Advanced Problem Package

SINGLE CORRECT ANSWER TYPE

Each of the following Question has 4 choices $A, B, C \& D$, out of which ONLY ONE Choice is Correct.

1. An azeotropic solution of two liquids has boiling point lower than either of them when it:
(A) Shows negative deviation from the Raoult's law
(B) Shows no deviation from the Raoult's law
(C) Shows positive deviation from the Raoult's law
(D) Is saturated
2. Which of the following 0.1 M aqueous solutions will have the lowest freezing point?
(A)
$\mathrm{K}_{2} \mathrm{SO}_{4}$
(B) $\quad \mathrm{NaCl}$
(C) Glucose
(D) Urea
3. When mercury (II) iodide is added is added to an aqueous solution of potassium iodide, the:
(A) Freezing point is lowered
(B) Freezing point is raised
(C) Freezing point does not change
(D) Boiling point does not change
4. The vapour pressure of a solution of 5 g of non-electrolyte in 100 g of water at a particular temperature is $2985 \mathrm{~N} / \mathrm{m}^{2}$. The vapour pressure of water is $3000 \mathrm{~N} / \mathrm{m}^{2}$. The molecular mass of the solute is:
(A) 60
(B) 120
(C) 180
(D) 380
5. Increasing in temperature of an aqueous solution will cause:
(A) Decrease in molality
(B) Decrease in molarity
(C) Decrease in mole fraction
(D) Decrease in $\% \mathrm{~W} / \mathrm{W}$
6. A 0.2 molal aqueous solution of a weak acid (HX) is 20% ionised. The freezing point of the solution is:
(A) $\quad-0.45^{\circ} \mathrm{C}$
(B) $\quad 0.90^{\circ} \mathrm{C}$
(C) $\quad-0.31^{\circ} \mathrm{C}$
(D) $\quad-0.53^{\circ} \mathrm{C}$
7. During depression of freezing point in a solution, the following are in equilibrium:
(A) Liquid solvent, solid solvent
(B) Liquid solvent, solid solute
(C) Liquid solute, solid solute
(D) Liquid solute, solid solvent
8. $\quad 0.004 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is isotonic with 0.01 M glucose. Degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is:
(A) 75%
(B) 50%
(C) 25%
(D) 85%
9. The van't Hoff factor of $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74 . The degree of dissociation is:
(A) 91.3%
(B) 87%
(C) 100%
(D) 74%
10. When 20 g of naphthoic $\operatorname{acid}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ is dissolved in 50 g of benzene $\left(\mathrm{K}_{\mathrm{f}}=1.72 \mathrm{Kkg}\right.$, mol $\left.{ }^{-1}\right)$, a freezing point depression of 2 K is observed. The van't Hoff factor (i) is:
(A) 0.5
(B) 1
(C) 2
(D) 3
11. 0.5 M aqueous solution of glucose is isotonic with:
(A) $\quad 0.5 \mathrm{M} \mathrm{KCl}$ solution
(B) $\quad 0.5 \mathrm{MCaCl}_{2}$ solution
(C) $\quad 0.5 \mathrm{M}$ urea solution
(D) $\quad 1 \mathrm{M}$ solution of sucrose

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

12. The degree of ionization (α) of a weak electrolyte $A_{x} B_{y}$ is related to van't Hoff factor by expression:
(A) $\quad \alpha=\frac{i-1}{x+y+1}$
(B) $\quad \alpha=\frac{i-1}{x+y-1}$
(C) $\quad \alpha=\frac{\mathrm{x}+\mathrm{y}-1}{\mathrm{i}-1}$
(D) $\quad \alpha=\frac{\mathrm{x}+\mathrm{y}+1}{\mathrm{i}-1}$
13. The relationship between osmotic pressure at 273 K when 10 g of glucose $\left(\mathrm{P}_{1}\right) ; 10 \mathrm{~g}$ of urea $\left(\mathrm{P}_{2}\right)$ and 10 g of sucrose $\left(\mathrm{P}_{3}\right)$ are dissolved in 250 mL of water is:
(A) $\quad \mathrm{P}_{1}>\mathrm{P}_{2}>\mathrm{P}_{3}$
(B) $\quad \mathrm{P}_{3}>\mathrm{P}_{1}>\mathrm{P}_{2}$
(C) $\quad \mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}$
(D) $\quad \mathrm{P}_{2}>\mathrm{P}_{3}>\mathrm{P}_{1}$
14. When acetone and Chloroform are mixed together, H-bonding takes place between them. Such a liquid pair shows:
(A) +ve deviation from Raoult's law
(B) -ve deviation from Raoult's law
(C) No deviation from Raoult's law
(D) Slight increase in volume
15. Compound $\mathrm{PdCl}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is a hydrated complex. 1 molal aqueous solution of it has freezing point 269.28 k . Assuming 100% ionization of complex, calculate the molecular formula of the complex (k_{f} for water $=1.86 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$) :
(A) $\quad\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{4}$
(B) $\quad\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(C) $\quad\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(D) $\quad\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
16. The mass of glucose that should be dissolved in 100 g of water and in order to produce same lowering of vapour pressures as is produced by 1 g of urea (mol. mass $=60$) on 50 g of water is
(A) 1 g
(B) $\quad 2 \mathrm{~g}$
(C) 6 g
(D) $\quad 12 \mathrm{~g}$
17. 50 g of antifreeze (ethylene glycol) is added to 200 g water. What amount of ice will separate out at $-9.3^{\circ} \mathrm{C}$? ($\mathrm{K}_{\mathrm{f}}=1.86$)
(A) 42 mg
(B) 42 g
(C) $\quad 38.71 \mathrm{~g}$
(D) $\quad 38.71 \mathrm{mg}$
18. Which of the following graphs represent the behaviour of ideal binary liquid mixture?
(A) Plot of $1 / P_{\text {Total }}$ aginst y_{A} is linear
(B) Plot of $1 / \mathrm{P}_{\text {Total }}$ aginst y_{B} is non-linear
(C) Plot of $\mathrm{P}_{\text {Total }}$ aginst y_{A} is linear
(D) Plot of $\mathrm{P}_{\text {Total }}$ aginst y_{B} is linear
(Here, y_{A} and y_{B} are the mole fraction of components A and B in vapour).
19. Which of the following solution will have the lowest freezing point depression?
(A) $\quad 0.2 \mathrm{M}$ urea and 0.2 M glucose
(B) $\quad 0.1 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(C) $\quad 0.1 \mathrm{M} \mathrm{KNO}_{3}$ and $0.2 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}$
(D) $\quad 0.1 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.1 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}$
20. Mixture of volatile components A and B has total vapour pressure (in torr): $\mathrm{P}=254-119 \mathrm{X}_{\mathrm{A}}$ Where, X_{A} is mole fraction of A in mixture, Hence, $\mathrm{P}_{\mathrm{A}}^{0}$ and $\mathrm{P}_{\mathrm{B}}^{0}$ are (in torr) :
(A) 254,119
(B) 119,254
(C) 135,254
(D) 154,119
21. A compound MX_{2} has observed and normal molar masses 65.6 and 164 respectively. Calculate the apparent degree of ionization of MX_{2} :
(A) 75%
(B) 85%
(C) 65%
(D) 25%
22. Total vapour pressure of mixture of $1 \mathrm{~mol} \mathrm{~A}\left(\mathrm{P}_{\mathrm{A}}^{0}=150\right.$ torr $)$ and $2 \mathrm{~mol} \mathrm{~B}\left(\mathrm{P}_{\mathrm{B}}^{0}=240\right.$ torr $)$ is 200 torr. In this case :
(A) There is positive deviation from Raoult's law
(B) There is negative deviation from the Raoult's law
(C) There is no deviation from Raoult's law
(D) Molecular masses of A and B are also required from calculating the deviation

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

23. If liquids A and B form an ideal solution:
(A) The free energy of mixing is zero
(B) The free energy as well as entropy of mixing are zero
(C) Enthalpy of mixing is zero
(D) The entropy of mixing is zero
24. Which statement about the composition of vapour over an ideal $1: 1$ molar mixture of benzene and toluene is correct?

Assume the temperature is constant at $25^{\circ} \mathrm{C}$.
Vapour pressure data $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$:
Benzene $\quad 75 \mathrm{~mm} \mathrm{Hg}$
Toluene $\quad 22 \mathrm{~mm} \mathrm{Hg}$
(A) The vapour will contain higher percentage of benzene
(B) The vapour will contain higher percentage of toluene
(C) The vapour will contain equal amount of benzene and toluene
(D) Not enough information is given to make a prediction
25. A solution containing 0.1 g of a non-volatile organic substance P (molecular mass 100) in 100 g of benzene raises the boiling point of benzene by $0.2^{\circ} \mathrm{C}$, while a solution containing 0.1 g of another non-volatile substance Q in the same amount of benzene raises the boiling point of benzene by $0.4^{\circ} \mathrm{C}$. What is the ratio of molecular masses of P and Q ?
(A) $1: 2$
(B) $2: 1$
(C) $1: 4$
(D) $4: 1$
26. Consider 0.1 M solution of two solutes X and Y . The solute X behaves as an univalent electrolyte while the solute Y dimerises in solution. Which of the following statements are correct regarding these solutions?

1. The boiling point of solution of X will be higher than that of Y
2. The osmotic pressure of solution of Y will be lower than that of X

3 The freezing point of the solution of X will be lower than that of Y
4. The relative lowering of vapour pressure of both the solutions will be the same Select the correct answer from the codes given below:
(A) $1,2,3$
(B)
2, 3, 4
(C) $1,2,4$
(D) $\quad 1,3,4$
27. At 300 K , solubility of a gas in a liquid was measured at different partial pressure.

