5 H_2O(b)Hub 4.4 H_2C(c)SolidCuSO 4.5 H_2Ohaving covalent, ionic as well as cobonds with water.(A)1(B)2(C)The main product obtained when a solution of sodium carbod(A)Hg(OH)_2(B)HgO(C)The aqueous solution of CuCr ₂ O ₇ is green because it contact(A)Green Cu ²⁺ ions(B)(C)Blue Cu ²⁺ ions and green Cr ₂ O ₇ ions(D)Manganese steel is used for making railways because :(A)it is hard with high percentage of Mn(B)(C)it is hard with small concentration of manganese wi(D)it is soft with small concentration of manganese wi(D)it is soft with small concentration of manganese wi(D)Transition established with the help of :(A)Magnetic moment in solid state(B)(B)By reaction with KCN(D)Transition elements in lower oxidation states act as Lewis act(A)They form complexes(B)(B)They donate electrons(D)The solubility of silver bromide in hypo solution is due to the(A)Ag ₂ SO ₃ (B)(A)CuO(B)(A)CuO(B)(A)CuO(B)(A)Cu(C)CoNch of the following is obtained when SO ₂ gas is bubble(A)Cu(B)Cu ₂ Cl ₂ (C)On strongly heating AgNO ₃ , the gases evolved are :(A)N ₂ O and NO(B)NO ₂ and O ₂ (C) <td>(ii)Cubby Aryo(iii)Aubey Aryo(iii)Aubey Aryo(iii)Aubey Aryo(iii)SolidCuboq.4.5H2Ohaving covalent, ionic as well as co-ordinate bonds. C bonds with water.(A)1(B)2(C)3The main product obtained when a solution of sodium carbonate reacts with m (A)Hg(OH)2(B)HgO(C)HgCO3The aqueous solution of $CuCr_2O_7$ is green because it contains :(A)Green Cu^{2+} ions(B)Green $Cr_2O_7^{2-}$(C)Blue Cu^{2+} ions and green $Cr_2O_7^{2-}$ ions(D)Blue Cu^{2+} ionManganese steel is used for making railways because :(A)it is soft with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impurities(A)Magnetic moment in solid state(B)Thermal decom(B)By reaction with KCN(D)By action withTransition elements in lower oxidation states act as Lewis acid because :(A)They form complexes(A)tetrahedral(B)bent(C)InearThe shape of gaseous SnCl2 is :(A)CuO(B)Cu2O(C)(A)CuO(B)Cu2O(C)Cu2O2Which of the following is obtained when SO2 gas is bubbled through a solutio(A)Cu(B)Cu2O(C)Nad(A)N2Oand NO(B)NO2 and O2(C)NO and O2A whi</td> <td>(i)Cubequerges(b)Hubquerges(c)Hubquerges(c)Solid CuSO4.5H2Ohaving covalent, ionic as well as co-ordinate bonds. Copper a bonds with water.(A)1(B)2(C)3(D)The main product obtained when a solution of sodium carbonate reacts with mercuric c (A)(A)Hg(OH)2(B)HgO(C)HgCO3(D)The aqueous solution of CuCr2O7 r(B)HgO(C)HgCO3(D)The aqueous solution of CuCr2O7 ris green because it contains :(A)Green Cu2+ions and green Cr2O7 rions and yelManganese steel is used for making railways because : (A)(A)it is hard with high percentage of Mn(B)it is soft with high percentage of Mn(B)it is soft with high percentage of Mn(D)it is hard with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impuritiesIn nitroprusside ion, the iron exists as Fe2+ and NO as NO+ r rather than Fe3+ and N ions are established with the help of : (A)Magnetic moment in solid state(B)Thermal decomposition(B)By reaction with KCN(D)By action with K2SO4 Transition elements in lower oxidation states act as Lewis acid because : (A)(A)They donate electrons(D)(B)They donate electrons(D)They are oxidizing agen (B)They don ot show catalyThe solubility of silver bromide in hypo solution is due to the formation of : (A)AAg2SO3(B)Ag2SO3(C)<td< td=""><td>Solid CuSO₄.5H₂O having covalent, ionic as well as co-ordinate bonds. Copper atom/ion formsbonds with water. (A) 1 (B) 2 (C) 3 (D) 4 The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is : (A) Hg(OH)₂ (B) HgO (C) HgCO₃ (D) HgCO₃·Hg(OI The aqueous solution of CuCr₂O₇ is green because it contains : (A) Green Cu²⁺ ions (B) Green Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions Manganese steel is used for making railways because : (A) it is hard with small concentration of manganese with impurities (D) it is soft with small concentration of manganese with impurities In nitroprusside ion, the iron exists as Fe²⁺ and NO as NO⁺ rather than Fe³⁺ and NO respectively. The ions are established with the help of : (A) Magnetic moment in solid state (B) Thermal decomposition method (B) By reaction with KCN (D) By action with K₂SO₄ Transition elements in lower oxidation states act as Lewis acid because : (A) They form complexes (B) They are oxidizing agents (B) They donate electrons (D) They do not show catalytic properties The shape of gaseous SnCl₂ is : (A) tetrahedral (B) bent (C) linear (D) distorted tetrahed The solubility of silver bromide in hypo solution is due to the formation of : (A) Ag₂SO₃ (B) Ag₂S₂O₃ (C) [Ag(S₂O₃)]⁻ (D) [Ag(S₂O₃)₂]³⁻ An extremely hot copper wire reacts with steam to give : (A) Cu (B) Cu₂O (C) Cu₂O (D) CuO₂. Which of the following is obtained when SO₂ gas is bubbled through a solution of CuCl₂. (A) Cu (B) Cu₂Cl₂ (C) CuSO₄ (D) CuS On strongly heating AgNO₃, the gases evolved are : (A) N₂O and NO (B) NO₂ and O₂ (C) NO and O₂ (D) NO₂ and NO A white solid halide of mercury forms</td></td<></td>	(ii)Cubby Aryo(iii)Aubey Aryo(iii)Aubey Aryo(iii)Aubey Aryo(iii)SolidCuboq.4.5H2Ohaving covalent, ionic as well as co-ordinate bonds. C bonds with water.(A)1(B)2(C)3The main product obtained when a solution of sodium carbonate reacts with m (A)Hg(OH)2(B)HgO(C)HgCO3The aqueous solution of $CuCr_2O_7$ is green because it contains :(A)Green Cu^{2+} ions(B)Green $Cr_2O_7^{2-}$ (C)Blue Cu^{2+} ions and green $Cr_2O_7^{2-}$ ions(D)Blue Cu^{2+} ionManganese steel is used for making railways because :(A)it is soft with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impurities(A)Magnetic moment in solid state(B)Thermal decom(B)By reaction with KCN(D)By action withTransition elements in lower oxidation states act as Lewis acid because :(A)They form complexes(A)tetrahedral(B)bent(C)InearThe shape of gaseous SnCl2 is :(A)CuO(B)Cu2O(C)(A)CuO(B)Cu2O(C)Cu2O2Which of the following is obtained when SO2 gas is bubbled through a solutio(A)Cu(B)Cu2O(C)Nad(A)N2Oand NO(B)NO2 and O2(C)NO and O2A whi	(i)Cubequerges(b)Hubquerges(c)Hubquerges(c)Solid CuSO4.5H2Ohaving covalent, ionic as well as co-ordinate bonds. Copper a bonds with water.(A)1(B)2(C)3(D)The main product obtained when a solution of sodium carbonate reacts with mercuric c (A)(A)Hg(OH)2(B)HgO(C)HgCO3(D)The aqueous solution of CuCr2O7 r(B)HgO(C)HgCO3(D)The aqueous solution of CuCr2O7 ris green because it contains :(A)Green Cu2+ions and green Cr2O7 rions and yelManganese steel is used for making railways because : (A)(A)it is hard with high percentage of Mn(B)it is soft with high percentage of Mn(B)it is soft with high percentage of Mn(D)it is hard with small concentration of manganese with impurities(D)it is soft with small concentration of manganese with impuritiesIn nitroprusside ion, the iron exists as Fe2+ and NO as NO+ r rather than Fe3+ and N ions are established with the help of : (A)Magnetic moment in solid state(B)Thermal decomposition(B)By reaction with KCN(D)By action with K2SO4 Transition elements in lower oxidation states act as Lewis acid because : (A)(A)They donate electrons(D)(B)They donate electrons(D)They are oxidizing agen (B)They don ot show catalyThe solubility of silver bromide in hypo solution is due to the formation of : (A)AAg2SO3(B)Ag2SO3(C) <td< td=""><td>Solid CuSO₄.5H₂O having covalent, ionic as well as co-ordinate bonds. Copper atom/ion formsbonds with water. (A) 1 (B) 2 (C) 3 (D) 4 The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is : (A) Hg(OH)₂ (B) HgO (C) HgCO₃ (D) HgCO₃·Hg(OI The aqueous solution of CuCr₂O₇ is green because it contains : (A) Green Cu²⁺ ions (B) Green Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions (C) Blue Cu²⁺ ions and green Cr₂O₇²⁻ ions (D) Blue Cu²⁺ ions and yellow Cr₂O₇²⁻ ions Manganese steel is used for making railways because : (A) it is hard with small concentration of manganese with impurities (D) it is soft with small concentration of manganese with impurities In nitroprusside ion, the iron exists as Fe²⁺ and NO as NO⁺ rather than Fe³⁺ and NO respectively. The ions are established with the help of : (A) Magnetic moment in solid state (B) Thermal decomposition method (B) By reaction with KCN (D) By action with K₂SO₄ Transition elements in lower oxidation states act as Lewis acid because : (A) They form complexes (B) They are oxidizing agents (B) They donate electrons (D) They do not show catalytic properties The shape of gaseous SnCl₂ is : (A) tetrahedral (B) bent (C) linear (D) distorted tetrahed The solubility of silver bromide in hypo solution is due to the formation of : (A) Ag₂SO₃ (B) Ag₂S₂O₃ (C) [Ag(S₂O₃)]⁻ (D) [Ag(S₂O₃)₂]³⁻ An extremely hot copper wire reacts with steam to give : (A) Cu (B) Cu₂O (C) Cu₂O (D) CuO₂. Which of the following is obtained when SO₂ gas is bubbled through a solution of CuCl₂. (A) Cu (B) Cu₂Cl₂ (C) CuSO₄ (D) CuS On strongly heating AgNO₃, the gases evolved are : (A) N₂O and NO (B) NO₂ and O₂ (C) NO and O₂ (D) NO₂ and NO A white solid halide of mercury forms</td></td<>	Solid CuSO ₄ .5H ₂ O having covalent, ionic as well as co-ordinate bonds. Copper atom/ion formsbonds with water. (A) 1 (B) 2 (C) 3 (D) 4 The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is : (A) Hg(OH) ₂ (B) HgO (C) HgCO ₃ (D) HgCO ₃ ·Hg(OI The aqueous solution of CuCr ₂ O ₇ is green because it contains : (A) Green Cu ²⁺ ions (B) Green Cr ₂ O ₇ ²⁻ ions (C) Blue Cu ²⁺ ions and green Cr ₂ O ₇ ²⁻ ions (D) Blue Cu ²⁺ ions and yellow Cr ₂ O ₇ ²⁻ ions (C) Blue Cu ²⁺ ions and green Cr ₂ O ₇ ²⁻ ions (D) Blue Cu ²⁺ ions and yellow Cr ₂ O ₇ ²⁻ ions (C) Blue Cu ²⁺ ions and green Cr ₂ O ₇ ²⁻ ions (D) Blue Cu ²⁺ ions and yellow Cr ₂ O ₇ ²⁻ ions Manganese steel is used for making railways because : (A) it is hard with small concentration of manganese with impurities (D) it is soft with small concentration of manganese with impurities In nitroprusside ion, the iron exists as Fe ²⁺ and NO as NO ⁺ rather than Fe ³⁺ and NO respectively. The ions are established with the help of : (A) Magnetic moment in solid state (B) Thermal decomposition method (B) By reaction with KCN (D) By action with K ₂ SO ₄ Transition elements in lower oxidation states act as Lewis acid because : (A) They form complexes (B) They are oxidizing agents (B) They donate electrons (D) They do not show catalytic properties The shape of gaseous SnCl ₂ is : (A) tetrahedral (B) bent (C) linear (D) distorted tetrahed The solubility of silver bromide in hypo solution is due to the formation of : (A) Ag ₂ SO ₃ (B) Ag ₂ S ₂ O ₃ (C) [Ag(S ₂ O ₃)] ⁻ (D) [Ag(S ₂ O ₃) ₂] ³⁻ An extremely hot copper wire reacts with steam to give : (A) Cu (B) Cu ₂ O (C) Cu ₂ O (D) CuO ₂ . Which of the following is obtained when SO ₂ gas is bubbled through a solution of CuCl ₂ . (A) Cu (B) Cu ₂ Cl ₂ (C) CuSO ₄ (D) CuS On strongly heating AgNO ₃ , the gases evolved are : (A) N ₂ O and NO (B) NO ₂ and O ₂ (C) NO and O ₂ (D) NO ₂ and NO A white solid halide of mercury forms