Mole fraction of Gas	0.010	0.015	0.020
Partial pressure of Gas (kPa)	82	122	166

Which of the following graph is correct in accordance with the Henry's law?
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

28. Two solutions S_{1} and S_{2} containing $0.1 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$ and $0.05 \mathrm{M} \mathrm{BaCl}_{2}$ (aq) are separated by semipermeable membrane. Which among the following statement(s) is/are correct? (Assume complete dissociation of both the electrolytes).
(A) $\quad \mathrm{S}_{1}$ and S_{2} are isotonic
(B) $\quad \mathrm{S}_{1}$ is hypertonic while S_{2} is hypotonic
(C) $\quad \mathrm{S}_{1}$ is hypotonic while S_{2} is hypertonic
(D) Osmosis will take place from S_{1} to S_{2}

29. The vapour pressure of three aqueous solutions S_{1}, S_{2} and S_{3} of same solute at different concentration are plotted against temperature in Kelvin.
The concentrations of these solution will be in the order :
(A) $\mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{S}_{3}$
(B) $\quad \mathrm{S}_{1}<\mathrm{S}_{2}<\mathrm{S}_{3}$
(C) $\quad \mathrm{S}_{3}<\mathrm{S}_{2}<\mathrm{S}_{1}$
(D) $\quad \mathrm{S}_{1}<\mathrm{S}_{3}<\mathrm{S}_{2}$

30. Two volatile liquids A and B form ideal solution. Considering the following vapour-pressure composition graph

OR will be equal to :
(A) $\quad \mathrm{OP}+\mathrm{OQ}$
(B) $\mathrm{OP}+\mathrm{PR}$
(C) $\quad \mathrm{OQ}+\mathrm{QR}$
(D) $\quad \mathrm{OQ}+\mathrm{PQ}$
31. Molar solubility of helium, nitrogen and oxygen are plotted against partial pressure of the gas at constant temperature. Henry's law constant for these gases will lie in following sequence?
(A) $\quad \mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{He}$
(B) $\quad \mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{He}$
(C) $\quad \mathrm{O}_{2}=\mathrm{N}_{2}=\mathrm{He}$
(D) $\quad \mathrm{O}_{2}>\mathrm{N}_{2}<\mathrm{He}$
32. Solubility of oxygen gas in water follows Henry's law. When the solubility is plotted against partial pressure at a definite temperature we get following plots. Which of the following sequence of temperatures is correct?
(A) $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\mathrm{T}_{4}$
(B) $\quad \mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}>\mathrm{T}_{4}$
(D) $\quad \mathrm{T}_{1}>\mathrm{T}_{2}<\mathrm{T}_{3}>\mathrm{T}_{4}$
 of O_{2}

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Paragraph for Questions 33-36

The colligative properties of electrolytes require a slightly different approach that the one used for the colligative properties of non-electrolytes. The electrolytes dissociate into ions in a solution. It is the number of solute particles that determines the colligative properties of a solution. The electrolyte solutions, therefore, show abnormal colligative properties. To account for this effect we define a quantity called the van't Hoff factor, given by

$$
\begin{aligned}
& i=\frac{\text { Actual number of particles in solution after dissociation }}{\text { Number of formula units initially dissolved in solution }} \\
& i=1 \text { (for non-electrolytes); } \\
& i>1 \text { (for electrolytes, undergoing dissociation) } \\
& i<1 \text { (for solutes, undergoing association). }
\end{aligned}
$$

33. Benzoic acid undergoes dimerisation in benzene solution. The van't Hoff factor ' i ' is related to the degree of association ' α ' of the acid as:
(A) $\mathrm{i}=1-\alpha$
(B) \quad i $=1+\alpha$
(C) $\quad \mathrm{i}=1-\frac{\alpha}{2}$
(D) $\quad \mathrm{i}=1+\frac{\alpha}{2}$
34. A substance trimerises when dissolved in a solvent A. the van't Hoff factor ' i ' for the solution is:
(A) 1
(B) $1 / 3$
(C) 3
(D) Unpredictable
35. For a solution of non-electrolyte in water, the van't Hoff factor is:
(A) Always equal to 0
(B) ≤ 1
(C) Always equal to 1
(D) $\quad>$ but <2
36. $0.1 \mathrm{M} \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is 60% ionized. What will be its van't Hoff factor?
(A) $\quad 1.4$
(B)
2.4
(C) 3.4
(D) 4.4

Paragraph for Questions 37-40

The boiling point elevation and the freezing point depression of solutions have a number of practical applications. Ethylene glycol $\left(\mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{CH}_{2} \mathrm{OH}\right)$ is used in automobile radiators as an antifreeze because it lowers the freezing point of the coolant. The same substance also helps to prevent the radiator coolant from boiling away by elevating the boiling point. Ethylene glycol has low vapour pressure. We can also use glycerol as antifreeze. For boiling point elevation to occur, the solute must be nonvolatile, but no such restriction applies to freezing point depression. For example, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, a fairly volatile liquid that boils only at $65^{\circ} \mathrm{C}$ is sometimes used as antifreeze in automobile radiators.
37. Which of the following is a better reagent for depression in freezing point but not for elevation in boiling point?
(A)
$\mathrm{CH}_{3} \mathrm{OH}$
(B)

(C)

(D) $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
38. 124 g each of the two reagents glycol and glycerol are added in 5 kg water of the radiators in the two cars. Which of the following statements is wrong?
(A) Both will act as antifreeze
(B) Glycol will be better
(C) Glycerol is better because its molar mass is greater than glycol
(D) Glycol is more volatile than glycerol

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

39. 620 g glycol is added to 4 kg water in the radiator of a car. What amount of ice will separate out at $-6^{\circ} \mathrm{C}$? $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$:
(A) 800 g
(B) 900 g
(C) 600 g
(D) 1000 g
40. If cost of glycerol, glycol and methanol are same, then the sequence of economy to use these compounds as antifreeze will be:
(A) glycerol $>$ glycol $>$ methanol
(B) methanol $>$ glycol $>$ glycerol
(C) methanol $=$ glycol $=$ glycerol
(D) methanol $>$ glycol $<$ glycerol

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C \& D, out of which ONE or MORE Choices may be Correct:

41. For accurate measurement of molecular mass of solute using colligative properties:
(A) Solution must be very dilute
(B) Solute should not dissociate or associate
(C) Solute should be non-volatile
(D) Solute and solvent should react with each other
42. Which of the following statements is/are correct about azeotropic mixture?
(A) Azeotropic mixture are non-ideal solutions
(B) The components of azeotropic mixture cannot be separated by fractional distillation
(C) Azeotropes obey Raoult's law
(D) Solutions with positive deviation from Raoult's law, forms minimum boiling azeotrope
43. Solution of two liquids A and B showing negative deviation from Raoult's law, will show :
(A)
$\Delta \mathrm{H}_{\text {mix }}<0$
(B) $\quad \Delta V_{\text {mix }}<0$
(C) $\quad \mathrm{P}<\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \mathrm{X}_{\mathrm{B}}$
(D) $\quad \Delta \mathrm{S}_{\text {mix }}<0$
44. Which of the following solutions exhibit positive deviation from Raoult's law?
(A) $\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(B) $\quad \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) $\quad \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}$
(D) $\mathrm{CHCl}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$

MATRIX MATCH TYPE

Given question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) \& (D) whereas statements in Column 2 are labelled as $p, q, r, s \& t$. More than one choice from Column $\mathbf{2}$ can be matched with Column 1.
45. Match the Column-1 with Column-2 :

Column-1		Column-2	
(A)	Elevation in boiling point	(p)	Used in molecular mass determination of Polymers
(B)	Depression in freezing point	(q)	Proportional to the molality of solution
(C)	Osmotic pressure	(r)	Colligative property
(D)	Vapour pressure of a liquid	(s)	Depends on the intermolecular force

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Numerical Value Type Questions

The Answer to the following questions can be positive or negative integers of $1 / 2 / 3$ digits, 0 and decimal numerical value.
46. The vapour pressure of pure benzene at a certain temperature is 640 mm Hg . A non-volatile, non-electrolyte solid weighing 2.175 g is added to 39.0 g of benzene (to form an ideal solution). The vapour pressure of the solution is 600 mm Hg . What is the molecular weight of the solid substance ?
47. The vapour pressure of pure water at $37^{\circ} \mathrm{C}$ is 47.1 torr. What is the vapour pressure in torr of an aqueous solution at $37^{\circ} \mathrm{C}$ containing 20 g of glucose dissolved in 500 gm of water.
48. The vapour pressure of ethyl alcohol at $25^{\circ} \mathrm{C}$ is 59.2 torr. The vapour pressure of a solution of urea in ethyl alcohol is 51.3 torr. What is the molality of the solution?
49. An aqueous solution containing 1 g of urea boils at $100.25^{\circ} \mathrm{C}$. The aqueous solution containing 3 g of glucose in the same volume will boil at (Molecular mass of urea and glucose are 60 and 180 respectively) \qquad ${ }^{\circ} \mathrm{C}$.
50. A solution of sucrose (Molar mass $=342 \mathrm{~g} / \mathrm{mol}$) is prepared by dissolving 68.4 g of it per litre of the solution, what is its osmotic pressure in atm ? $(\mathrm{R}=0.082 \mathrm{lit}$. $\mathrm{atm} / \mathrm{mol}-\mathrm{K})$ at 273 K
51. A solution has a $1: 4$ mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at $20^{\circ} \mathrm{C}$ are 440 mm Hg for pentane and 120 mm Hg for hexane. The mole fraction of pentane in the vapour phase would be :
52. The boiling point elevation constant for benzene is $2.57^{\circ} \mathrm{C} / \mathrm{m}$. The boiling point of benzene is $80.1^{\circ} \mathrm{C}$. Determine the boiling point of a solution formed when 5.0 gm of $\mathrm{C}_{14} \mathrm{H}_{12}$ is dissolved in 15 gm of benzene.
53. What mass of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\left(\mathrm{M}_{0}=342\right)$ must be dissolved in 4.0 kg of $\mathrm{H}_{2} \mathrm{O}$ to yield a solution that will freeze at $-3.72^{\circ} \mathrm{C}$. $\left(\right.$ Take $\left.\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
54. The values of observed and calculated molecular weights of silver nitrate are 92.64 and 170 respectively. The percent dissociation of silver nitrate is \qquad -.
55. Henry's constant of oxygen is $1.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$ at 298 K . How much of oxygen (in mg) is dissolved in 100 mL at 298 K when the partial pressure of oxygen is 0.5 atm ?

Advanced Problem Package

Electrochemistry

SINGLE CORRECT ANSWER TYPE

Each of the following Question has $\mathbf{4}$ choices A, B, C \& D, out of which ONLY ONE Choice is Correct.

1. The standard reduction potential values of $\mathrm{Cr}^{3+} \mid \mathrm{Cr}^{2+}$ and $\mathrm{Cr}^{3+} \mid \mathrm{Cr}$ half cells are -0.41 V and -0.74 V respectively. The standard electrode potential of $\mathrm{Cr}^{2+} \mid \mathrm{Cr}$ half-cell is :
(A) $\quad+1.81 \mathrm{~V}$.
(B)
$-1.81 \mathrm{~V}$
(C) $\quad+0.9 \mathrm{~V}$.
(D) $\quad-0.9 \mathrm{~V}$.
2. Beryllium occurs naturally in the form of beryl. The metal is produced from its ore by electrolysis after the ore has been converted to the oxide and then to the chloride. How many grams of $\mathrm{Be}(\mathrm{s})$ is deposited from a BeCl_{2} solution by a current of 5.0 A that flows for 1.0 h ? (Atomic weight: $\mathrm{Be}=9$)
(A) 0.840
(B) 1.68
(C) 1.42
(D) 1.08
3. The element indium is to be obtained by electrolysis of a molten halide of the element. Passage of a current of 3.20 A for a period of 40.0 min results in formation of 3.05 g of In . What is the oxidation state of indium in the halide melt? (Atomic weight : $\mathrm{In}=114.8$)
(A) 1
(B) 2
(C) 3
(D) 4
4. How may grams of Cr are deposited in the electrolysis of solution of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ in the same time that it takes to deposit 0.54 g of Ag in a silver coulometer arranged in series with the $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ cell? (Atomic weight : $\mathrm{Cr}=52.0$; $\mathrm{Ag}=108$)
(A) 0.0866
(B) 0.0288
(C) $\quad 0.173 \mathrm{~g}$
(D) 0.220
5. When a solution of $\mathrm{AgNO}_{3}(1 \mathrm{M})$ is electrolyzed using platinum anode and copper cathode. What are the reaction occurring at two electrodes?
Given : $\mathrm{E}^{\mathrm{o}} \mathrm{Cu}^{2+} \mid \mathrm{Cu}=+0.34$ volt; $\quad \mathrm{E}^{\mathrm{o}} \mathrm{O}_{2}, \mathrm{H}^{+} \mid \mathrm{H}_{2} \mathrm{O}=+1.23$ volt; $\quad \mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}^{\mathrm{o}}=+0.0$ volt;

$$
\mathrm{E}_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}^{\mathrm{o}}=+0.8 \text { volt }
$$

(A) $\quad \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$at anode; $\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$ at cathode
(B) $\quad \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$at anode; $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$ at cathode
(C) $\mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$at anode; $\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$ at cathode
(D) $\quad \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ at anode; $\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$ at cathode
6. The E° at $25^{\circ} \mathrm{C}$ for the following reaction at the indicated concentrations is 1.50 V . Calculate the $\Delta \mathrm{G}$ in kJ at 25° C for the given reaction: $\mathrm{Cr}(\mathrm{s})+3 \mathrm{Ag}^{+}(\mathrm{aq}, 0.1 \mathrm{M}) \longrightarrow 3 \mathrm{Ag}(\mathrm{s})+\mathrm{Cr}^{3+}(\mathrm{aq}, 0.1 \mathrm{M})$
(A)
-140.94
(B)
-295
(C) $\quad-212$
(D) $\quad-422.96 \mathrm{~kJ}$
7. Copper reduces HNO_{3} into NO_{2} depending upon concentration of HNO_{3} in solution. Assuming $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right]=0.1 \mathrm{M}$ and $\mathrm{P}_{\mathrm{NO}_{2}}=10^{-3}$ bar, at which concentration of HNO_{3}, thermodynamic tendency for reduction of HNO_{3} into NO_{2} by copper is feasible?[Given $\mathrm{ECu}^{\mathrm{O}}{ }_{\mathrm{Cu}}=+0.34$ volt, $\mathrm{E}_{\mathrm{HNO}_{3} \mid \mathrm{NO}_{2}}^{\mathrm{o}}=+0.79$ volt]
(A)
$2.71 \times 10^{-5} \mathrm{M}$
(B)
$2.82 \times 10^{-6} \mathrm{M}$
(C)
$2 \times 10^{-7} \mathrm{M}$
(D) $\quad 2.71 \times 10^{-8} \mathrm{M}$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

8. Molar conductivity of a solution of an electrolyte $A B_{3}$ is $150 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$. If it ionisesas: $\mathrm{AB}_{3} \longrightarrow A^{3+}+3 B^{-}$, its equivalent conductivity will be :
(A) $\quad 150\left(\mathrm{in} \mathrm{Scm}^{2} \mathrm{eq}^{-1}\right)$
(B) $\quad 75\left(\right.$ in Scm $\left.^{2} \mathrm{eq}^{-1}\right)$
(C) $\quad 50\left(\right.$ in $\left.^{\text {Scm }}{ }^{2} \mathrm{eq}^{-1}\right)$
(D) $\quad 80\left(\right.$ in $\left.^{\text {Scm }}{ }^{2} \mathrm{eq}^{-1}\right)$
9. A galvanic cell is composed of two hydrogen electrodes, of which cathode is a standard hydrogen electrode. In which of the following solutions, should the other electrode be immersed to get maximum e.m.f. ?
(A) $\quad 0.1 \mathrm{M} \mathrm{HCl}$
(B) $\quad 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(C) $\quad 0.1 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}$
(D) $\quad 0.01 \mathrm{M} \mathrm{HCOOH}$
10. The EMF of the following cell is 0.265 V at $25^{\circ} \mathrm{C}$ and 0.2595 V at $35^{\circ} \mathrm{C}$.

$$
\mathrm{Pt}\left(\mathrm{H}_{2}\right) / \mathrm{HCl}(\mathrm{aq}) \| \mathrm{AgCl} / \mathrm{Ag}
$$

The heat of reaction taking place at $25^{\circ} \mathrm{C}$ is
(A) $\quad-90.8 \mathrm{~kJ}$
(B) $\quad-80.8 \mathrm{~kJ}$
(C) $\quad-82.76 \mathrm{~kJ}$
(D) $\quad-41.38 \mathrm{~kJ}$
11. The electrolytic conductivity of a saturated solution of AgCl in water at $25^{\circ} \mathrm{C}$ is $1.26 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$ greater than that for the water used. Calculate the solubility of AgCl in water if the molar ionic conductivities of Ag^{+}and $\mathrm{Cl}^{-}=53.9 \Omega^{-1} \mathrm{~cm}^{-2} \mathrm{~mol}^{-1}$, and $72.1 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively.
(A) $0.95 \times 10^{-5} \mathrm{~g} / \mathrm{L}$
(B) $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
(C) $\quad 0.95 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
(D) $\quad 0.95 \times 10^{-2} \mathrm{~g} / \mathrm{L}$
12. Molar conductivities of $\mathrm{AgCl}, \mathrm{BaSO}_{4}, \mathrm{AlPO}_{4}$ and $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are $200,300,500$ and $700 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Which of the following solution has greater conducting ability?
(A) $\quad \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\quad \mathrm{AlPO}_{4}$
(C) $\quad \mathrm{BaSO}_{4}$
(D) AgCl
13. The molar conductivity of a weak acid (HA) at infinite dilution is $275 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and that of 0.1 M solution of HA is $5.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. What is the dissociation constant of HA at the given temperature?
(A) 1×10^{-4}
(B) $\quad 4.08 \times 10^{-4}$
(C) 4.08×10^{-5}
(D) 1×10^{-5}
14. Which of the following is(are) correct for a lead acid battery supplying electrical energy?
(A) PbSO_{4} is formed at one electrode only
(B) $\quad \mathrm{Pb}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2}$
(C) Weight of electrolyte decreases
(D) $\quad \mathrm{PbO}_{2}$ accepts electrons only
15. $\mathrm{HNO}_{3}(\mathrm{aq})$ is titrated with $\mathrm{NaOH}(\mathrm{aq})$ conductometrically, graphical representation of the titration is :

(A)

(B)

(C)

(D)

Paragraph for Questions16-18

The given electrochemical cell setup has standard hydrogen electrode as anode and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell as cathode. Ce^{4+} (cerric) ion is added from the burette to beaker containing Fe^{2+} ion, when following reaction occurs.

$$
\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ce}^{4+}(\mathrm{aq}) \rightleftarrows \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ce}^{3+}(\mathrm{aq})
$$

With the addition of Ce^{4+} ion, the half - cell potential changes, and is measured directly by the voltmeter. Given; $\mathrm{E}^{\mathrm{o}} \mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}=1.64 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}}=-0.80 \mathrm{~V}$. The concentration of Fe^{2+} solution is 0.1 M and its volume is 600 ml . The concentration of Ce^{4+} solution added from burette is 0.1 M .
16. The potential of the cell after $1 / 3$ rd of the ferrous ion has been titrated will be :
(A) 1.64 V
(B) 0.782 V
(C) $\quad 1.522 \mathrm{~V}$
(D) $\quad 0.682 \mathrm{~V}$
17. The potential of the cell at equivalence point in the titration of Ce^{4+} and Fe^{2+}, will be :
(A) 1.22 V
(B) $\quad 0.42 \mathrm{~V}$
(C) $\quad 1.64 \mathrm{~V}$
(D) $\quad 0.8 \mathrm{~V}$
18. The equilibrium constant for the reaction in cathode half-cell is :
(A) $\quad 10^{1.68 / 0.059}$
(B) $\quad 10^{0.84 / 0.059}$
(C) $10^{1.64 / 0.059}$
(D) $10^{0.8 / 0.059}$

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has 4 choices A, B, C \& D, out of which ONE or MORE Choices may be Correct:
19. If $\mathrm{Sn}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn} ; \mathrm{E}^{0}=-0.14 \mathrm{~V}$

$$
\mathrm{Sn}^{+4}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{+2} ; \mathrm{E}^{\mathrm{o}}=-0.13 \mathrm{~V}
$$

Then :
(A) Sn^{+2} is unstable and disproportionates to Sn^{+4} and Sn
(B) $\quad \mathrm{Sn}^{+2}$ is stable and disproportionation reaction is not spontaneous
(C) $\quad \mathrm{Sn}^{+4}$ is easily reduced to Sn in aqueous solution
(D) $\mathrm{Sn}^{+4}+\mathrm{Sn} \longrightarrow 2 \mathrm{Sn}^{+2}$ is spontaneous
20. Electrolyte

KCl
KNO_{3}
HCl
NaOAc
NaCl
$\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{Scm}^{2} \mathrm{~mol}^{-1}\right)$
149.9