		DAV CENT	ENARY	PUBLIC SCHO	OL, PAS	CHIM ENCLA	VE, NEV	V DELHI-87		
25.	Which	of the following p	air canno	t exist together?						
	(A)	$Cu(NO_3)_2$ and	d AgNO ₃	i	(B)	HgCl_2 and Sn	Cl ₂			
	(C)	FeCl ₃ and FeC	Cl_2		(D)	None of these				
26.	Which ((A) (C)	of the following is It is a volatile m It is brittle at ver	s not the c ietal ry high ter	haracteristics of z	inc? (B) (D)	It dissolves in alkali forming sodium metazincate Zinc dust is used as a reducing agent				
27.	Mercur (A)	y is transported in Silver	metal con (B)	ntainers made of : Lead	(C)	Iron	(D)	Aluminium		
28.	Splittin (A) (B) (C) (D)	g of silver is : Reduction of am Making of silver A extraction of s Cooling of molt	nmonical s r amalgan silver fron en silver v	silver nitrate solut n during filling of n its ore Ag ₂ S by with the evolution	ion by tar teeth / hydrom of oxyge	rtrate etallurgy n causing violent	spurting			
29.	CuCl ₂	and CuBr ₂ exis	t as :							
	(A) ²	Monomer	(B)	Dimer	(C)	Trimer	(D)	Polymer		
30.	Acidifie (A) (C)	ed potassium pern Bleaching powd Mohr's salt	nanganate ler	solution is decold	ourised by (B) (D)	y White vitriol None of these				
31.	A metal to give	which is not affe a complex which	ected by co finds its a	onc. H_2SO_4 , HN pplication for ton	O ₃ alkal ing in ph	is forms a compound ptography? The m	und X. Th ietal is :	is compound X can be used		
22	(A)	Au	(B)	Ag	(C)	Hg	(D)	Cu		
32.	(A)	BaZnO ₂	(B)	Ba + ZnO_2	(C)	BaCdO ₂	(D)	BaO ₂ + Zn		
33.	The for	mula for corrosive	e sublimat	te is :		_		-		
	(A)	HgCl ₂	(B)	Hg_2Cl_2	(C)	Hg ₂ O	(D)	Hg		
34.	Which (A)	of the following d HgCl ₂	loes not gi (B)	ve a precipitate w HgNO ₃	ith exces (C)	s of NaOH? FeSO ₄	(D)	ZnSO ₄		
35.	KI and (A) (C)	$CuSO_4 \text{ solution}$ $CuI_2 + K_2SO_4$ $Cu_2I_2 + I_2 + K$	when mix	ked give :	(B) (D)	$Cu_{2}I_{2} + K_{2}SO_{4}$ $K_{2}SO_{4} + CuI_{2} + I_{2}$				
36.	Au is in (A)	soluble in nitric a oxidizing streng	icid but di th of HN	ssolves in aqua re O ₃	gia. The (B)	enhanced solubili oxidizing streng	ty of Au a th of NO	rises from :		
	(C)	oxidizing streng	$\mathfrak{g}\mathfrak{h}$ of H^+		(D)	ability of Cl to f	orm comp	blexes		
37.	A solut of	ion of sodium thi	osulphate	on addition of few	w drops o	of ferric chloride g	gives viol	et colour due to the formation		
	(A)	$\mathrm{Na_2S_4O_6}$	(B)	$\operatorname{Fe}_2(\operatorname{SO}_4)_3$	(C)	$\operatorname{Fe}_2(S_2O_3)_3$	(D)	$\operatorname{Fe}_2(S_2O_3)_2$		

APP | Chemistry

d-Block Elements

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 The colour of light absorbed by Prussian blue is : 38. Orange - red **(B)** Blue-green **(C)** Yellow **(D)** Violet (A) 39. When HCl reacts with finely powdered iron it forms : $FeCl_2$ and H_2 (B) FeCl₃ and H₂ **(C)** FeCl₂.6H₂O & H₂(D) FeCl₃.6H₂O & H₂ (A) Paragraph for Questions 40 - 43 Light green (Compound 'A') $\xrightarrow{\Delta}$ White Residue (B) $\xrightarrow{\text{High}}$ C + D + E. Light green (Compound 'A') $\xrightarrow{\text{BaCl}_2}$ white ppt. insoluble in HCl and HNO₃ (i) 'D' and 'E' are two acidic gas. (ii) 'D' is passed through HgCl₂ solution to give yellow ppt. 'E' is passed through water first and then H₂S is passed, white turbidity is obtained. (iii) (iv) A is water soluble and addition of HgCl₂ in it, white ppt is obtained but white ppt does not turn into grey on addition of excess solution of 'A'. 'D' and 'E' are respectively. 40. SO_2 and SO_3 **(B)** SO_3 and SO_2 (C) SO_2 and CO_2 (D) CO₂ and CO (A) 41. Yellow ppt in the above observation is: **(A)** Mercuric oxide **(C)** Basic mercury (I) sulphite **(C)** Basic mercury (II) sulphate **(D)** Mercuric iodide 42. 'C' is soluble in : dil. H_2SO_4 dil. HCl **(B) (C)** conc. $CH_3COOH(\mathbf{D})$ (A) Boiled conc. HCl What happens when H_2S gas is passed in solution of 'C' in conc HCl? 43.

- - Light green colour turns to yellowish green and yellow turbidity (A)
 - Yellowish green solution turns to greenish yellow and white turbidity **(B)**
 - **(C)** Yellowish green ppt
 - **(D)** Black ppt

Paragraph for Questions 44 - 47

Transition metal and their compounds are used as catalysts in industry and in biological system. For example, in the Contact Process, vanadium compounds in the +5 state $(V_2O_5 \text{ or } VO_3^-)$ are used to oxidise SO₂ to SO₃.

$$SO_2 + \frac{1}{2}O_2 \xrightarrow{V_2O_2} SO_3$$

It is thought that the actual oxidation process takes place in two stages. In the first step, V^{5+} in the presence of oxide ions converts SO₂ to SO₃. At the same time, V^{5+} is reduced to V^{4+}

$$2V^{5+} + O^{2-} + SO_2 \longrightarrow 2V^{4+} + SO_3$$

In the second step, V^{5+} is regenerated from V^{4+} by oxygen: $2V^{4+} + \frac{1}{2}O_2 \longrightarrow 2V^{5+} + O^{2-}$ The overall process is, of course, the sum of these two steps: $SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$

- 44. Transition metals and their compound catalyse reactions because:
 - (A) They have completely filled s-subshell
 - (B) They have a comparable size due to poor shielding of d-subshell
 - (C) They introduce an entirely new reaction mechanism with a lower activation energy
 - (D) They have variable oxidation states differ by two units
- **45.** During the course of the reaction:
 - (A) Catalyst undergoes changes in oxidation state
 - (B) Catalyst increases the rate constant
 - (C) Catalyst is regenerated in its original form when the reactants converted to the products
 - (D) All are correct
- 46. Catalytic activity of transition metals depends on
 - (A) Their ability to exist in different oxidation states (B) The size of the metal atoms
 - (C) The number of empty atomic orbitals available (D) None of these
- 47. Which of the following ion involved in the above process will show paramagnetism?
 - (A) V^{5+} (B) V^{4+} (C) O^{2-} (D) VO_3^{-}

Paragraph for Questions 48 - 51

 MnO_2 is the most important oxide of manganese. MnO_2 occurs naturally as the black coloured mineral pyrolusite. It is an oxidizing agent, and decomposes to Mn_3O_4 on heating to 530°C. It is used in the preparation of potassium permanganate and in the production of Cl_2 gas. Over half a million tons per year of MnO_2 is used in dry batteries.

48. In the laboratory, MnO_2 is made by :

Oxidizing Mn^{2+} in air **(B)** (A) Heating Mn in O₂ (C) Electrolytic oxidation of MnSO₄ **(D)** Precipitating MnO_2 from solution when performing titration of $KMnO_4$ in alkaline medium. When MnO_2 is fused with KOH in the presence of air, the product formed is: purple colour KMnO₄ green colour K₂MnO₄ (A) **(B) (C)** colourless MnO₄ **(D)** purple colour K₂MnO₄ MnO₂ dissolved in concentrated HCl to form: Mn^{2+} ion and Cl_2 Mn^{4+} ion and Cl_2 (A) **(B)** only $[MnCl_4]^{2-}$ $[MnCl_4]^{2-}$ and Cl_2 **(C) (D)** In which of the following species, the colour is due to charge transfer. $[Mn(OH)_4]^{2-}$ (II) MnO_4^{2-} **(I)** (III) MnO_2 (IV) $KMnO_4$ II, IV correct (A) I, II, III correct **(B)** I, III correct only IV correct **(C) (D)**

Paragraph for Questions 52 - 54

Iron (+II) is one of the most important oxidation states, and salts are called ferrous salts. Most of the Fe(+II) salts are pale green and contain $[Fe(H_2O)_6]^{2+}$ ion. Fe(+II) compounds are easily oxidized by air and so are difficult to obtain in pure from Fe²⁺ form many complexes like K₄[Fe(CN)₆].

49.

50.

51.