145
426.2

91
126.5

Which of the following is/are correct?
(A) $\quad \Lambda_{\mathrm{HOA}_{\mathrm{C}}}^{\infty}$ is 517.2
(B) $\quad \Lambda_{\mathrm{HNO}_{3}}^{\infty}$ is 450
(C) $\quad \Lambda_{\mathrm{AcOH}}^{\infty}$ is 390.7
(D) $\quad \Lambda_{\mathrm{HNO}_{3}}^{\infty}$ is 421.3
21. Perdisulphuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ can be prepared by electrolytic oxidation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ as :

$$
2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}
$$

Which of the following statement(s) is(are) correct for this electrolysis?
(A) Oxygen and hydrogen gases are formed as other products at anode and cathode respectively.
(B) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution can be used during this electrolysis to get $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
(C) Equivalents of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ formed is the difference between equivalents of H_{2} and O_{2} formed.
(D) Equivalents of $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ formed is the sum of equivalents of H_{2} and O_{2} formed.
22. Which of the following cell reaction is spontaneous?
(A) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{HCl}(0.01 \mathrm{M})\left|\left|\mathrm{H}_{2} \mathrm{SO}_{4}(0.01 \mathrm{M})\right| \mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{Pt}$
(B) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{HCl}(0.1 \mathrm{M})\left||\mathrm{HCl}(0.1 \mathrm{M})| \mathrm{H}_{2}(0.1 \mathrm{~atm})\right| \mathrm{Pt}$
(C) $\quad \mathrm{Ag} \mid \mathrm{AgNO}_{3}(0.01 \mathrm{M}) \| \mathrm{AgCl}$ (saturated) $\mid \mathrm{Ag}\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{AgCl}=1 \times 10^{-10}\right)$
(D) $\quad \mathrm{Ag} \mid \mathrm{AgBr}$ (saturated) $\| \mathrm{AgCl}$ (saturated) $\mid \mathrm{Ag}\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{AgCl}=1 \times 10^{-10}\right)$

$$
\left(\mathrm{K}_{\mathrm{sp}} \text { of } \mathrm{AgBr}=1 \times 10^{-13}\right)
$$

23. Which of the following represents correct relation(s)?
(A) $\Delta \mathrm{G}=-\mathrm{nFE}$ under non-standard conditions
(B) $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}$
(C) $\quad \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
(D) $\quad \mathrm{E}_{\mathrm{Cl}^{-} / \mathrm{AgCl} / \mathrm{Ag}}^{\mathrm{o}}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}+\frac{\mathrm{RT}}{\mathrm{F}} \ln \mathrm{K}_{\mathrm{Sp}}(\mathrm{AgCl})$
24. When an aqueous solution of NaCl is electrolysed using Pt electrodes, the correct statement(s) is(are) :
(A) $\mathrm{H}_{2} \mathrm{O}$ is reduced at cathode to liberate H_{2} gas
(B) Na^{+}reduced at cathode.
(C) Cl^{-}is oxidized at anode to liberate Cl_{2} gas
(D) There is no change in pH of solution.
25. Which of the following is true about the given cell, $\mathrm{Ag} \mid$ Saturated $\mathrm{AgCl} \|$ Saturated $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \mid \mathrm{Ag}$?

$$
\left(\mathrm{K}_{\mathrm{sp}} \mathrm{AgCl}=10^{-10} \mathrm{M}^{2}\right) \quad\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{CrO}_{4}=3.2 \times 10^{-11} \mathrm{M}^{3}\right)
$$

(A) It is an electrolyte concentration cell
(B) It is a non-spontaneous concentration cell.
(C) The net reaction is $\mathrm{Ag}_{\mathrm{c}}^{+} \longrightarrow \mathrm{Ag}_{\mathrm{A}}^{+}$
(D) The EMF of cell is 0.0944 V
26. Consider the cell: $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}(0.1 \mathrm{M})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right| \mathrm{Hg}$, the cell potential :
(A) increases on increasing concentration of Cl^{-}ions
(B) decreases on decreasing concentration of Cl^{-}ions
(C) is independent of concentration of Cl^{-}ions
(D) is independent of amounts of AgCl and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
27. From the solution of an electrolyte, one mole of electron will deposit at cathode :
(A) 63.5 g of Cu
(B)
12 g of Mg
(C) 11.5 g of Na
(D) $\quad 9.0 \mathrm{~g}$ of Al .

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

28. An aqueous solution containing $1 \mathrm{M} \mathrm{NiSO}_{4}$ and $1 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ is electrolysed using palladium electrodes at $25^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni} & \mathrm{E}^{\mathrm{o}}=-0.25 \mathrm{~V} \\
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\mathrm{o}}=1.23 \mathrm{~V} \\
\mathrm{Pd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd} \quad \mathrm{E}^{\mathrm{o}}=0.92 \mathrm{~V} \\
\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}^{2-} \quad \mathrm{E}^{\mathrm{o}}=2.0 \mathrm{~V}
\end{array}
$$

pH of solution is assumed as 7 .
Select the correct statement(s) on the basis of above given information (Ignore over-voltage)
(A) Anode reaction : $\mathrm{Pd} \rightarrow \mathrm{Pd}^{2+}+2 \mathrm{e}^{-}$
(B) Anode reaction: $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
(C) Cathode reaction: $\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}$
(D) Cathode reaction: $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
29. Standard electrode potential data are useful for understanding the suitability of an oxidant in a redox reaction. Some half-cell reactions and their standard potential are given below:

$$
\begin{array}{ll}
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \mathrm{E}^{\mathrm{o}}=1.5 \mathrm{~V} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \mathrm{E}^{\mathrm{o}=1.38 \mathrm{~V}} \\
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) & \mathrm{E}^{\mathrm{o}=0.77 \mathrm{~V}} \\
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{E}^{\mathrm{o}=1.40 \mathrm{~V}}
\end{array}
$$

Identify the correct statement(s) regarding the quantitative estimation of aqueous ferrous nitrate insolution.
(A) MnO_{4}^{-}can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
(B) $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) MnO_{4}^{-}can be used in aqueous HCl
(D) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ can be used in aqueous HCl
30. For the given half-cell, $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{Cl}^{-}(\mathrm{M})$

The reaction is : $\mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-}-(\mathrm{i})$

$$
\frac{\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{AgCl}(\mathrm{~s})-(\mathrm{ii})}{\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-}-(\mathrm{iii})}
$$

Which of the following is(are) true about this half cell?
(A) $\quad E^{0}$ of reaction (i) and E^{0} of reaction (iii) are same
(B) E of reaction (ii) is zero
(C) E of reaction (i) is same as E of reaction (iii)
(D) Moles of AgCl precipitated is same as moles of Ag used
31. Which of the following statement(s) is/are correct with respect to given standard electrode potentials? $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}=0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Sn}^{2+} / \mathrm{Sn}}^{\mathrm{o}}=-0.136 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{\mathrm{o}}=0.0 \mathrm{~V}$.
(A) Cu^{2+} ions can be reduced by $\mathrm{H}_{2}(\mathrm{~g})$
(B) Sn^{2+} ions can be reduced by $\mathrm{H}_{2}(\mathrm{~g})$
(C) Sn can be oxidized by Cu^{2+} ions
(D) Cu can be oxidized by Sn^{2+} ions
32. Which of the following electrolytic arrangement(s) will produce oxygen at anode during electrolysis?
(A) Fused NaOH with inert electrodes
(B) Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Cu electrodes
(C) Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with Pt electrodes
(D) Concentrated NaCl with Pt electrodes

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

33. Which of the following represents a redox half-cell?
(A) $\quad \mathrm{Pt} \mid \mathrm{Fe}^{2+}(0.1 \mathrm{M}), \mathrm{Fe}^{3+}(0.01 \mathrm{M})$
(B) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{H}^{+}(0.05 \mathrm{M})$
(C) $\quad \mathrm{Pt} \mid \mathrm{Mn}^{2+}(0.1 \mathrm{M}), \mathrm{MnO}_{4}^{-}(0.1 \mathrm{M}), \mathrm{H}^{+}(0.8 \mathrm{M})$
(D)
$\mathrm{Pt} \mid \mathrm{Cr}^{3+}(0.2 \mathrm{M}), \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(0.1 \mathrm{M}), \mathrm{H}^{+}(1.4 \mathrm{M})$
34. Which of the following represents a feasible reaction?
(A) $\quad \mathrm{F}_{2}+2 \mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{~F}^{-}$
$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$
(C) $\quad \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$
(D) $\quad \mathrm{Br}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$
35. Which of the following is(are) true about lead storage battery?
(A) Concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ decreases during discharging of lead storage battery.
(B) Amount of Pb increases during charging of lead storage battery.
(C) Lead storage battery in a car does not take ignition on a cold winter morning due to increase in viscosity of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(D) Moles of PbSO_{4} formed during discharging is same as that of Pb used.
36. Which of the following represents a spontaneous electrolyte concentration cell?
(A) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(0.1 \mathrm{~atm})\right| \mathrm{HCl}(0.1 \mathrm{M})\left|\left|\mathrm{H}_{2} \mathrm{SO}_{4}(0.05 \mathrm{M})\right| \mathrm{H}_{2}(0.05 \mathrm{~atm})\right| \mathrm{Pt}$
(B) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(0.1 \mathrm{~atm})\right| \mathrm{HCl}(0.2 \mathrm{M})\left|\left|\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{M})\right| \mathrm{H}_{2}(0.2 \mathrm{~atm})\right| \mathrm{Pt}$
(C) $\quad \mathrm{Ag}\left|\underset{\mathrm{K}_{\text {sp }}=1 \times 10^{-13}}{\mathrm{AgBr}}\right| \mathrm{Br}^{-}(0.1 \mathrm{M})| | \mathrm{Cl}^{-}(0.1 \mathrm{M})\left|\underset{\mathrm{K}_{\text {sp }}=1 \times 10^{-10}}{\mathrm{AgCl}}\right| \mathrm{Ag}$
(D) $\quad \mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.2 \mathrm{M}) \| \mathrm{Zn}^{2+}(0.1 \mathrm{M})\right| \mathrm{Zn}$

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) \& (D) whereas statements in Column 2 are labeled as $p, q, r, s \& t$. More than one choice from Column 2 can be matched with Column 1.
37. MATCH THE FOLLOWING:

	Column 1		Column 2	
(A)	$\mathrm{Cu}\left\|\mathrm{Cu}^{2+}\right\|\left(\mathrm{c}_{1} \mathrm{M}\right) \\| \mathrm{Cu}^{2+}\left(\mathrm{c}_{2} \mathrm{M}\right) \mid \mathrm{Cu}$ $\mathrm{c}_{2}>\mathrm{c}_{1}$	(p)	Concentration cell	
(B)	$\mathrm{Al}\left\|\mathrm{Al}^{3+} \\| \mathrm{Zn}^{2+}\right\| \mathrm{Zn}$	(q)	Gas-gas ion electrode	
(C)	$\mathrm{Pt}\left\|\mathrm{O}_{2}\left(\mathrm{P}_{1} \mathrm{~atm}\right)\right\| \mathrm{OH}^{-}(\mathrm{cM}) \\| \mathrm{OH}^{-}(\mathrm{cM})\left\|\mathrm{O}_{2}\left(\mathrm{P}_{2} \mathrm{~atm}\right)\right\| \mathrm{Pt}$ $\mathrm{P}_{1}>\mathrm{P}_{2}$	(r)	pH measurement	
(D)	$\mathrm{Mg}\left\|\mathrm{Mg}^{2+} \\| \mathrm{H}^{+}\right\| \mathrm{H}_{2} \mid \mathrm{Pt}$	(s)	Galvanic cell	

38. MATCH THE FOLLOWING:

	Column 1		Column 2
(A)	Electrolysis of aqueous CuSO_{4} using Cu electrodes	(p)	Density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ increases
(B)	Electrolysis of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ using Pt electrodes	(q)	Molarity of solution remains same.
(C)	Electrolysis of aqueous NaF using Pt electrodes	(r)	H_{2} is liberated at cathode.
(D)	Recharging of lead storage battery	(s)	Positive electrode is anode and negative electrode is cathode

39. Match the titrations of titrant and titrate in column 1 with appropriate conductometric titration curves in column 2 and select the correct answer among the code given below the columns.

	Column 1		Column 2
(1)	Titration of $\mathrm{HCl} \mathrm{v} / \mathrm{s} \mathrm{NaOH}$	(p)	
(2)	Titration of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} v / \mathrm{s} \mathrm{NaOH}$	(q)	
(3)	Titration of $\left(\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{v} / \mathrm{s} \mathrm{NaOH}$	(r)	
(4)	Titration of $\mathrm{AgNO}_{3} \mathrm{v} / \mathrm{s} \mathrm{KCl}$	(s)	

Codes :

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}		\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(A)	4	1	2	3	(B)	4	2	1	3
(C)	4	3	2	1	(D)	4	3	1	2

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Numerical Value Type Questions

The Answer to the following questions can be positive or negative integers of $1 / 2 / 3$ digits, 0 and decimal numerical value.
40. The EMF of the cell $\mathrm{M}\left|\mathrm{M}^{\mathrm{n}+}(0.02 \mathrm{M})\right|\left|\mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm}) \mid \mathrm{Pt}$ at $25^{\circ} \mathrm{C}$ is 0.81 V . The valency of the metal if the standard oxidation potential of the metal is 0.76 V , is \qquad .
41. Consider the cell, $\mathrm{Ag}|\mathrm{AgBr}| \mathrm{Br}^{-} \| \mathrm{Cl}^{-}|\mathrm{AgCl}| \mathrm{Ag}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{K}_{\text {sp }}$ of AgBr and AgCl are 5×10^{-13} and 1×10^{-10}. The concentration ratio of $\frac{\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{Br}^{-}\right]}$ions when the emf of the cell is 0.118 V , will be \qquad $-$
42. The electrolysis of a metal salt was carried out by passing a current of 4 amp for 45 minutes. It resulted in the deposition of 2.977 g metal. If atomic mass of the metal is $106.4 \mathrm{~g} \mathrm{~mol}^{-1}$, then calculate the charge on metal cation.
43. The emf of the given cell $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right|$ Buffer $\|$ Normal std. calomel electrode is 0.68 V at $25^{\circ} \mathrm{C}$, when barometric pressure is 760 mm . What is the pH of the buffer solution?
E^{0} calomel $=0.28 \mathrm{~V} .\left(\right.$ Take $\left.\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06\right)$
44. The conductivity of a saturated solution of CaF_{2} at $18^{\circ} \mathrm{C}$ was found to be $5.2 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ and the conductivity of water used for making the solution was $2 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$. The molar ionic conductivities at infinite dilution of Ca^{2+} and F^{-}ions are $120 \& 65 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The solubility product of $\mathrm{CaF}_{2} \mathrm{is}^{2} 4 \mathrm{x} \times 10^{-12} \mathrm{M}^{3}$. The value of x is \qquad .
45. When 0.5 L of $16 \mathrm{M} \mathrm{SnSO}_{4}$ is electrolysed for a period of 100 minutes using a current of 96.5 A and inert electrodes, the final concentration of Sn^{2+} in the solution will be \qquad .
$\left(\mathrm{E}^{\mathrm{o}} \mathrm{Sn}^{2+} / \mathrm{Sn}=-0.14 \mathrm{~V}, \mathrm{E}^{\mathrm{o}} \mathrm{Sn}^{2+} / \mathrm{Sn}^{4+}=-0.13 \mathrm{~V}, \mathrm{E}^{0} \mathrm{OH}^{-} / \mathrm{O}_{2}=-0.4 \mathrm{~V}, \mathrm{E}^{0} \mathrm{SO}_{4}{ }^{2-} / \mathrm{s}_{2} \mathrm{O}_{8}{ }^{2-}=-2.0 \mathrm{~V}\right)$.
46. In the Hall-Heroult process, molten $\mathrm{Al}_{2} \mathrm{O}_{3}$ is electrolysed using 9650 A current for a period of 100 s. How many Al cans can be made from the Al produced if each can uses 10 g ?
47. Aluminium displaces hydrogen from dilute HCl whereas silver does not. The EMF of a cell prepared by combining $\mathrm{Al} / \mathrm{Al}^{3+}$ and $\mathrm{Ag} / \mathrm{Ag}^{+}$is 2.46 V . The reduction potential of silver electrode is +0.80 V . The reduction potential of aluminium electrode is \qquad .
48. A $100 \mathrm{~W}, 110 \mathrm{~V}$ lamp is connected in series with an electrolytic cell containing CdSO_{4} solution. What mass of Cd will be deposited by the current flowing for 10 hours? (Use : $\mathrm{A}_{\mathrm{Cd}}=112 \mathrm{gm} / \mathrm{mole}$)
49. During the electrolysis of water, a total volume of 33.6 mL of hydrogen and oxygen gas was collected at STP. Find the amount of electricity in coulomb that passed during electrolysis.
50. The standard reduction potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$are 0.337 V and 0.153 V respectively. The standard electrode potential of $\mathrm{Cu}^{+} / \mathrm{Cu}$ half-cell is :

Advanced Problem Package

Solid State

SINGLE CORRECT ANSWER TYPE

Each of the following Question has 4 choices A, B, C \& D, out of which ONLY ONE Choice is Correct.

1. There are three cubic unit cells A, B and C. A is FCC and all of its tetrahedral voids are also occupied. B is also FCC and all of its octahedral voids are also occupied. C is simple cubic and all of its cubic voids are also occupied. If voids in all unit cells are occupied by the spheres exactly at their limiting radius, then the order of packing efficiency would be :
(A) A $<$ B $<$ C
(B) C $<$ A $<$ B
(C) C $<$ B $<$ A
(D) A $<$ C $<$ B
2. If 'a' stands for the edge length of the cubic systems: simple cubic, body centered cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively :
(A) $\frac{\mathrm{a}}{2}: \frac{\mathrm{a} \sqrt{3}}{2}: \frac{\mathrm{a} \sqrt{2}}{2}$
(B) $\mathrm{a}: \sqrt{3} \mathrm{a}: \sqrt{2} \mathrm{a}$
(C) $\frac{\mathrm{a}}{2}: \frac{\mathrm{a} \sqrt{3}}{4}: \frac{\mathrm{a}}{2 \sqrt{2}}$
(D) $\frac{\mathrm{a}}{2}: \sqrt{3} \mathrm{a}: \frac{\mathrm{a}}{\sqrt{2}}$
3. First three nearest neighbour distance for body centered cubic lattice are :
(A) $\sqrt{2} \mathrm{a}, \mathrm{a}, \sqrt{3} \mathrm{a}$
(B) $\frac{\mathrm{a}}{\sqrt{2}}, \mathrm{a} \sqrt{3}, \mathrm{a}$
(C) $\frac{\sqrt{3} \mathrm{a}}{2}, \mathrm{a}, \sqrt{2} \mathrm{a}$
(D) $\frac{\sqrt{3} \mathrm{a}}{2}, \mathrm{a}, \sqrt{3} \mathrm{a}$
4. At very low temperature oxygen $\left(\mathrm{O}_{2}\right)$ freezes and forms a crystal. Which term best describes the formed solid :
(A) Covalent network crystal
(B) Molecular crystal
(C) Metallic crystal
(D) Ionic crystal
5. For solid with following structure, The coordination number of the point B is :
(A) 3
(B) 4
(C) 5
(D) 6

6. In FCC crystal, which of the following shaded planes contains the following type of arrangement of atoms :
(D)

7. Distance between tetrahedral void and octahedral void in the FCC lattice will be ($\mathrm{a}=$ edge length of unit cell)
(A) $\frac{\sqrt{3} a}{4}$
(B) $\sqrt{3} \mathrm{a}$
(C) $\frac{\sqrt{3} a}{2}$
(D) $\frac{\sqrt{3} a}{3}$
8. A non-stoichiometric compound $\mathrm{Cu}_{1.8} \mathrm{~S}$ is formed due to incorporation of Cu^{2+} ions in the lattice of cuprous sulphide. What percentage of Cu^{2+} ions out of the total copper content is present in the compound:
(A) 88.88
(B) 11.11
(C) 99.8
(D) 89.8