52.	Anhydro	ous FeCl ₂ is ma	ade by :									
	(A)	Heating Fe with	n dilute HC	21	(B)	Heating Fe with	gaseous I	HCl				
	(C)	Reacting Fe wit	th conc. H	C1	(D)	Heating Fe with	$Cl_2 \ gas$					
53.	K ₃ [Fe(formation	$(CN)_6$ is used on of:	in the det	ection of Fe ²⁺ i	on with v	which it gives a	deep colo	our. This colour is due to the				
	(A)	K ₂ Fe[Fe(CN)) ₆](B)	$Fe_4[Fe(CN)_6]_3$	(C)	$Fe[Fe(CN)_6]$	(D)	$Fe_3[Fe(CN)_6]_2$				
54.	FeSO ₄	is used in brow	n ring test	for nitrates and 1	nitrites. In	n this test, a fresh	nly prepar	ed FeSO ₄ solution is mixed				
	with solution containing NO_2^- or NO_3^- and the conc. H_2SO_4 is run down the side of the test tube. If the mixture gets hot or is shaken,											
	I.	The brown cold	our disappe	ars	II.	NO is evolved						
	III.	A yellow soluti	on of Fe ₂	$(SO_4)_3$ is formed								
	(A)	I, II, III are corr	rect		(B)	I, III are correct						
	(C)	II, III are correc	et		(D)	Only I is correct						
Paragra	aph for (Questions 55 -	<u>58</u>									
The foll	owing ob	servations were	made on 1	Na ₂ CrO ₄ and Na	$a_2 Cr_2 O_7$							
(A)	When C	CO ₂ was passed	over Na ₂	CrO_4 , then Na_2	$Cr_2O_7 w$	as formed.						
(B)	When Z	When Zn is added to acidic solution of $Na_2Cr_2O_7$, the colour changes from orange to green.										
(C)	Na ₂ Cr followed	O ₄ when added d by flame test g	to a nitrate ave a greer	e salt solution gav	re a yello	w coloured precip	oitate whi	ch after separation and drying				
55.	What is	the function of	CO_2 in the	e first observation	?							
	(A) (B)	Acts as an oxid Produces chron	izing agent nium and o	xygen	(B) (D)	Acts as a reducin Makes the solution	ng agent on acidic					
56.	The reas	son for the colou	r of Na ₂ C	r_2O_7 solution to	first chan	ge from orange to	green on	adding Zn is because				
	(A)	Zn is a reducing	g agent and	changes Cr ⁴⁺ to	$\sim Cr^{3+}$							
	(B)	Zn is a reducing	g agent and	l changes Cr ⁶⁺ to	o Cr ³⁺							
	(C)	Zn is a reducing	g agent and	l it reduces Cr ⁶⁺	to Cr ²⁺		(D)	None of these				
57.	The exte	ent of splitting in	d-orbitals	is more when the	chromiu	m in the solution	is in					
	(A)	+1 oxidation sta	ate		(B)	+2 oxidation stat	te					
	(C)	+3 oxidation sta	ate		(D)	+6 oxidation stat	te					
58.	The nitr	ate salt which gi	ves a yello	w precipitate with	Na ₂ Cr	O_4 and the yellow	v precipita	ate gives green flame with				
	Bunsen	burner is of										
	(A)	Pb^{2+}	(B)	Ca ²⁺	(C)	Mg^2	(D)	Ba^{2+}				
Paragra	aph for (Questions 59 -	<u>63</u>									

A colourless solid (A) on strong heating gives a brown gas (B) and a grey residue (C). On dissolution of solid (A) in NH_3 a solution of compound (D) is formed which oxidizes glucose. FeSO₄ reduces solution of (A) in water. Aqueous solution of (A) also gives a brick red precipitate (E) with K_2CrO_4 solution. On the basis of above information answer the following questions.

59.	Compo	ound (A) is :						
	(A)	AgNO ₃	(B)	$Hg_2(NO_3)_2$	(C)	$Cu(NO_3)_2$	(D)	AgBr
60.	Compo	ound (B) is :						
	(A)	Br ₂	(B)	NO ₂	(C)	NO	(D)	none of the above
61.	Compo	ound (C) is :						
	(A)	Hg	(B)	Bi	(C)	Ag	(D)	Cu
62.	Compo	ound (D) is :						
	(A)	$\left[\mathrm{Cr(NH_3)_6}\right]^{3+}$	(B)	$[\mathrm{HgI}_4]^{2-}$	(C)	$\left[\mathrm{Cu}(\mathrm{NH}_3)_4\right]^{2+}$	(D)	$\left[\mathrm{Ag}(\mathrm{NH}_3)_2\right]^+$
63.	Compo	ound (E) is :						
	(A)	HgI_2	(B)	$K_2Cr_2O_7$	(C)	HgCrO ₄	(D)	Ag ₂ CrO ₄

Paragraph for Questions 64 - 68

A brown powdery substance (A) when heated with concentrated HCl gives compound (B) along with the liberation of a greenish yellow gas (C), which liberates a compound (D) when passed through KI solution. Compound (D) dissolves in excess of KI, forming a yellow solution. (A) when fused with KOH in presence of atmospheric oxygen gives a green mass, which on extraction with water and on treatment with a gas (E), changes to purple. Moreover the gas (E) when passed through dry KOH at low temperature gives a deep red coloured compound. On the basis of above information answer the following questions.

64.	Compou (A)	Ind (A) is : Fe ₂ O ₃	(B)	MnO ₂	(C)	CuS	(D)	PbS
65.	Compou (A)	nd (B) is : FeCl ₃	(B)	MnCl ₂	(C)	CuCl ₂	(D)	PbCl ₂
66.	Compou (A)	nnd (C) is : CrO ₂ Cl ₂	(B)	NO	(C)	Cl ₂	(D)	H_2S
67.	Compou (A)	nd (D) is : NO ₂	(B)	I ₂	(C)	0 ₂	(D)	SO ₂
68.	Compou (A)	und (E) is : O ₃	(B)	Cl ₂	(C)	0 ₂	(D)	NO ₂

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct: 69. Which of the following is/are correctly matched? HgCl₂; Corrosive sublimate HgS; Vermilion (A) **(B) (C)** Hg₂Cl₂; Calomel **(D)** HgI; Amalgam 70. The ionization energies of transition elements are : (A) less than p-block elements **(B)** more than s-block elements **(C)** less than s-block elements more than p-block elements **(D)**

71.	The n (A)	netal(s) which do Fe	es/do not f (B)	form amalgam is Pt	s(are) (C)	Zn	(D)	Ag	
72.	The h	ighest oxidation	state show	n by transition e	elements is :			6	
	(A)	+7 by Mn	(B)	+8 by Os	(C)	+8 by Ru	(D)	+7 by Fe	
73.	The c (A)	atalytic activity o Variable oxid	f transition ation state	n elements is rel s	ated to their (B)	r : Surface area			
	(C)	Complex forn	nation abil	ity	(D)	Magnetic mo	oment		
74.	Acidi	fied KMnO ₄ can	be decoloi	urised by :		F G G		E cl	
	(A)	SO_2	(B)	H_2O_2	(C)	FeSO ₄	(D)	FeCl ₃	
75.	The la	In than ide contrac	tion is res	ponsible for the	fact that :				
	(A) (B)	Zr and Hf hav	e same are	operties					
	(C)	Zr and Hf hav	e differen	t atomic sizes					
	(D)	Zr and H <i>f</i> hav	e differen	t properties					
76.	Whicl	n of the following	g is(are) no	ot regarded as tra	ansition eler	ment(s)?			
	(A)	Zn	(B)	Cd	(C)	Hg	(D)	Uub	
77.	Whicl	n of the following	g is(are) tra	ansition element	t(s)?				
	(A)	Sc	(B)	Cu	(C)	Ag	(D)	Hg	
78.	Whick	n of the following	g d-block e	elements exhibit	variable ox	idation states?			
	(A)	Zn	(B)	Sc	(C)	Cu	(D)	Fe	
79.	Identi	fy correct statem	ent related	with oxidation	states of d-l	olock elements?		1 6.1	
	(A)	The maximum	n oxidatioi	n states of reaso	nable stabil	ity correspond i	n value to t	the sum of the s and	nd d electrons
	(B)	Variable oxid	ation state	s of transition el	lements diff	er from each oth	her by unity	7	
	(C)	In a group of	d-block el	ements in gener	al higher ox	idation states ar	e favoured	by the heavier me	mbers
	(D)	In metal carbo	onyls trans	ition elements a	re found in	lower oxidation	i state		
80.	Cr^{2+} is	s reducing while	Mn^{3+} is ox	idizing because	:				
	(A) (B)	Both have d^4 .	configurat	1011 afiguration chan	$aes from d^4$	to d^3			
	(D) (C)	In Mn^{3+} its	electronic	configuration ch	anges from	d^4 to d^5			
	(C) (D)	Of the increas	sing stabili	ty of the species	to which the	ney are converte	ed		
81.	Whic	1 of the following	z d-block e	elements do not	form trihali	des?			
	(A)	Fe	(B)	Ni	(C)	Cu	(D)	Zn	
82.	Whicl	n of the following	g is(are) m	ixed oxides?					
	(A)	Mn ₃ O ₄			(B)	Fe ₃ O ₄			
	(C)	Co ₃ O ₄			(D)	Fe _{0.93} O			
APP	Chem	istry			258			d-Bloc	k Elements

		DAV CENTI	ENARY	PUBLIC SC	HOOL, PA	SCHIM EN	CLAVE, NE	W DELHI-87	
83.	Which	of the following h	alides of o	copper is(are)	not known?				
	(A)	CuF	(B)	CuI	(C)	CuI ₂	(D)	CuCl ₂	
84.	Identify	y correct statement	t(s) related	d with Cu?					
	(A)	The standard rec	luction po	tential for the	reduction o	f Cu^{2+} to C	u is positive		
	(B)	$Cu_{(aq)}^{2+}$ is more	stable tha	n Cu _(aq)					
	(C)	Copper (I) comp	ounds un	dergo disprop	ortionation	in aqueous so	olution		
	(D)	CuI_2 is stable							
85.	Identify	y correct statement	t(s) related	d with halides	oftransition	n elements.			
	(A)	VF_5, CrF_6 and 1	MnF ₇ all	are known					
	(B)	$VCl_5 + H_2O \rightarrow$	VOCl ₃ +	HC1					
	(C)	$2CuI_2 \rightarrow 2CuI$	+ I ₂						
	(D)	$2 \text{FeCl}_{3(aq)} + \text{H}_2$	$S_{(aq)} \rightarrow 2$	$FeCl_{2(aq)} + 2$	$HCl_{(aq)} + S_{(aq)}$	(s)			
86.	Which	of the following is	s/are alloy	of transition	metals with	non transitio	n metals?		
	(A)	Brass			(B)	Bronze			
	(C)	Zinc-amalgam			(D)	German si	lver		
87.	The rea	action $Fe(CNS)_6^{3-1}$	\rightarrow FeF ₆ ³	⁻ takes place	with :				
	(A)	Increase in spin	only mag	netic moment	(B)	Change in	hybridization	state	
	(C)	Change in geom	etry		(D)	Decrease i	in number of is	somers	
88.	[Sc(H	$_{2}O)_{6}]^{3+}$ ion is :							
	(A)	colourless			(B)	diamagnet	tic		
	(C)	yellow coloured			(D)	paramagne	etic		
89.	Which propert	of the following ies?	pair(s) of	elements is(are) called	"chemical tw	vins" because	of their very s	imilar chemical
	(A)	Li and Mg			(B)	Be and Al			
	(C)	Hf and Zr			(D)	Al and Zn			
90.	A certa	in metal will liber	ate hydrog	gen from dilu	te acids. It w	vill react with	n water to form	hydrogen only	when the metal
	is heate	ed and water is in t	he form o	f steam. The	metal is prot	oably			
	(A) (C)	Tron Zinc			(B) (D)	Sodium			
01	(C) C)SO	$X \to \pm X \longrightarrow V$	⊥ other n	roducts 'X' a	nd 'V' respe	octively are .			
71,		$H(aq) \perp \Lambda \longrightarrow I$	i otner pl	ouucis. A a				\	
	(A)	rn ₃ , Cu ₃ P ₂			(в)	мп _{3(aq)} ,[4	
	(C)	KI; $Cu_2I_2 + I_2$			(D)	KCN;K ₃ [$[Cu(CN)_4] + (0)$	$CN)_2$	

- **92.** Many of the metals and/or their compounds are essential catalysts in the chemical industry. Identify correctly matched catalyst and process.
 - (A) V_2O_5 Catalyses the oxidation of SO₂ in the manufacture of H_2SO_4
 - (B) TiCl₄ and Al(CH₃)₃; manufacture of polyethylene
 - (C) Fe; Manufacture of NH_3 (D) Ni; Hydrogenation of fats

93. The correct statement(s) about lanthanides is/are :

- (A) Ce^{4+} is a strong oxidizing agent (B)
- (C) La^{3+} and Ce^{4+} are diamagnetic (D)

(D) Yb^{2+} is paramagnetic

All trivalent lanthanoid ions are coloured

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) & (D) whereas statements in Column 2 are labeled as p, q, r, s & t. More than one choice from Column 2 can be matched with Column 1.

94. MATCH THE FOLLOWING :

Column 1			Column 2
(A)	Kipp's apparatus waste	(p)	$(\mathrm{NH}_4)_2\mathrm{SO}_4.\mathrm{FeSO}_4.6\mathrm{H}_2\mathrm{O}$
(B)	Green coloured compound	(q)	Cu(OH) ₂ .CuCO ₃
(C)	Leave(s) brown residue on heating	(r)	FeSO ₄
(D)	Leaves(s) black residue on heating	(s)	CuCl ₂ .2H ₂ O

95. MATCH THE FOLLOWING :

Column 1			Column 2		
(A)	Fe	(p)	Variable oxidation state		
(B)	Cu	(q)	Coloured aqua complex		
(C)	Zn	(r)	Extracted from sulphide ores		
(D)	Mn	(s) Extracted from oxide ores			
		(t)	Becomes passive with conc. HNO ₃		

96. MATCH THE FOLLOWING :

Column 1		Column 2		
(A)	FeCl ₃ ·6H ₂ O	(p)	Cannot be dehydrated by heating	
(B)	FeSO ₄ ·7H ₂ O	(q)	Can be dehydrated by heating	
(C)	$CuSO_4 \cdot 5H_2O$	(r)	Paramagnetic	
(D)	$ZnSO_4 \cdot 7H_2O$	(s)	Coloured salt	
		(t)	Forms two oxides of sulphur on heating strongly.	

97. MATCH THE FOLLOWING :

Column 1		Column 2		
(A)	Fe	(p)	Catalyst in Haber's process	
(B)	Ni	(q)	Catalyst in Hydrogenation of vegetable oil	
(C)	Pt	(r)	Catalyst in contact process	
(D)	Pd	(s) Does not form amalgams		
		(t)	Absorb large amount of H ₂ .	

98. MATCH THE FOLLOWING :

Column 1		Column 2		
(A)	Acidic KMnO ₄	(p)	$H_2S \rightarrow S$	
(B)	Acidic $K_2 Cr_2 O_7$	(q)	$NO_2^- \rightarrow NO_3^-$	
(C)	FeCl ₃ solution	(r)	$I^- \rightarrow I_2$	
(D)	CuSO ₄ solution	(s)	Coloured solution	

Numerical Value Type

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- **99.** How many hydrogen bonded water molecule(s) are associated with $CuSO_4 \cdot 5H_2O$?
- **100.** The number of equivalent Cr–O bond(s) in dichromate $(Cr_2O_7^{2-})$ ion are _____.
- 101. How many ions are formed on dissolving one molecules of Mohr's salts in water?
- **102.** How many of the following hydrated metal halides on heating directly can form anhydrous halides.

$$\begin{split} MgCl_2 \cdot 6H_2O, \quad AlCl_3 \cdot 6H_2O, \quad FeCl_3 \cdot 6H_2O, \quad CrCl_3 \cdot 6H_2O, \quad LiCl \cdot 2H_2O, \quad BaCl_2 \cdot 6H_2O, \quad CaCl_2 \cdot 6H_2O, \\ SnCl_2 \cdot 2H_2O, \quad ZnCl_2 \cdot 2H_2O \end{split}$$

103. Iron is x^{th} most abundant element in the earth's crust. The numerical value of x is ______.

- **104.** The number of peroxide bonds in $Cr_2O_{12}^{2-}$ are_____.
- **105.** Copper sulphate reacts with sodium cyanide and forms a cyanide complex. Write the balanced equation and find out the number of NaCN molecules involved in the equation for one mole of $CuSO_4$?
- 106. What is the stoichiometric coefficient in balanced reaction of Cu with HNO_3 to produce NO and NO_2 in the ratio 2:1?
- **107.** The number of electrons in 5d orbital of Pt (atomic number = 78) are _____.
- **108.** The number of electrons in 5s orbital of Pd (atomic number = 46) are
- **109.** The total number of electrons in s-orbitals of Cu (atomic number = 29) are_____.
- **110.** Predict how many of the following will be coloured in aqueous solution?

- 111. Decide how many of the following atomic number are the atomic numbers of the inner transition elements; 29, 59, 74, 95, 102, 104.
- How many of the following elements of 1st series of d-block elements do not exhibit variable oxidation state?
 Sc, Ti, V, Cr, Mn, Fe, CO, Ni, Cu, Zn
- 113. A well known alloy of lanthanoids is *misch metal* which consist of a lanthanoid metal (~ x%) and iron (~ y%) and traces of S, C, Ca and Al. What is the value of y?
- 114. With how many of following reagents Cu^{2+} gives blue colour solution/precipitation.

(i)	$\rm NH_2CH_2CH_2NH_2$	(ii)	aq. KCN

(iii) aq. $K_4[Fe(CN)_6]$ (iv) aq. KI

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 **Advanced Problem Package Qualitative Analysis** SINGLE CORRECT ANSWER TYPE Each of the following Question has 4 choices A, B, C & D, out of which ONLY ONE Choice is Correct. 1. In the precipitation of the iron group in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to (A) decrease concentration of OH⁻ ions. prevent interference by phosphate ions. **(B) (C)** increase concentration of Cl- ions. **(D)** increase concentration of NH_4^+ ions. 2. A salt gives violet vapours when treated with conc. H₂SO₄, it contains : **(C)** (A) Cl⁻ **(B)** I_ Br⁻ **(D)** NO_3^- 3. The acidic solution of a salt produced a deep blue colour with starch iodide solution. The salt may be (A) chloride **(B)** nitrite **(C)** acetate **(D)** bromide 4. When a mixture of solid NaCl, solid $K_2Cr_2O_7$ is heated with conc. H_2SO_4 , orange red vapours are obtained. These are of the compound : chromous chloride chromyl chloride (A) **(B)** chromic sulphate **(C)** chromic chloride **(D)** Which of the following pairs of ions would be expected to form precipitate when dilute solution are mixed? 5. Na^+, SO_4^{2-} NH_{4}^{+}, CO_{3}^{2-} (A) **(B)** Fe^{3+}, PO_{4}^{3-} **(C)** Na^{+}, S_{2}^{2-} **(D)** When bismuth chloride is poured into a large volume of water the white precipitate produced is 6. Bi(OH)₃ **(B)** Bi₂O₃ BiOCl **(D)** Bi₂OCl₃ **(A) (C)** 7. A mixture, on heating with conc. H₂SO₄ and MnO₂, liberates brown vapour of NO_2 **(D) (A) (B) (C)** HBr I_2 Br₂ 8. Nitrate is confirmed by ring test. The brown colour of the ring is due to formation of nitroso ferrous sulphate (A) ferrous nitrite **(B)** ferrous nitrate **(D)** $FeSO_4 \cdot NO_2$ **(C)** 9. Fe(OH)₃ can be separated from Al(OH)₃ by addition of (A) dil.HCl **(B)** NaCl solution NaOH solution NH₄Cl and NH₄OH **(C) (D)**

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 10. If NaOH is added to an aqueous solution of zinc ions a white precipitate appears and on adding excess NaOH, the precipitate dissolves. In this solution zinc exist in the (A) cationic part **(B)** anionic part both in cationic and anionic parts **(C) (D)** there is no zinc ion in the solution 11. Sometimes yellow turbidity appears while passing H₂S gas even in the absence of II group radicals. This is because of (A) sulphur is present in the mixture as impurity. **(B)** IV group radicals are precipitated as sulphides. **(C)** the oxidation of H_2S gas by some acid radicals. **(D)** III group radicals are precipitated as hydroxides. 12. The ion that cannot be precipitated by H₂S and HCl is : Cu^{2+} Pb^{2+} (C) Ag^+ Ni²⁺ (A) **(B) (D)** 13. In V group, (NH₄)₂CO₃ is added to precipitate out the carbonates. We do not add Na₂CO₃ along with NH₄Cl because (A) $CaCO_3$ is soluble in Na_2CO_3 . Na₂CO₃ increases the solubility of V group carbonate. **(B) (C)** MgCO₃ will be precipitated out in V group. **(D)** None of these 14. Which of the following cations is detected by the flame test? **(B)** K^+ Mg^{2+} **(D)** $A1^{3+}$ NH_4^+ **(C) (A)** Which one among the following pairs of ions cannot be separated by H_2S in dilute HCl? 15. **(B)** Al^{3+}, Hg^{2+} ${\rm Bi}^{3+},{\rm Sn}^{4+}$ **(A)** (**D**) $Ni^{2+}.Cu^{2+}$ Zn^{2+} , Cu^{2+} **(C)** 16. A metal salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dil. nitric acid as well as in ammonium hydroxide. The solution contains (A) bromide **(B)** iodide **(C)** phosphate **(D)** chromate 17. A metal salt solution forms a yellow precipitate with potassium chromate in acetic acid, a white precipitate with dilute sulphuric acid, but gives no precipitate with sodium chloride or iodide, it is: lead carbonate basic lead carbonate (A) **(B) (C)** barium nitrate **(D)** strontium nitrate