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

9. CsBr has BCC structure with edge length $4.3 \AA$. The shortest inter ionic distance in between Cs^{+1} and Br^{-}in \AA is :
(A) 3.72
(B) 1.86
(C) 7.44
(D) 4.3
10. When NaCl is doped with 1×10^{-4} mole of SrCl_{2}, the no. of cation vacancies produced are :
(A) 6.023×10^{18}
(B) 6.023×10^{19}
(C) 6.023×10^{20}
(D) 3.011×10^{20}
11. A mineral having formula AB crystallizes in CCP lattice with ' A ' atoms occupying the lattice points. Pick out the correct statement from the following :
(A) 100% occupancy of tetrahedral voids by B, co-ordination no. of $\mathrm{B}=4$
(B) 100% occupancy of octahedral voids by B , co-ordination no. of $\mathrm{B}=4$
(C) 50% occupancy of tetrahedral voids by B, co-ordination no. of $\mathrm{A}=4$
(D) 100% occupancy of octahedral voids by B, co-ordination no. of $\mathrm{A}=4$
12. Zinc oxide which is white when cold, becomes yellow when heated. It is due to the development of :
(A) Frenkel defect
(B) Metal excess defect
(C) Schottky defect
(D) Metal deficiency defect
13. A metal crystallizes into two crystal unit cells like face centered cubic (FCC) and body centre cubic (BCC) at different temperatures. Ratio of densities of FCC and BCC crystals will be (Assuming same edge length) :
(A) 1.09
(B) 1.21
(C) 1.25
(D) 1.3
14. In a face centred cubic packed structure of mixed oxide, the lattice is made up of oxide ions, $1 / 5^{\text {th }}$ of tetrahedral voids are occupied by divalent ions $\left(\mathrm{X}^{2+}\right)$, while $1 / 2$ of the octahedral voids occupied by trivalent $\left(\mathrm{Y}^{3+}\right)$ ions, then the formula of the oxide is :
(A) $\mathrm{XY}_{2} \mathrm{O}_{4}$
(B) $\quad \mathrm{X}_{2} \mathrm{YO}_{4}$
(C) $\quad \mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}_{10}$
(D) $\quad \mathrm{X}_{5} \mathrm{Y}_{4} \mathrm{O}_{10}$
15. A crystal is made of particles X, Y and Z. X forms cubic close packing. Y occupies all the octahedral voids of X and Z occupies all the tetrahedral voids of X . If all the particles along one body diagonal of unit cell are removed then the formula of the crystal would be :
(A) XYZ_{2}
(B) $\mathrm{X}_{2} \mathrm{YZ}_{2}$
(C) $\mathrm{X}_{8} \mathrm{Y}_{4} \mathrm{Z}_{5}$
(D) $\quad \mathrm{X}_{5} \mathrm{Y}_{4} \mathrm{Z}_{8}$
16. A certain solid mixed oxide crystallizing in the cubic system contains cations M_{1} and M_{2} and the oxide ion O^{2-}. Each M_{1} ion is surrounded by 12 equidistant nearest neighbour oxide ions. If the oxide ions occupy face centers of cubic unit cell, where are the M_{1} ions situated?
(A) At the center of the unit cell
(B) At the corners of the cube
(C) At the edge centers
(D) Occupying half the number of edge centres
17.

 In a hypothetical solid C atoms are found to form cubic close packed lattice, A atoms occupy all
tetrahedral voids B atoms occupy all octahedral voids. A and B atoms are of appropriate size, so that there is no distortion in CCP lattice of C atoms. Now if a plane as shown in the following figure is cut, then the cross section of this plane will look like.
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

18. What is the distance between two nearest tetrahedral voids in FCC, given the edge length is ' a '
(A) $\mathrm{a} / 2$
(B) $\quad \sqrt{3} / 2 \mathrm{a}$
(C) $\sqrt{2} a$
(D) $\mathrm{a} / \sqrt{2}$
19. Which of the following expressions is correct for a CsCl unit cell with lattice parameter, a ?
(A) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=2 \mathrm{a}$
(B) $\quad \mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{\mathrm{a}}{\sqrt{2}}$
(C) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{\sqrt{3} \mathrm{a}}{2}$
(D) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{3 \mathrm{a}}{2}$

Paragraph for Questions 20-22

Packing referes to the arrangement of constituent units in such a way that the forces of attraction among the constituent particles is maximum and the constituents occupy the maximum available space and the remaining is the void space. Different voids are present in close packing viz trigonal, tetrahedral, octahedral and cubic void. In three dimensions there are hexagonal close packing and cubic close pacing. HCP has AB AB AB \qquad layer arrangement and CCP has ABC ABC ABC \qquad layer arrangement of constituent spheres.
20. The volume of HCP unit cell is (r is radius of constituent spheres) :
(A) $24 \sqrt{2} \mathrm{r}^{3}$
(B) $16 \sqrt{2} \mathrm{r}^{3}$
(C) $12 \sqrt{2} \mathrm{r}^{3}$
(D) $\frac{64}{3 \sqrt{3}} r^{3}$
21. Which of the following is not common between HCP and CCP arrangements?
(A) Both have same packing efficiency
(B) Both have same coordination number
(C) Both contain octahedral voids
(D) Both contain same number of tetrahedral voids per unit cell
22. Distance between two adjacent most closely packed layers in CCP will be equal to ($\mathrm{r}=$ radius of atom)
(A) $\sqrt{2} \mathrm{r}$
(B) $\sqrt{\frac{2}{3}} \mathrm{r}$
(C) $2 \sqrt{\frac{2}{3}} \mathrm{r}$
(D) $2 \sqrt{\frac{3}{2}} \mathrm{r}$

For Questions 23-25
Answer the following questions for the given unit cell :

23. If the molar mass of $A B$ is $100 \mathrm{~g} \mathrm{~mol}^{-1}$ and ' a ' is edge length then the density of the crystal will be :
(A) $\frac{4 \mathrm{~N}_{\mathrm{A}}}{\mathrm{a}^{3} \times 100}$
(B) $\frac{4 \times 100}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}$
(C) $\frac{2 \mathrm{~N}_{\mathrm{A}}}{\mathrm{a}^{3} 100}$
(D) $\frac{2 \times 100}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}$
24. The given unit cell belongs to :
(A) CsCl type
(B) TiCl type
(C) Rock salt type
(D) Zinc blende type
25. The coordination number of ' B ' will be :
(A) 8
(B) 6
(C) 4
(D) 12

Paragraph for Questions 26-28

A site in a closest-packed lattice can be generated by placing four spheres of radius R at alternate corners of a cube, such that the spheres are in contact.
26. The site created is :
(A) Octahedral
(B) Spherical
(C) Tetrahedral
(D) Square planar

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

27. The length of body diagonal of this cube is:
(A) Greater than 3R
(B) Less than $\sqrt{2} \mathrm{R}$
(C) Equal to $\sqrt{6} \mathrm{R}$
(D) Greater than $\sqrt{6} \mathrm{R}$
28. The radius of tetrahedral hole is :
(A) $\frac{\sqrt{3}}{2} R$
(B) $\left(\sqrt{\frac{3}{2}}-1\right) \mathrm{R}$
(C) $\sqrt{3} \mathrm{R}$
(D) $\quad\left(\frac{\sqrt{3}-1}{2}\right) \mathrm{R}$

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has $\mathbf{4}$ choices A, B, C \& D, out of which ONE or MORE Choices may be Correct:
29. If the three interaxial angles of the unit cell are all equal in magnitude, the crystal cannot belong to the :
(A) monoclinic system
(B) cubic system
(C) hexagonal system
(D) triclinic system
30. The two types of holes which occur in any close-packed structure are :
(A) tetrahedral, octahedral
(B) trigonal, octahedral
(C) trigonal, tetrahedral
(D) octahedral, cubic
31. Which of the following statements are correct ?
(A) The co-ordination number of each type of ions in CsCl crystals is 8
(B) A metal which crystallizes in bcc structure has co-ordination number of 12
(C) The edge length of a unit cell in NaCl is $552 \mathrm{pm} .\left(\mathrm{r}_{\mathrm{Na}^{+}}=95 \mathrm{pm}, \mathrm{r}_{\mathrm{C} \ell}=181 \mathrm{pm}\right)$
(D) A unit cell of an ionic crystal shares some of its ions with other unit cells.
32. Which of the following statements are false:
(A) The radius of a metal atom is taken as half of the nearest metal-metal distance in a metallic crystal
(B) One tetrahedral void per atom is present in hcp structure
(C) In the fluorite structure $\left(\mathrm{CaF}_{2}\right)$, the Ca^{2+} ions are located at the lattice points and the fluoride ions fill all the tetrahedral holes in the ccp crystal.
(D) In the antifluorite structure $\left(\mathrm{Li}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{~S}\right)$ the cations are located at the lattice points and anions fill the tetrahedral holes in the ccp structure.
33. In the unit cell of NaCl , which of the following statements are correct?
(A) Na^{+}ions have six Cl^{-}ions in its nearest neighbourhood
(B) Cl^{-}ions have six Na^{+}ions in its nearest neighbourhood
(C) Second nearest neighbour of Na^{+}ion are twelve Na^{+}ions
(D) NaCl has 68% of occupied space
34. The correct statement(s) regarding defects in solids is(are)
(A) Schottky defect is usually favoured by a very small difference in the sizes of cation and anion
(B) Frenkel defect increases exponentially with temperature
(C) Trapping of an electron in the lattice leads to the formation of F-center
(D) Solids with F - centre act as semi - conductors
35. Which of the following is expected in case of crystal exhibiting schottky defect?
(A) Crystal has intrinsic semi conduction
(B) Density of crystal is less than expected
(C) Stoichiometry remains same
(D) Crystal exhibit colour

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

36. Select the correct statements if NaCl is doped by CaCl_{2}, then the formed solid solution results in :
(A) Substitutional cation vacancy
(B) Frenkel's defect
(C) Schottky defect
(D) Decrease of density
37. Select the correct statement (s) :
(A) Schottky defect is shown by CsCl
(B) Frenkel defect is shown by ZnS
(C) Hexagonal close packing (HCP) and Cubic close packing (CCP) structure has same coordination no. 12
(D) At high pressure, the co-ordination number increases.
38. In which of the following crystalline systems $\alpha=\beta=\gamma$ is followed
(A) Cubic
(B) Tetragonal
(C) Orthorhombic
(D) Rhombohedral
39. In diamond, the lattice is FCC with C atoms occupying lattice points as well as some of the void positions and resemble zinc blend structure. Which of the following statements are correct about the diamond structure?
(A) In the lattice half of the tetrahedral positions are vacant
(B) Packing efficiency of the crystal is 74%
(C) In the lattice, all octahedral positions are vacant
(D) Coordination number of carbon atoms is 4

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Set 1 are labelled as (A), (B), (C) \& (D) whereas statements in Column 2 are labeled as p, q, r, s \& t. More than one choice from Set $\mathbf{2}$ can be matched with Set 1.
40. MATCH THE FOLLOWING :