(A) (C) An aqu soluble metal N (A) A subs baryta (A)	Iodide Chloride neous solution in excess of M in the salt is Ca stance on treat water and (ii) CO_3^{2-}	of colou NH ₄ OH (B) tment wit turns acid (B)	rless metal su . On passing Ba .h dil. H ₂ SO ₂ lified dichrom S ²⁻	(B) (D) ulphate M, H_2S throu (C) $_4$ liberates ate solution (C)	Bromide Iodide and gives a whit agh this solut Al a colourless a green. The r SO ₃ ²⁻	in aqueous bromide e precipita ion a white (D) gas which reaction ind (D)	solution. te, with NH_4OH . This was e precipitate is formed. The Zn produces (i) turbidity with icates the presence of NO_2^-
(A) (C) An aqu soluble metal N (A) A subs baryta	Iodide Chloride neous solution in excess of M in the salt is Ca stance on treat water and (ii)	of colou NH ₄ OH (B) tment wit	rless metal su . On passing Ba th dil. H ₂ SO ₂ lified dichrom	(B) (D) ulphate M, H_2S throu (C) $_4$ liberates ate solution	Bromide Iodide and gives a whit ugh this solut Al a colourless n green. The r	in aqueous bromide e precipitation a white (D) gas which eaction ind	solution. te, with NH ₄ OH. This was e precipitate is formed. The Zn produces (i) turbidity with icates the presence of
(A) (C) An aqu soluble metal N (A) A subs	Iodide Chloride neous solution in excess of M in the salt is Ca	of colou NH ₄ OH (B) tment wit	rless metal su . On passing Ba .h dil. H ₂ SO ₂	(B) (D) ulphate M, H_2S throu (C) thereates	Bromide Iodide and gives a whit agh this solut Al a colourless	in aqueous bromide e precipita ion a white (D) gas which	solution. te, with NH ₄ OH. This was e precipitate is formed. The Zn produces (i) turbidity with
(A) (C) An aqu soluble metal N (A)	Iodide Chloride aeous solution in excess of M in the salt is Ca	of colou NH ₄ OH	rless metal su . On passing Ba	(B) (D) ulphate M, H_2S throu (C)	Bromide Iodide and gives a whit agh this solut Al	in aqueous bromide e precipita ion a white (D)	solution. te, with NH_4OH . This was e precipitate is formed. The Zn
(A) (C) An aqu soluble	Iodide Chloride leous solution in excess of	of colou NH ₄ OH	rless metal su . On passing	(B) (D) ulphate M, H_2S throu	Bromide Iodide and gives a whit	in aqueous bromide e precipita ion a white	solution. te, with NH_4OH . This was e precipitate is formed. The
(A) (C) An aqu	Iodide Chloride aeous solution	of colou	rless metal su	(B) (D) ulphate M,	Bromide Iodide and gives a whit	in aqueous bromide e precipita	solution. te, with NH ₄ OH. This was
(A) (C)	Iodide Chloride			(B) (D)	Bromide Iodide and	in aqueous bromide	solution.
solutio	n is obtained. T	The test c	ontirms the ni	resence of t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
violet o	colour is obtai	ned. On a	adding more o	of chlorine	water the vic	olet colour	disappears, and a colourless
When	ablarina wata	(D)	d to on aguas		of notocciu	(D) m halida ir	reserves of chloroform
Of the (A)	following sulp PbS	hides wh	ich one is inso CdS	oluble in di	l. acids but so FeS	luble in alk	alies.
grey co (A)	blour is due to Hg_2Cl_2	the forma (B)	tion of SnCl ₄	(C)	Sn	(D)	Hg
When	excess of SnC	Cl_2 is add	ed to a solution	on of HgC	l_2 , a white p	recipitate tu	urning grey is obtained. The
(C)	PbSO ₄			(D)	CdSO ₄		
H ₂ SO ₂ (A)	$_{1}$, a white prec BaSO ₄	precipitate is	obtained. This	s precipitat	e is that of $SrSO_4$	oy. on uu	ang a low drops of cone.
A while obtaine	e crystalline s	ubstance (precipita	dissolves in w ite dissolves	ater. On pa completely	issing H_2S given by H_2S given by $HN($	as in this so O. On ad	ding a few drops of conc
(D)	Anillinium c	hloride, C	$C_6H_5NH_3CI$		· IL C	•	1 11 1 . . .
(C) (D)	Zinc chloride	e, ZnCl ₂					
(B)	Mercuric chl	oride, Hg	gCl ₂				
(A)	Copper chlor	ide, CuC	l ₂				
Which	of the followi	ng will no	ot give positiv	e chromyl o	chloride test?		
(D)	ferrous amm	onium sul	phate reacts v	with FeCl ₃			
(C)	Ammonium	sulphate r	eacts with Fe	Cl ₃			
(B)	ferric sulpha	te reacts v	with K ₄ [Fe(Cl	N) ₆]			
(A)	ferrous sulph	ate reacts	with FeCl ₃				
Prussia	n blue is form	ed when					
(A)	PbCl ₂	(B)	AgCl	(C)	PbSO ₄	(D)	CaCO ₃
Which	is soluble in 1	NH₄OH?					
	Which (A) Prussia (A) (B) (C) (D) Which (A) (C) (D) A whil obtaine H ₂ SO ₂ (A) (C) When grey cc (A) Of the (A) When violet of solutio	DAV CENWhich is soluble in I(A) $PbCl_2$ Prussian blue is form(A)ferrous sulphate(B)ferric sulphate(C)Ammonium is(D)ferrous ammWhich of the following(A)Copper chlore(B)Mercuric chlore(C)Zinc chloride(D)Anillinium cols(A)Mercuric chlore(D)Anillinium cols(A)BaSO4(C)PbSO4When excess of SnCgrey colour is due to(A)Hg2Cl2Of the following sulp(A)PbSWhen chlorine waterviolet colour is obtained.	DAV CENTENARYWhich is soluble in NH_4OH ?(A) $PbCl_2$ (B)Prussian blue is formed when(A) ferrous sulphate reacts with the ferrous sulphate reacts with the ferrous ammonium sulphate reacts with the following will not the formate the formate the following sulphides will here the following sulphides will here the following sulphides will here the following will not the following will not the following will not the following will not the following sulphides will here the formate the following sulphides will here the follow	DAV CENTENARY PUBLIC SCIWhich is soluble in NH_4OH ?(A) $PbCl_2$ (B) $AgCl$ Prussian blue is formed when(A) ferrous sulphate reacts with FeCl ₃ (B) ferric sulphate reacts with FeCl ₃ (C) Ammonium sulphate reacts with Fe(D) ferrous ammonium sulphate reacts with Fe(D) fully characterized is confirmed. The following will not give positive(A) maillinium chloride, CuCl ₂ (B) Mercuric chloride, ZnCl ₂ (D) Anillinium chloride, C ₆ H ₅ NH ₃ ClA while crystalline substance dissolves in workobtained. The black precipitate dissolvesH ₂ SO ₄ , a white precipitate is obtained. This(A) BaSO ₄ (C) PbSO ₄ When excess of SnCl ₂ is added to a solution(P) Mes(B) CdSWhen chlorine water is added to an aqueorviolet colour is obtained. On adding more obtained. On adding more obtained is obtained. The test confirms the precipitate confirms the precipitate confirence to the position. <td>DAV CENTENARY PUBLIC SCHOOL, PARWhich is soluble in NH_4OH?(A) $PbCl_2$(B) $AgCl$(C)Prussian blue is formed when(A) ferrous sulphate reacts with FeCl3(B) ferric sulphate reacts with FeCl3(C) Ammonium sulphate reacts with FeCl3(D) ferrous ammonium sulphate reacts with FeCl3(D) ferrous ammonium sulphate reacts with FeCl3(A) Copper chloride, CuCl2(B) Mercuric chloride, HgCl2(C) Zinc chloride, ZnCl2(D) Anillinium chloride, $C_6H_5NH_3Cl$A while crystalline substance dissolves in water. On paotained. The black precipitate dissolves completelyH_2SO_4, a white precipitate is obtained. This precipitate(A) BaSO_4(B)(C) PbSO_4(D)When excess of SnCl2 is added to a solution of HgCgrey colour is due to the formation of(A) Hg2Cl2(B) SnCl4(C)Of the following sulphides which one is insoluble in dil(A) PbS(B) CdS(C)</td> <td>DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENC Which is soluble in NH_4OH? (A) PbCl₂ (B) AgCl (C) PbSO₄ Prussian blue is formed when (A) ferrous sulphate reacts with FeCl₃ (B) ferric sulphate reacts with FeCl₃ (B) ferric sulphate reacts with FeCl₃ (C) Ammonium sulphate reacts with FeCl₃ (D) ferrous ammonium sulphate reacts with FeCl₃ (D) ferrous ammonium sulphate reacts with FeCl₃ (B) Mercuric chloride, CuCl₂ (B) Mercuric chloride, HgCl₂ (C) Zinc chloride, ZnCl₂ (B) Mether reacts is obtained. This precipitate is that of (A) BaSO₄ (B) SrSO₄ (C) PbSO₄ (D) CdSO₄ (C) PbSO₄ (D) CdSO₄ (C) PbSO₄ (D) CdSO₄ (A) Hg₂Cl₂ (B) SnCl₄ (C) Sn Of the following sulphides which one is insoluble in dil. acids but so to (A) Hg₂Cl₂ (B) CdS (C) Fes</td> <td>DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NE Which is soluble in NH_4OH? (A) PbCl₂ (B) AgCl (C) PbSO₄ (D) Prussian blue is formed when (A) ferrous sulphate reacts with FeCl₃ (B) ferric sulphate reacts with FeCl₃ (B) ferric sulphate reacts with FeCl₃ (D) ferrous ammonium sulphate reacts with FeCl₃ (D) ferrous ammonium sulphate reacts with FeCl₃ (D) ferrous ammonium sulphate reacts with FeCl₃ (B) ferrous chloride, CuCl₂ (B) Mercuric chloride, HgCl₂ (C) Zinc chloride, ZnCl₂ (D) Anillinium chloride, C₆H₅NH₃Cl A while crystalline substance dissolves in water. On passing H₂S gas in this so obtained. The black precipitate dissolves completely in hot HNO₃. On ad H₂SO₄, a white precipitate is obtained. This precipitate is that of (A) BaSO₄ (B) SrSO₄ (C) PbSO₄ (D) CdSO₄ When excess of SnCl₂ is added to a solution of HgCl₂, a white precipitate trigrey colour is due to the formation of (A) Hg₂Cl₂ (B) SnCl₄ (C) Sn (D) Of the following sulphides which one is insoluble in dil. acids but soluble in alk (A)</td>	DAV CENTENARY PUBLIC SCHOOL, PARWhich is soluble in NH_4OH ?(A) $PbCl_2$ (B) $AgCl$ (C)Prussian blue is formed when(A) ferrous sulphate reacts with FeCl3(B) ferric sulphate reacts with FeCl3(C) Ammonium sulphate reacts with FeCl3(D) ferrous ammonium sulphate reacts with FeCl3(D) ferrous ammonium sulphate reacts with FeCl3(A) Copper chloride, CuCl2(B) Mercuric chloride, HgCl2(C) Zinc chloride, ZnCl2(D) Anillinium chloride, $C_6H_5NH_3Cl$ A while crystalline substance dissolves in water. On paotained. The black precipitate dissolves completely H_2SO_4 , a white precipitate is obtained. This precipitate(A) BaSO_4(B)(C) PbSO_4(D)When excess of SnCl2 is added to a solution of HgCgrey colour is due to the formation of(A) Hg2Cl2(B) SnCl4(C)Of the following sulphides which one is insoluble in dil(A) PbS(B) CdS(C)	DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENC Which is soluble in NH_4OH ? (A) PbCl ₂ (B) AgCl (C) PbSO ₄ Prussian blue is formed when (A) ferrous sulphate reacts with FeCl ₃ (B) ferric sulphate reacts with FeCl ₃ (B) ferric sulphate reacts with FeCl ₃ (C) Ammonium sulphate reacts with FeCl ₃ (D) ferrous ammonium sulphate reacts with FeCl ₃ (D) ferrous ammonium sulphate reacts with FeCl ₃ (B) Mercuric chloride, CuCl ₂ (B) Mercuric chloride, HgCl ₂ (C) Zinc chloride, ZnCl ₂ (B) Mether reacts is obtained. This precipitate is that of (A) BaSO ₄ (B) SrSO ₄ (C) PbSO ₄ (D) CdSO ₄ (C) PbSO ₄ (D) CdSO ₄ (C) PbSO ₄ (D) CdSO ₄ (A) Hg ₂ Cl ₂ (B) SnCl ₄ (C) Sn Of the following sulphides which one is insoluble in dil. acids but so to (A) Hg ₂ Cl ₂ (B) CdS (C) Fes	DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NE Which is soluble in NH_4OH ? (A) PbCl ₂ (B) AgCl (C) PbSO ₄ (D) Prussian blue is formed when (A) ferrous sulphate reacts with FeCl ₃ (B) ferric sulphate reacts with FeCl ₃ (B) ferric sulphate reacts with FeCl ₃ (D) ferrous ammonium sulphate reacts with FeCl ₃ (D) ferrous ammonium sulphate reacts with FeCl ₃ (D) ferrous ammonium sulphate reacts with FeCl ₃ (B) ferrous chloride, CuCl ₂ (B) Mercuric chloride, HgCl ₂ (C) Zinc chloride, ZnCl ₂ (D) Anillinium chloride, C ₆ H ₅ NH ₃ Cl A while crystalline substance dissolves in water. On passing H ₂ S gas in this so obtained. The black precipitate dissolves completely in hot HNO ₃ . On ad H ₂ SO ₄ , a white precipitate is obtained. This precipitate is that of (A) BaSO ₄ (B) SrSO ₄ (C) PbSO ₄ (D) CdSO ₄ When excess of SnCl ₂ is added to a solution of HgCl ₂ , a white precipitate trigrey colour is due to the formation of (A) Hg ₂ Cl ₂ (B) SnCl ₄ (C) Sn (D) Of the following sulphides which one is insoluble in dil. acids but soluble in alk (A)

27.	A whit	te solid is first heated with	dil H ₂ SO	$_4$ and then	with conc.	H_2SO_4	No action was	s observed in	n either
	case. T	The solid salt contains							
	(A)	sulphide		(B)	Sulphite	2			

(C) thiosulphate (D) sulphate

28. On the adding of a solution containing CrO_4^{2-} ions to the solution of Ba^{2+}, Sr^{2+} and Ca^{2+} ions, the precipitate obtained first will be of

- (A) $CaCrO_4$ (B) $SrCrO_4$
- (C) $BaCrO_4$ (D) a mixture of all the three
- **29.** A mixture of chlorides of copper, cadmium, chromium, iron and aluminium was dissolved in water acidified with HCl and hydrogen sulphide gas was passed for sufficient time. It was filtered, boiled and a few drops of nitric acid were added while boiling. To this solution ammonium chloride and sodium hydroxide wre added in excess and filtered. The filtrate shall give test for
 - (A) sodium and iron ion
 - (B) sodium, chromium and aluminium ion
 - (C) aluminum and iron ion
 - (D) sodium, iron, cadmium and aluminium ion

30. A white precipitate obtained durring analysis of a mixture becomes black on treatment with NH_4OH . It may be

(A) $PbCl_2$ (B) AgCl (C) $HgCl_2$ (D) Hg_2Cl_2

31. A salt on treatment with dil. HCl gives a pungent smelling gas and a yellow precipitate. The salt gives green flame when tested. The solution gives a yellow precipitate with potassium chromate. The salt is:

- (A) $NiSO_4$ (B) BaS_2O_3
- $(C) PbS_2O_3 (D) CuSO_4$
- **32.** Which compound does not dissolve in hot dilute HNO_3 ?
 - (A) HgS (B) PbS (C) CuS (D) CdS

33. Which of the following compound on reaction with NaOH and Na_2O_2 gives yellow colour?

- $(A) \quad Cr(OH)_3 \qquad (B) \quad Zn(OH)_2$
- (C) $Al(OH)_3$ (D) None of these
- **34.** An aqueous solution of a substance gives a white precipitate. on treatment with dil. HCl, which dissolves on heating. When hydrogen sulphide is passed through the hot acidic solution, a black precipitate is obtained. The substance is a

(A)	Hg^{2+} salt	(B)	Cu ²⁺ salt
(C)	Ag ⁺ salt	(D)	Pb ²⁺ salt

APP | Chemistry

Qualitative Analysis

		DAV CENT	ENARY	PUBLIC SCH	OOL, PA	SCHIM ENCL	AVE, NE	W DELHI-87	
35.	Which of the following gives a precipitate with $Pb(NO_3)_2$ but not with $Ba(NO_3)_2$?								
	(A)	Sodium chlori	de		(B)	Sodium acet	ate		
	(C)	Sodium nitrate	;		(D)	Sodium hydr	rogen pho	sphate	
36.	Which	of the following	g is solul	ole in yellow a	mmonium	sulphide?			
	(A)	CuS	(B)	CdS	(C)	SnS	(D)	PbS	
37.	Which	of the following	g gives b	lood red colou	r with KC	CNS?			
	(A)	Cu^{2+}	(B)	Fe ³⁺	(C)	Al^{3+}	(D)	Zn^{2+}	
38.	Which	of the following	ig is insoluble in excess of NaOH?						
	(A)	Al(OH) ₃	(B)	$Cr(OH)_3$	(C)	Fe(OH) ₃	(D)	$Zn(OH)_2$	
39.	Potass	ium chromate sc	lution is	added to an ac	queous so	lution of a met	al chloride	e. The precipitate	thus
	obtain	ained are insoluble in acetic acid. These are subjected to flame test, the colour of the flame is:							
	(A)	Lilac			(B)	Apple green			
	(C)	Crimson red			(D)	Golden yello)W		
40.	MgSC	D_4 on reaction w	ith NH ₄	OH and Na ₂ I	HPO ₄ for	ms a white crys	stalline pr	ecipitate. What is	its
	formu	la?							
	(A)	Mg(NH ₄)PO ₄	ļ		(B)	$Mg_3(PO_4)_2$			

(C) $MgCl_2 \cdot MgSO_4$ (D) $MgSO_4$

Paragraph for Q. 41 - 43

A white solid (A) reacts with dilute H_2SO_4 to produce a colourless gas (B) and a colourless solution (C). The reaction between (B) and acidified dichromate yields a green solution and a slightly coloured precipitate (D). The substance (D), when burnt in air, gives a gas (E) which reacts with (B) to yield (D) and a colourless liquids. Anhydrous copper sulphate turns blue with this colourless liquid. The addition of aqueous NH_3 or NaOH to (C) produces a precipitate that dissolves in an excess of the reagent to form a clear solution.

- 41. Which of the following gases are (B) and (E) respectively?
 (A) CO₂ and SO₂ (B) SO₂ and H₂S (C) H₂S and SO₂ (D) CO₂ and H₂S
- 42. What would appear if the gas (B) is passed through an aqueous solution of $Pb(NO_3)_2$?
 - (A) white precipitate soluble in hot dilute HNO_3
 - (B) A black precipitate soluble in hot dilute HNO_3
 - (C) A black precipitate insoluble in hot dilute HNO_3
 - **(D)** A yellow precipitate soluble in hot concentrated HNO_3

- **43.** Suppose the solution obtained by the treatment of the solution (C) with an excess of NaOH is acidified with acetic acid and the gas (B) is passed through it. Which of the following will obtained?
 - (A) Colourless solution (B
- (B) Yellow precipitate
 - (C) Black precipitate (D) White precipitate

Paragraph for Q. 44 - 47

A chemist opened a cupboard to find four bottles containing water solutions, each of which had lost its label. Bottle 1, 2 and 3 contained colourless solutions, while bottle 4 contained a blue solution. The labels from the bottles were lying scattered on the floor of the cupboard. They were:

Copper (II) sulphate; Hydrochloric acid, Lead nitrate; Sodium carbonate

By mixing samples of the contents of the bottles, in pairs, the chemist made the following observation:

Bottle 1 + Bottle 2	White precipitate
Bottle 1 + Bottle 3	White precipitate
Bottle 1 + Bottle 4	White precipitate
Bottle 2 + Bottle 3	Colourless gas evolved
Bottle 2 + Bottle 4	No visible reaction
Bottle 3 + Bottle 4	Blue precipitate

44. Bottle 3 contains

(A)	copper (II) sulphate	(B)	hydrochloric acid
(C)	lead nitrate	(D)	sodium carbonate

45. When bottle 1 is mixed with bottle 4, white precipitate is observed, which is

(A)	PbSO ₄	(B)	PbCO ₃
(C)	PbCl ₂	(D)	$Pb(NO_3)_2$

46. Which of the following bottle will give distinctive colour with NH_3 ?

(A)	Bottle 1	(B)	Bottle 2
(C)	Bottle 3	(D)	Bottle 4

47. On mixing bottle 2 and bottle 3 sample, a colourless gas evolves. The gas is

(A) N_2 (B) CO_2 (C) SO_2 (D) NO_2

Paragraph for Q.48 - 50

One unknown mixture contains one or two of the following: $CaCO_3$, $BaCl_2$, $AgNO_3$, Na_2SO_4 , $ZnSO_4$ and NaOH. The mixture is completely soluble in water and solution gives pink colour with phenolphthalein. When dilute acid is gradually added to the solution, a precipitate is formed which dissolves with further addition of the acid.

48. The mixture is soluble in water to give strong alkali, it confirms
(A) Na₂SO₄ (B) CaCO₃ (C) ZnSO₄ (D) NaOH

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C & D, out of which ONE or MORE Choices may be Correct:

54.	4. $[X] + H_2SO_4 \longrightarrow [Y] (gas)$									
	[Y]+K	$K_2Cr_2O_7 + H_2SO_7$	$_{4} \longrightarrow$	Green solution.	[X] ar	nd [Y] respective	ly are			
	(A)	SO ₃ ^{2–} ,SO ₂	(B)	Cl⁻,HCl	(C)	S^{2-},H_2S	(D)	CO ₃ ^{2–} ,CO ₂		
55.	FeCl ₃	(acidified) +(P)	—→Fe	$eCl_2 + other pro$	ducts					
	Reagent (P) can be					۶. ۶				
	(A)	H_2S	(B)	Na ₂ S	(C)	$CH_3 - C_{NH_2}$	(D)	None of these		
56.	The sal	t used for perfor	ming "b	ead" test in qual	itative i	norganic analysis	s is/are :			
	(A)	$K_2SO_4 \cdot Al_2(SO_4)$	$(3_4)_3 \cdot 24$	H ₂ O	(B)	Na(NH ₄)HPC	0 ₄ • 4H ₂ O)		
	(C)	$Na_2B_4O_7 \cdot 10H$	² O		(D)	$FeSO_4 \cdot (NH_4)$	$_2$ SO ₄ ·6	H ₂ O		
57.	The co	rrect statement(s) in resp	ect to chromyl c	hloride	test is/are				
	(A)	formation of lea	ad chron	nate	(B)	formation of cl	nromyl c	hloride		
	(C)	liberation of ch	lorine		(D)	formation of re	ed vapou	rs		
58.	K ₄ [Fe	$(CN)_6] + X \longrightarrow$	¥У							
	'X' and	l Y respectively	are :							
	(A)	Fe ³⁺ ;Fe ₄ [Fe(C	$[N)_6]_3$		(B)) $\operatorname{Cu}^{2+};\operatorname{Cu}_{2}[\operatorname{Fe}(\operatorname{CN})_{6}]$				
	(C)	$Zn^{2+}; Zn_2[Fe(0)]$	CN) ₆]		(D)) $H_2O_2; K_3[Fe(CN)_6]$				
59.	Which	of the following	metal ic	on form a black p	t precipitate on reaction with H_2S ?					
	(A)	Pb^{2+}	(B)	Cu^{2+}	(C)	Hg^{2+}	(D)	Ni ²⁺		
60.	Fe ²⁺ i	on and Fe^{3+} ion	can be d	listinguished by						
	(A)	NH ₄ SCN			(B)	$K_4[Fe(CN)_6]$				
	(C)	CH ₃ COONa			(D)	$K_3[Fe(CN)_6]$				
61.	In whic	h of the followin	ng salt b	asic radical can	be ident	ified by borax be	ead test?			
	(A)	CuSO ₄			(B)	FeSO ₄				
	(C)	NiCl ₂			(D)	$Co(NO_3)_2$				
62.	In whic	ch of the followi	ng salts l	oasic radical can	be ider	ntified by flame to	est?			
	(A)	NaCl	(B)	CaCl ₂	(C)	BaCl ₂	(D)	KNO ₃		

63. Salt + $H_2SO_4 \xrightarrow{\Delta} Gas.$

Identify correctly matched, salt and gas, pair(s).

- (A) Acetic slat; gas with smell of vinegar.
- (B) Nitrite salt; gas with brown colour
- (C) Sulphide salt; gas with smell of rotten eggs.
- (D) Sulphite salt; gas with pungent smell.
- **64.** Mark the correct statement(s).
 - (A) I group basic radicals precipitates as chlorides
 - (B) IV group basic radicals precipitates as sulphides.
 - (C) V group basic radicals precipitates as carbonates.
 - (D) III group basic radicals precipitates as hydroxides.

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column I are labelled as (A), (B), (C) & (D) whereas statements in Column II are labeled as p, q, r, s & t. More than one choice from Column II can be matched with Column I.