Set - I(Type of ionic crystal)

(1) NaCl type of crystal
(2) CsCl type of crystal
(3) ZnS type of crystal
(4) CaF_{2} type of crystal
(r_{c} and r_{a} are radius of cation and anion respectively)
(A) $\quad 1-\mathrm{R}, 2-\mathrm{P}, 3-\mathrm{Q}, 4-\mathrm{S}$
(B) $\quad 1-\mathrm{R}, 2-\mathrm{S}, 3-\mathrm{P}, 4-\mathrm{Q}$
(C) $1-\mathrm{R}, \mathrm{S} 2-\mathrm{P}, \mathrm{S} 3-\mathrm{Q}, \mathrm{S} 4-\mathrm{P}, \mathrm{Q}$
(D) $\quad 1-\mathrm{S}, 2-\mathrm{P}, 3-\mathrm{Q}, 4-\mathrm{R}$
41. MATCH THE FOLLOWING :

Set - I

(1) Cubic
(2) Ortho rhombic
(3) Monoclinic
(4) Hexagonal
(A) $1-\mathrm{P}, \mathrm{R} 2-\mathrm{P}, 3-\mathrm{S}, 4-\mathrm{Q}$
(C) $1-\mathrm{P}, 2-\mathrm{R}, 3-\mathrm{Q}, 4-\mathrm{S}$

Set - II
(P) All angles are equal
(Q) Only two sides have equal length
(R) Have maximum elements of symmetry
(S) Contain two bravais lattice
(B) $1-\mathrm{R}, 2-\mathrm{P}, 3-\mathrm{Q}, 4-\mathrm{S}$
(D) $\quad 1-\mathrm{P}, 2-\mathrm{Q}, 3-\mathrm{R}, 4-\mathrm{S}$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

42. MATCH THE FOLLOWING :

Set - I

(1) Simple cubic
(2) Body centred cubic
(3) Face centred cubic
(4) Hexagonal close packing
(A) $1-\mathrm{Q}, 2-\mathrm{R}, 3-\mathrm{P}, \mathrm{R}, \mathrm{S} 4-\mathrm{P}$
(C) $1-\mathrm{P}, 2-\mathrm{R}, 3-\mathrm{Q}, 4-\mathrm{S}$

Set - II
(Possible arrangement of atoms in different planes)
(P)

(Q)

(R)

(S)
(B) $1-\mathrm{Q}, 2-\mathrm{P}, 3-\mathrm{S}, 4-\mathrm{R}$
(D) $1-\mathrm{R}, 2-\mathrm{S}, 3-\mathrm{P}, 4-\mathrm{Q}$

Numerical Value Type Questions

The Answer to the following questions can be positive or negative integers of $1 / 2 / 3$ digits, 0 and decimal numerical value.
43. One the metallic crystal is cubic system with arrangement of atoms over face of the cubic unit cell is :

Find the rank of unit cell.
44. The nearest distance between two atoms of a cubic metallic crystal is $\frac{\sqrt{3} a}{2}$. Find the effective no. of atoms per unit cell of that crystal ?
45.
46. One of metallic crystal follow cubic system with atoms present at corners and face centred positions. Find the ratio of no. of tetrahedral voids to that of octahedral voids per unit cell in the crystal.
47. In F.C.C system, body diagonal length is x and the nearest distance between octahedral void and a tetrahedral void is y. Find the value of x / y.
48. How many effective Na^{+}ions are present in a unit cell of the Rock salt (NaCl) if ions along one of the axis joining opposite faces are removed?
49. A spinel is an important class of oxides consisting of two types of metal ions with oxide ions arranged in CCP layers. The normal spinel has $\frac{1}{8}$ th of the tetrahedral void occupied by one type of metal and one half of the octahedral voids occupied by another type of metal ions such a spinel is formed by $\mathrm{Zn}^{2+}, \mathrm{Al}^{3+}$ and O^{2-} with Zn^{2+} in tetrahedral void. Then the simplest formula of that spinel is $\mathrm{Zn}_{x} \mathrm{Al}_{y} \mathrm{O}_{z}$ then $x+y+z$ is \qquad .

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

50. Analysis shows that nickel oxide has formula $\mathrm{Ni}_{0.98} \mathrm{O}_{1.00}$, the percentage occupation by Ni^{3+} of cationic sites is $\mathrm{x} \%$. Then ' x ' is \qquad .
51. The number of octahedral faces that are present in a truncated octahedron is \qquad .
52. If an atom crystallizes in $A B C$ packing, then the distance between two layers of ' A ' is ' X ' nm. The edge length of unit cell formed by A is $\sqrt{3} \mathrm{~nm}$. What is the value of X ? (In nearest integer)
53. A compound $A B$ has Rock salt structure with $A: B=1: 1$. The formula weight of $A B$ is 6.023 y amu and the closest distance between A and B is $y^{1 / 3} \mathrm{~nm}$. The observed density of the lattice in $\mathrm{kg} / \mathrm{m}^{3}$ is \qquad .
54. An alloy of metals A, B and C is found to have ' A ' constituting CCP lattice. If ' B ' atoms occupy the edge-centres and ' C ' is present at body-centre then the total number of atoms present in a formula unit of the alloy is \qquad .

Advanced Problem Package

IOC \& Hydrocarbons

SINGLE CORRECT ANSWER TYPE

Each of the following Question has $\mathbf{4}$ choices $A, B, C \& D$, out of which ONLY ONE Choice is Correct.

1. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}_{2}} \mathrm{~A} \xrightarrow[\mathrm{NaNH}_{2}]{3.0 \text { eqv. }} \mathrm{B} \xrightarrow{\mathrm{CH}_{3} \mathrm{I}} \mathrm{C}$ Compound ' C ' in the sequence is :

(A)

(B)

(C)

(D)
2. Which alkyne will give 3-ethylhexane on catalytic hydrogenation?
(A)

(B)

(C)

(D) All of these
3. Which of the following statements best explain the greater acidity of terminal alkynes $(\mathrm{RC} \equiv \mathrm{CH})$ compared with monosubstituted alkenes $\left(\mathrm{RCH}=\mathrm{CH}_{2}\right)$
(A) The sp-hybridized carbon atoms of the alkynes are less electronegative than the sp^{2}-hybridized carbons of the alkene.
(B) The two π-bonds of the alkyne are better able to stabilize the negative charge of the anion by resonance.
(C) The sp-hybridized carbons of the alkyne are more electronegative than the sp^{2}-hybridized carbon of the alkene.
(D) The question is incorrect as alkenes are more acidic than alkynes.
4. In the given reaction trans-2-butene $\xrightarrow{\mathrm{Br}_{2} / \mathrm{CCl}_{4}} \mathrm{X}$. (X) will be :
(A) meso-2, 3-dibromobutane
(B) d-2, 3-dibromo butane
(C) 1:1 mixture of (\pm) 2, 3-dibromo butane
(D) 2:1 mixture of $(\pm$) 2, 3-dibromo butane
5. $\mathrm{CHCl}_{3}+\mathrm{CH}_{3} \mathrm{NH}_{2} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CH}_{3} \mathrm{NC}$.

The intermediate of this reaction is treated with the compound The reaction will be:

(A)
Electrophilic addition reaction
(B)
Free radial addition reaction
(C)
Nucleophilic addition reaction
(D)
Electrophilic aromatic substitution
6. Which of the following reactions result in creation of a pair of diastereomers (neglect regioselectivity)?
(I)
 $+\mathrm{HBr}$ \qquad (II)

(A)
I only
(B)
I \& III
(C)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

7. Which of the following is aromatic \& polar?
(A)

(B)

(C)

(D)

8. The compounds which give only one product on mono-nitration.
(A)

\&

(B)

\&

(C)

\&

(D)

\&

9. Which of the following statements concerning a meso compound is false?
(A) There is no chiral centre in the molecule
(B) There is at least one element of symmetry in the molecule
(C) There is internal compensation for optical inactivity
(D) It cannot have non-superimposable mirror image
10. Which will easily undergo a Friedel-Crafts alkylation reaction?

(1)

(2)

(3)

(4)

(5)
(A)
1, 2, 4
(B) 1,3
(C)
(D) 1,2
11. A sample of 2 -chlorobutane has $[\alpha]=11.55^{\circ}$. The specific rotation of $(+)-2$-chlorobutane is 23.1°. Which is correct option?

(A)	The dextro form is 65%
(B)	The leavo form is 25%
(C)	Enantiomeric excess is 50% of $(+) 2$-chlorobutane
(D)	Both (B) and (C)

12. Which carbocation is most stabilized?
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

13. The major product of the reaction:

(A)

(B)

(C)

(D)

14. Find out the correct statement about the product in the following reaction:

(A) product obtained is a mixture of optically active compounds
(B) product obtained is an optically active compound
(C) product obtained is optically inactive due to plane of symmetry
(D) product obtained is inactive due to 2 - fold alternating axis of symmetry
15.

(A)

(B)

(C)

(D)

16. $\mathrm{X} \xrightarrow[(2) \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}]{\text {(1) } \mathrm{O}_{3}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{HCOOH} . \mathrm{X}$ is :
(A)

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{C} \equiv \mathrm{CH}
$$

(B)

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{C} \equiv \mathrm{CH}
$$

(C)

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}
$$

(D) $\quad \mathrm{HC} \equiv \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C} \equiv \mathrm{CH}$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

MULTIPLE CORRECT ANSWERS TYPE

Each of the following Question has $\mathbf{4}$ choices A, B, C \& D, out of which ONE or MORE Choices may be Correct:
17. Which of the following are correct:
(A)

(B)

(C)

$\xrightarrow{\text { alc. } \mathrm{KOH}}$

18.

(Minor)
(Major)
(A)
$\mathrm{C}_{6} \mathrm{H}_{6}+\triangle \xrightarrow[\mathrm{AlCl}_{3}]{\text { anhydrous }} ?$
(B)

(C)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{PhMgCl}$
\longrightarrow
(D)
$(\mathrm{n}-\mathrm{Pr})_{2} \mathrm{CuLi}+\mathrm{PhCl}$ \qquad
19.

$(\mathrm{B}) \xrightarrow{\mathrm{H}_{2} / \mathrm{Pt}}(\mathrm{C})$
(A)
(C) is meso-2, 3-dideutero butane
(B)
(C) is rac-2, 3-dideutero butane
(C)
(C) is d-2, 3-dideutero butane only
(D)
(B) is trans-2, 3-dideutero but-2-ene only
20. What are the possible structures of product [B] in the following sequence of reactions?