65. MATCH THE COLUMN:

Column –I			Column –II		
(A)	S ²⁻	(p)	White precipitate. with AgNO ₃		
(B)	NO_2^-	(q)	Evolution of pungent smell gas with (Al + conc. NaOH)		
(C)	SO ₃ ^{2–}	(r)	Brown fumes with conc. H_2SO_4 (hot)		
(D)	CH ₃ COO ⁻	(s)	Decolourises acidified KMnO ₄		

66. MATCH THE COLUMN:

Column –I (Radicals)			Column –II (Reagents)		
(A)	Pb^{2+}	(p)	Dil. HCl		
(B)	Co ²⁺	(q)	$H_2S + HC1$ (very dil.)		
(C)	Zn^{2+}	(r)	H ₂ S (alkaline)		
(D)	Hg ²⁺	(s)	NH ₄ OH/OH ⁻		

67. MATCH THE COLUMN:

Column –I (Radicals)			Column –II (Reagents)			
(A)	Cl⁻	(p)	$K_2Cr_2O_7, H^+$			
(B)	SO ₃ ^{2–}	(q)	H_2SO_4 (conc.)			
(C)	S ^{2–}	(r)	H ₂ SO ₄ (dil.)			
(D)	NO ₃	(s)	AgNO ₃ solution			

68. MATCH THE COLUMN:

Column –I (Radicals)		Column –II (Precipitating form)			
(A)	Pb ²⁺	(p)	Hydroxide		
(B)	Ni ²⁺	(q)	Sulphide		
(C)	Cr ³⁺	(r)	Carbonate		
(D)	Ag^+	(s)	Chloride		

69. MATCH THE COLUMN:

Column –I		Column –II				
(Mixture of radicals)		(R	(Reagents which are not useful to separate mixture			
			components)			
(A)	Pb^{2+}, Ag^+	(p)	HCl, hot water			
(B)	Pb ²⁺ ,Cu ²⁺	(q)	KI			
(C)	Fe ³⁺ , Mn ²⁺	(r)	H ₂ S			
(D)	Cd^{2+}, Zn^{2+}	(s)	$K_4[Fe(CN)_6]$			

70. MATCH THE COLUMN:

Column –I		Column –II				
(Radicals)		Co	Colour of precipitate formed with group reagent in			
			systematic qualitative analysis			
(A)	Fe ³⁺	(p)	White			
(B)	Pb ²⁺	(q)	Black			
(C)	Ag^+	(r)	Yellow			
(D)	Bi ³⁺	(s)	Red brown			

Numerical value type questions Inorganic Chemistry

71. Consider the reaction $BCl_3 + 2LiAlH_4 \longrightarrow X$ Compound X contains electron deficient-bonds. Find the maximum number of atoms of compound X that are lying in the same plane.

- 72. Number of sp² hybrid boron atoms in the anion of borax, $Na_2B_4O_7 \cdot 10H_2O$ is_____.
- 73. How many among the following species contain P-P linkage(s)?

(i)	Red phosphorous	(ii)	H ₄ P ₂ O ₅
(iii)	$H_4P_2O_7$	(iv)	$(PO_3)_3$
(v)	P_4O_{10}	(vi)	P_4S_3
(vii)	P_4O_6	(viii)	P ₄

74. How many of the following reagents will produce at least one oxide of nitrogen in significant quantity?

(i)	Ag + conc. NHO_3	(ii)	$\text{Sn} + \text{cold}, \text{dil.HNO}_3$
(iii)	heated Cu + HNO ₃ vapors	(iv)	Mg + hot dil. HNO ₃
(v)	$Cr + conc. HNO_3$	(vi)	$Mn + 2\% HNO_3$ (very dilute)
(vii)	P_4 + conc. HNO ₃	(viii)	$S_8 + \text{conc.HNO}_3$
(ix)	Cu + dil.HNO ₃		

- How many of the following on reaction with aqueous HCl as well as with NaOH solution liberate H₂?B, Al, B₂H₆, B₂O₃, NaAlH₄, Al₂O₃
- 76. How many of the following metallurgical extractions involve leaching for concentration of ore?

 $Al_2O_3 \longrightarrow Al_1; Ag_2S \longrightarrow Ag; Au \longrightarrow Au; CuFeS_2 \longrightarrow Cu; PbS \longrightarrow Pb$ MgCl₂ \longrightarrow Mg; FeCO₃ \longrightarrow Fe; HgS \longrightarrow Hg

- 77. How many of the following compounds do not impart characteristic colour to the Bunsen flame? NaCl, BeCl₂, KOH, BaSO₄, MgCl₂, CsCl, Na₂SO₄, Mg(OH)₂, K₂CO₃
- **78.** How many geometrical isomers are possible for octahedral complex $[Pt(gly)_2 Cl_2]$?
- 79. Find the number of reducing agents involved in the extraction of pig iron from haematite ore using blast furnace.
- 80. How many of the following will liberate reddish brown gas on complete reaction with conc. HNO₃? H₂C₂O₄, Fe, Cu, AgNO₃, Ag, FeSO₄, S₈, Na₂S₂O₃

APP	Chemis	stry			274		Qualitative	
	(iv)	Co ²⁺ , Ni ²⁺	(v)	Zn^{2+} , Ag^+	(vi)	Mn^{2+}, Cr^{3+}		
	(i)	${\rm Ti}^{3+}, {\rm V}^{3+}$	(ii)	Cu^+, Sc^{3+}	(iii)	Fe^{2+}, Fe^{3+}		
88.	Numbe	er of pairs of ions	which are	e coloured in aqu	eous solut	ions?		
	(vii)	ClO ₂	(viii)	Cl ₂ O	(ix)	I_2O_5 (x) SeO	2	
	(iv)	CO ₂	(v)	N ₂ O	(vi)	СО		
	(i)	SO ₂	(ii)	P ₄ O ₁₀	(iii)	NO ₂		
87.	How m	any of the follov	ving oxide	s are anhydrides	of dibasic	oxy-acid?		
	(17)	ICl_4^-						
	(15)	[Fe(NO)(H ₂ O	$[)_5]^{2+}$		(16)	SNF ₃		
	(13)	$[PdCl_4]^{2-}$			(14)	$[Cu(CN)_{4}]^{3-}$		
	(11)	$[Ni(dmg)_2]$			(12)	[Ni(PPh ₃) ₂ Cl ₂]		
	(9)	XeF ₄			(10)	XeO ₆ ^{4–}		
	(7)	[Fe(CO) ₅]			(8)	POCl ₃		
	(5)	XeO ₂ F ₂			(6)	$\left[\operatorname{Co}(\operatorname{en})_{3}\right]^{3+}$		
	(3)	$[Cu(NH_3)_4]^{2+}$	-		(4)	XeO ₃ F ₂		
	(1)	[Pt(NH ₃)Cl(H	I ₂ O)Br]	-	(2)	SF_4		
86.	Find th	e number of com	pounds wi	here $d_{x^2-y^2}$ orb	itals will n	als will not take part in hybridisation.		
85.	How m	any oxygen aton	ns in emer	ald [Be ₃ Al ₂ Si ₆ C	O ₁₈] are pai	rt of a ring?		
	(g)	$C_2 > N_2$ (Nun	nber of π b	ponds)	(h)	$F_2 > B_2$ (bond order)		
	(e)	$\mathrm{He}^+ > \mathrm{H}(\mathrm{Ator})$	mic size)		(f)	$O_2^{2-} < O_2$ (paramagnetic nature)		
	(c)	$N^+ > N$ (Ioniz	ation ener	gy)	(d)	Se > S (magnitude of Δ_{eg} H)		
	(a)	Mg > Al (elect)	tropositive	character)	(b)	Al > Ga (electronegati	vıty)	
84.	How m	any of the follow	ving relation	ons is/are correc	t?			
83.	How m PH ₃ , P	any of the follow PH_5 , SF_6 , PbI_4 , N	ving specie VCl ₅ , OF ₂ ,	es are not knowr OF ₄ , HFO ₄ , Fel	1? 1 ₃ , KHF ₂ , I	HOF		
82.	How m	any of the follow	ving metal	s are extracted u	sing self-r	eduction method? Hg, Cu	, Al, Mg, Pb, Fe, Sn .	
02	К ₂ О	, Cr_2O	3,	BaO ,	·	1 (1911 C		
	SO ₃	, Cl_2O	7 ,	N ₂ O ₅ ,	CO			
010	110 W III	any oxides are s	oluble in n	noderately conce	entrated aq	ueous solution of NaOH?		

(vii) Al^{3+}, Bi^{3+}

- 89. How many of the following pairs of ions can be separated by using H_2S in dilute HCl? Bi³⁺ and Sn⁴⁺, Al³⁺ and Hg²⁺, Cd²⁺ and Zn²⁺, Fe³⁺ and Cu²⁺, As³⁺ and Sb³⁺
- 90. The number of completely filled orbitals in 29 Cu which have at least two radial nodes is/are:
- **91.** How many of the following are used for extraction of metal by electrometallurgy? NaCl, Cr₂O₃, MgCl₂, Al₂O₃, CaCl₂, Fe₂O₃
- 92. Depending upon the nature of oxides, they are classified as acidic, basic, amphoteric and neutral oxides. Among the following, the total number of acidic oxides are:
 NO₂, CuO, CO₂, P₄O₆, CO, PbO₂, Cr₂O₃, SnO₂, CrO₃, Mn₂O₇, OsO₄, I₂O₅, BeO, Al₂O₃.
- 93. In how many of the following reactions, one of the products is obtained as a yellow precipitate? Ba²⁺(aq) + CrO₄²⁻(aq) \longrightarrow products Ag⁺(aq) + Br⁻(aq) \longrightarrow products Pb²⁺(aq) + I⁻(aq) \longrightarrow products NH₄⁺ (aq) + [PtCl₆]²⁻(aq) \longrightarrow products
- 94. How many of the following on heating with NaOH produce a gaseous substance?Cl₂, S₈, P₄, Al, B, Fe, Be, Zn, F₂, XeO₃
- 95. How many of the following do not have lone pair of electrons on central atom?

(i)	XeF ₄	(ii)	NH ₃	(iii)	SO ₂	(iv)	NO_3^-
(v)	O ₃	(vi)	XeOF ₄	(vii)	ICl ₃	(viii)	IF_7
(ix)	SO_4^{2-}	(x)	XeO ₃				

- 96. In how many of the following complex ions, the central metal ions use (n 1)d, ns and np orbitals for hybridisation? $[Mn(CN)_6]^{4-}, [Ni(NH_3)_6]^{2+}, [Co(NO_2)_6]^{4-}, [AgF_4]^-, [Ni(CN)_4]^{2-}, [PdCl_4]^{2-}, [Pd(CN)_4]^{2-}, [Co(SCN)_4]^{2-}$
- 97. A complex, Prussian blue, has formula $Fe_4[Fe(CN)_6]_3$. What is the sum of oxidation numbers of iron in ionisation sphere and coordination sphere?
- 98. Find the value of spin only magnetic moment in BM for species X in the reaction given below? $Mn^{2+} + S_2O_8^{2-} \longrightarrow [X] + SO_4^{2-} + H^+$.
- 99. How many of the following orders are correct:

(i) $\operatorname{Be}(OH)_2 < \operatorname{Mg}(OH)_2 < \operatorname{Ca}(OH)_2 < \operatorname{Ba}(OH)_2$

Basic character

- (ii) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$
- (iii) $Na^+ > Mg^{2+} > Li^+ > Be^{2+}$
- (iv) $\text{Li}_2\text{CO}_3 > \text{Na}_2\text{CO}_3 > \text{K}_2\text{CO}_3 > \text{Rb}_2\text{CO}_3 > \text{Cs}_2\text{CO}_3$
- (v) LiHCO₃ < NaHCO₃ < KHCO₃ < RbHCO₃ < CsHCO₃
- $(vi) \qquad NaF < NaCl < NaBr < NaI$
- (vii) $\text{He} < \text{O}_2 = \text{CO}_2 < \text{O}_3 = \text{CH}_4$
- (viii) $Na_2O_2 < KO_2 < O_2[AsF_4]$

- Decomposition temperature Size in gas phase Water solubility Thermal Stability Melting point Value of poison's ratio (γ) O-O bond length
- $100. \qquad \hbox{How many of the following oxides show amphoteric nature?} \\ V_2O_3, V_2O_5, CrO, CrO_3, Cr_2O_3, Mn_2O_7, FeO, Cu_2O, ZnO .$
- 101. Reaction of hydrated ferric chloride (FeCl₃ \cdot 6H₂O) with thionyl chloride gives anhydrous ferric chloride with evolution of hydrochloric acid (HCl) and sulphur dioxide (SO₂) gases. The number of sulphur dioxide (SO₂) molecules involved in the balanced chemical equation is:
- 102. An unknown metal, M, with excess chlorine to give the metal chloride, MCl_x. When 0.396 g of the chloride is dissolved in water and passed through an anion exchange column charged with hydroxide ions, the solution required 23.55 mL of 0.195 M HCl for neutralization.
 - (a) Calculate the number of moles of HCl used in the titration
 - (b) Determine the mass of chlorine and the mass of metal in this sample of MCl_x
 - (c) Assuming that x in MCl_x is 1, 2 and 3, calculate possible atomic masses for M
 - (d) Use for knowledge of the Periodic Table to write formulas for the possible compounds between chlorine and metals and identify those expected to be stable
- **103.** The behaviour of elements can often be predicted based on their positions in the Periodic Table. Use your knowledge about trends in the behaviour of elements to answer the following questions about the recently isolated elements 114, 116 and 118.
 - (a) Give the names and symbols of the elements in the row above 114, 116 and 118 in the Periodic Table
 - (b) Predict the relative ionization energies of elements 114, 116 and 118 and describe how the ionization energy of one of them is expected to compare with the ionization energy of the element above it, giving reasons for your answers
 - (c) Predict the oxidation states expected for element 114 and indicate which oxidation state is expected to be most stable, giving reasons for your answer
 - (d) Suggest a reason that elements 114, 116 and 118 have been made, but elements 113, 115 and 117 have not
- **104.** When a mixture of a metal carbonate, MCO₃, and its oxide, MO, is heated to release carbon dioxide gas and is converted completely to the metallic oxide, MO.
 - (a) If a 0.6500 g sample of MCO₃ and MO forms 0.1575 L of carbon dioxide gas at 25.0 °C and a barometric pressure of 700.0 mm Hg, determine the number of moles of CO₂ formed.

- (b) When the 0.3891 g of MO resulting from the process in a is titrated with 0.500 M HCl, 38.60 mL are required. Determine the number of moles of MO in 0.3891 g.
- (c) Determine the atomic mass of the metal M and give its symbol.
- (d) Determine the mole percentages of MCO₃ and MO in the original sample.
- **105.** This question concerns the chemistry of the Group 13 elements (B Tl). Base your answers on principles of atomic structure and bonding.
 - (a) The first ionization energies (IE) of most main group elements decrease steadily upon descending the family whereas the first IE of B-Tl are [B 801, Al 578, Ga 579, In 558, Tl 589] kJ mol⁻¹.
 - (i) Explain briefly why the IEs for most families decreases steadily upon descending a family.
 - (ii) Suggest a reason that the IE for Ga is essentially the same as that for Al and the IE for Tl is greater than that for In.
 - (b) The members of this family exhibit oxidation states of +1 and/or +3.
 - (i) Account for the fact that the stable oxidation states are +1 and -3 and a +2 oxidation state is not observed.
 - (ii) Account for the fact that B and Al show the +3 oxidation state exclusively while the +3 state for Tl is a strong oxidizing agent.
 - (c) BCl_3 and $AlCl_3$ are strong Lewis acids.
 - Write an equation to illustrate BCl₃ acting as a Lewis acid with an appropriate Lewis base.
 Explains what occurs in a Lewis acid-base reaction.
 - (ii) Account for the fact that the Lewis acidity of the other tri-chlorides decreases down the family.
- 106. Explain each of the following observations using acid-base principles.
 - (a) The acids HCl and HBr appear equally strong in H₂O but HBr is a stronger acid in 100% (glacial) acetic acid.
 - (b) The acidity of anhydrous H_2SO_4 is much less than the acidity of fuming H_2SO_4 (a saturated solution of SO_3 in H_2SO_4).
 - (c) The first and second ionization constants for sulfurous acid, H_2SO_3 (aq), differ by a factor of ~ 2×10⁵ while the first and second ionization constants of hydrosulfuric acid, H_2S (aq), differ by a much greater factor (~1×10¹²).
- 107. A salt containing chromium, chlorine, and water has the formula $CrCl_n(H_2O)_m$.
 - (a) A sample of the salt is electrolyzed for 1310 s using n current of 1.24 A and deposits 0.292 g metallic Cr,. What is the value of n in the salt ?
 - (b) A 3.000 g sample of the chromium salt is heated carefully at 600°C to drive off any water in the salt, until the sample achieves a constant mass of 1.783 g. What is the value of m in the salt ?
 - (c) A 0.300 g sample of the chromium salt is dissolved in 10 mL water to which a few drops of Na_2CrO_4 solution have been added. A 0.400 M solution of silver nitrate is titrated quickly into the solution until the appearance of a dark red colour; this requires 2.81 mL of the AgNO₃ solution.
 - (i) Write balanced chemical equations for the reaction taking place during the titration and the reaction that takes place at the endpoint.

- (ii) How many moles of chloride are detected in this titration per mole of chromium present ?
- (d) Propose an explanation for the result in part (c) (ii).
- **108.** Chlorine is an industrially and biologically important element.
 - (a) Give the ground state electron configuration for gas-phase atomic Cl.
 - (b) Draw a Lewis structure for molecular chlorine, including all lone pairs and any formal charges.
 - (c) Which would have a greater first ionization energy, atomic Cl or molecular chlorine ? Justify your answer.
 - (d) Which would have a larger radius, atomic Cl or the chloride ion (Cl⁻)? Justify your answer.
 - (e) Explain why the oxoanions ClO_{-}^{-} , ClO_{2}^{-} , ClO_{3}^{-} and ClO_{4}^{-} all form stable salts, but the oxoanion ClO_{5}^{-} is unknown.
- 109. A compound used as a fertilizer contains only the elements C, H, N and O.
 - (a) Combustion of 1.000 g of the fertilizer in an oxygen atmosphere produces 0.5637 g CO₂, 0.6924 g H₂O, and 0.3589 g N₂. What are the mass percentages of C, H and N in the fertilizer ?
 - (b) Give the empirical formula of the fertilizer.
 - (c) A solution of 1.000 g of the fertilizer dissolved in 20.00 g water has a freezing point of $-2.38 \,^{\circ}\text{C}$. What is the apparent molar mass of the fertilizer? Combined with the result in (b), what is the implication of this molar mass ? (For water, the freezing point depression constant $K_f = 1.86 \,^{\circ}\text{C/m}$).
 - (d) Propose a structure for the fertilizer compound.
- **110.** Oxygen and sulfur form a number of binary fluorides.
 - (a) Draw the Lewis structure of dioxygen difluoride, O₂F₂, and sketch or describe the three-dimensional shape of this polar molecule.
 - (b) Explain why the O-F bonds in dioxygen difluoride, O₂F₂ (157.5 pm) are much longer than those in oxygen difluoride, OF₂ (140.5 pm).
 - (c) Disulfur difluoride, S₂F₂, exists as two structural isomers. One isomer is analogous in structure to dioxygen difluoride, O₂F₂, but the second, more thermodynamically stable isomer, has a structure in which the two sulfur atoms are in different chemical environments. Draw a Lewis structure of the more stable isomer of disulfur difluoride, S₂F₂, and sketch or describe its three dimensional shape.
 - (d) Sulfur difluoride, SF_2 , is very unstable, converting to disulfur tetraflouride, S_2F_4 , in which all four fluorines are in different environments. Clearly show a chemical reasonable three-dimensional structure of disulfur tetrafluoride, S_2F_4 , and explain how the structure accounts for the inequivalence of all four fluorine atoms.
 - (e) Sulfur tetrafluoride, SF₄ (bp $-38 \,^{\circ}$ C), has a higher boiling point than sulfur hexafluoride, SF₆ (bp $-64 \,^{\circ}$ C). Explain why sulfur tetrafluoride, SF₄ is less volatile than sulfur hexafluoride, SF₆.
- 111. Studtite is a mineral that contains only hydrogen, oxygen, and a metal M. Its empirical formula is $MO_x(H_2O)_y$, where x and y are integers.

A 1.0000 g sample of studiite is heated at $520 \,^{\circ}$ C, which cause it to decompose to molecular oxygen, water vapour, and the solid metal trioxide MO₃. The gases from this reaction are collected in a rigid container with a volume of 1.000 L. When this container is maintained at 200.0 $^{\circ}$ C, the pressure is 355.0 mm Hg. When the container is cooled to

 25° C, some of the water vapor condenses to the liquid, and the pressure in the container falls to 48.65 mm Hg. The vapour pressure of water at 25.0° C is 23.80 mm Hg.

- (a) Calculate the number of moles of O_2 produced in this reaction.
- (b) Calculate the number of moles of H_2O produced in this reaction.
- (c) Calculate the mass of solid MO₃ produced in this reaction.
- (d) What is the identity of the metal M? Support your answer.
- (e) What is the oxidation state of the metal M in the mineral studtite ? Explain your answer.
- 112. The chemistry of beryllium (Be) has a number of interesting features.
 - (a) Explain the difference between Be and its heavier congener, barium (Ba), with regard to the following properties.
 - (i) Be has a higher ionization energy $(900 \text{ kJ mol}^{-1})$ than Ba $(563 \text{ kJ mol}^{-1})$.
 - (ii) Adding an electron to gas-phase Be atom requires energy, while adding an electron to a gas-phase

Ba atom releases a small amount of energy (14 kJ mol^{-1}) .

(iii) BeCl₂ (s) has a more positive $\Delta H_{f}^{\circ}(-496.2 \text{ kJ mol}^{-1})$ than BaCl₂(s) (-858.6 kJ mol⁻¹)

(iv) Solid BeCl₂ adopts the structure shown on the left, while solid BaCl₂ adopts the structure shown on the right (metal = black spheres, chlorine = gray spheres).

- (b) In the vapor phase, BeCl₂ exists as a mixture of BeCl₂ monomers and Be₂Cl₄ dimers. Draw or clearly describe the geometries of these two gas-phase species.
- (c) At 800 K, K_p for dimerzation of BeCl₂(g) is 2.9.

 $2\text{BeCl}_2(g) \Longrightarrow \text{Be}_2\text{Cl}_4(g) \qquad \text{K}_p = 2.9$

Calculate the mole fraction of dimeric Be₂Cl₄ in BeCl₂ vapor at a total pressure of 1.100 bar at 800 K.

- **113.** Borazine, B₃N₃H₆, has a structure consisting of a six-membered ring with alternating BH and NH groups.
 - (a) Draw a Lewis structure for borazine, including non-zero formal charges if needed. Show all major resonance structures of borazine.
 - (b) Two other compounds containing boron, nitrogen, and hydrogen are BH₃NH₃ and BH₂NH₂. Draw Lewis structures for these two compounds, again including any formal charges and major resonance structures.
 - (c) The B-N distances in B₃N₃H₆, BH₃NH₃ and BH₂NH₂ are 139.1, 142.9 and 156.4 pm (not necessarily in that order). Assign each B-N distances to the proper compound and explain your reasoning.
 - (d) Typically, when one replaces a hydrogen attached to N with a CH₃ group, the boiling point of the compound decreases. For example, piperazine has a normal boiling point of 146°C while N-methylpiperazine has a normal boiling point of 138°C. Explain this observation.

(e)

In contrast to the situation in (d), when one N-H group in borazine (bp = $55 \,^{\circ}$ C) is changed to an N-CH₃ group, the normal boiling point of N-methylborazine increases significantly, to $84 \,^{\circ}$ C. Explain why the usual trend in boiling points is not observed for borazine and N-methylborazine.