(A)

(B)

(C)

(D)

21. When $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}$ is reacted with HBr then the product formed is A and when $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$ is treated with HBr then the product is formed is C . Hence, here:
(A)

C is $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{Br}}$
(B)
A is $\mathrm{CH}_{3}-\mathrm{CH}<-\mathrm{Br}$
(D)

(C)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

22. One mole of an unknown organic compound (A) when treated with excess of $\mathrm{CH}_{3} \mathrm{MgBr}$ liberates three moles of CH_{4} gas. When reduced with HI and red phosphorus, compound (A) gives n - butane. The possible structure(s) of A is(are):
(A)

(B)

(C)
$\mathrm{HOCH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
(D)

23. Which of the following carbide(s) on hydrolysis give methane as one of the products?
(A) beryllium carbide
(B) boron carbide
(C) magnesium carbide
(D) aluminium carbide
24. Which statement is/are true about resonance?

(A)	It decreases the energy of system
(B)	The hybridization of atoms do not change due to resonance
(C)	Resonance hybrid is more stable than any resonating structure
(D)	Resonating structures can not be isolated at any temperature

25. In which of the following pairs of compounds, will second structure have more contribution to resonance hybrid than first?
(A)

(C)

(B)

(D)

\&

26. In which of the following pairs of resonating structures first resonating structure is more stable than second ?
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

27. In which of the following compounds delocalization of electrons and shifting of electron in the same direction?
(A)

(B)
$\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{NO}_{2}$
(C)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{NO}_{2}$
(D)

28. Which of the following groups cannot participate in resonance with benzene :
(A) $\quad-\mathrm{COOH}$
(B)
$-\mathrm{COO}^{\ominus}$
(C) $\quad-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}$
(D) $\quad-\mathrm{COCl}$
29. Which of the following is/are correct :
(A)

(B)
 is aromatic
(C)
 is aromatic
(D)
 is aromatic
30. Which of the hybrid species are correct?
(A)

(B)

(C)

(D)

31. The correct orders for bond length are :
(A)

(B)

(C)

(D)

32. Which of the following statement is/are correct?
(A) Contributing structures contributes to the resonance hybrid is directly proportional of their energies
(B) Equivalent contributing structures make the resonance very important
(C) Contributing structures represent hypothetical molecules having no real existence
(D) Contributing structures are less stable than the resonance hybrid
33. Which of the following compounds will show tautomerism?

(A)	2, 2-Dimethylpropanal
(B)	2,2-Dimethyl-1 nitropropane
(C)	Acetyl Acetone
(D)	Benzophenene

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

34. Which of the following is correct regarding stability of the following pair of species ?
(A)
$\mathrm{CH}_{2}=\stackrel{+}{\mathrm{N}}=\stackrel{-}{\mathrm{N}}>\overline{\mathrm{C}}_{\mathrm{C}} \mathrm{H}_{2}-\stackrel{+}{\mathrm{N}} \equiv \mathrm{N}$
(B)

(C)

(D) Pent-2-ene $>$ 2-methylbut-2-en
35. Which reagent will you use for the following reaction?

(A)
NBS
(B) $\quad \mathrm{Br}_{2} / \mathrm{Fe}$
(C) $\quad \mathrm{Br}_{2} / \mathrm{h} \nu$
(D) $\quad \mathrm{Br}_{2} / \Delta$
36. Which amongs the following reaction is/are correctly matched for major product ?
(A)

(B)

(C)

(D)

37. Which of the following do not show tautomerism ?
(A)

(B)

(C)

(D)

38. Which of the following catalysts is/are used for partial reduction of alkyne ?
(A)
$\mathrm{Na} / \mathrm{NH}_{3}(\ell)$
(B) $\quad \mathrm{Ni}_{2} \mathrm{~B}$ or P-2 catalyst
(C)
Lindlar catalyst
(D) Rossenmund catalyst

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

39. The end product of following reaction is/are :

(A) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CD}_{2}-\mathrm{Ph}$
(B)

(C)

(D)

40. Which of the following give only meso compound on catalytic reduction?
(A)

(B)

(C)

(D)

41. Which of the following involve syn addition ?
(A)

(B)

(C)

(D)

42. Mechanism of reductive ozonolysis is given below for an alkene.

Which is correct for the above mechanism?
(A) Ozone act as electrophile and as well as nucleophile in this reaction
(B) First step of this reaction is an electrophile addition
(C) Ozonide is formed in the step-II
(D) When ozonide is cleaved in the presence of reducing agent such as Zn or $\mathrm{Me}_{2} \mathrm{~S}$ the products will be aldehydes and / or ketones

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) \& (D) whereas statements in Column 2 are labeled as p, q, r, s \& . More than one choice from Column 2 can be matched with Column 1.
43. Match the following:

| (A) | | Column 2 |
| :--- | :--- | :--- | :--- |
| (B) | (p) | Reacts with Lindlar catalyst $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{CaCO}_{3}\right)$ |
| (C) | (q)Trans alkene will form, when reacts with
 $\left(\mathrm{Na} /\right.$ liq. $\left.\mathrm{NH}_{3}\right)$ | |
| (s) | (s) | Reacts with ammonical AgNO_{3} |

44. Match the following:

What would be the products of ozonolysis of the compounds in column 1

	Column 1		Column 2
(A)		(p)	Formaldehyde
(B)	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$	(q)	Glyoxal
(C)	$\mathrm{CH}_{3}-\mathrm{HC}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$	(r)	Propane-1, 3-dial
(D)	$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$	(s)	Acetaldehyde

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

45. Match the following:

	Column 1		Column 2
(A)	Acid-catalysed hydration of alkenes	(p)	Markovnikov hydration
(B)	Oxymercuration demercuration of alkenes	(q)	Anti Markovnikov hydration
(C)	Hydroboration-oxidation of alkenes	(r)	Stereo selective
(D)	Dehydration of alcohols to alkenes	(s)	Regioselective

Numerical Value Type

The Answer to the following questions are positive integers of $1 / 2 / 3$ digits and zero
 (A)

Number of $C=C$ bond in organic compound (A) is \qquad .
47.

If the molecular weight of product (P) is M, then the value of $\frac{M}{27}$ is:
48.

What is the molecular weight of product (C) ?
49. One equivalent of 1-bromo-3-chloro cyclobutane reacts with two equivalents of sodium in dry ether to form organic product $[R]$. Find out number of carbon-carbon bonds in the product $[R]$.
50. Given compound possess a close loop of delocalizable $\mathrm{x} \pi$ electrons. What is value of x ?

51. Find out number of delocalizable pi electrons in major product of the following reaction.

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{~N}_{2} \xrightarrow[\mathrm{~h} v]{ } \text { Major product }
$$

52. Molecule of $\mathrm{C}_{13} \mathrm{H}_{28}$ with the shortest possible parent carbon chain contains x carbon atoms. Numerical value of x is \qquad .
53. How many meso isomers are possible for $1,2,3,4,5,6$-hexachloro cyclohexane ?

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

54. Geometrical isomerism is possible in how many of the following molecules/compounds ?

(1)

(2)

(6)
(5)

(9)

(3)

(7)

(4)

(8)
55. How many monocarboxylic acids (including stereoisomers) would give Methylcyclopropane on sodalime decarboxylation?
56. Two stereoisomers (cis and trans) of 3, 4-Dibromocyclopentane-1, 1-dicarboxylic acid undergo decarboxylation, find out the total number of products formed.
57. How many species out of the following are aromatic?

58. How many species out of the following are aromatic?

59. Sum of total number of optically active and optically inactive isomers of following compound.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

60. The total number of isomers for the alkyne with molecular formula $\mathrm{C}_{3} \mathrm{HDClBr}$ is:
61. How many position isomers of dibromonaphthalene is possible if each ring of naphthalene has one halogen ?
62. Number of meso compounds from the following is :
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

63. The total number of structural isomers with molecular formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$ which can show geometrical isomerism is:
64. Total number of stereo isomers corresponding to structure

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Advanced Problem Package
 Organic Halides \& Organic Concepts

SINGLE CORRECT ANSWER TYPE

Each of the following Question has 4 choices $A, B, C \& D$, out of which ONLY ONE Choice is Correct.

1. The compound, that undergoes $\mathrm{S}_{\mathrm{N}} 1$ reaction most rapidly is:
(A)

(B)

(C)

(D)

2.

Principal organic product of the reaction will be :

(A)

(B)

(C)

(D)
3. Which of the following benzyl halide would undergo $\mathrm{S}_{\mathrm{N}} 2$ reaction faster?
(A)

(B)

(C)

(D)

4. Which of the following benzyl halide would undergo $\mathrm{S}_{\mathrm{N}} 1$ reaction faster ?
(A)

(B)

(C)

(D)

5. $\int_{\mathrm{Br}} \xrightarrow[\mathrm{NaOEt}]{\mathrm{NtOH} / \Delta}(\mathrm{X})$

The major product (X) and major reaction pathway is :
(A)

(B)

(C)
$\rightleftharpoons, \mathrm{E} 2$
(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

6.

(III)
 $\rightarrow \mathrm{MeOH}+\mathrm{Me}_{2} \mathrm{~S}$
(II) $\quad \mathrm{MeI}+\mathrm{NH}_{3} \longrightarrow \mathrm{Me} \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}+\mathrm{I}^{-}$
(IV) $\mathrm{Me}_{2} \stackrel{\oplus}{\mathrm{~S}} \mathrm{Me}+\mathrm{NH}_{3} \longrightarrow \mathrm{Me} \stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}+\mathrm{Me}_{2} \mathrm{~S}$

In which of the above $\mathrm{S}_{\mathrm{N}} 2$ reactions, rate of the reaction increases on increasing the polarity of the solvent?
(A) (I)
(B) (II)
(C) (III)
(D) (IV)
7. The product (P) of the given sequence of reaction,

would be :

(A)

(B)

(C)

(D)
8.

In the given reaction, the major product (A) would be :

(A)

(B)

(C)

(D)
9.

The major product of the above reaction is :

(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

10. Treatment of o-bromofluorobenzene with one equivalent of Mg in presence of ether, generates

(A)

(B)

(C)

(D)
11. The major product of the given reaction is :

1 eqv.

(A)

(B)

(C)

(D)
12. The nucleophilic substitution of (S) $-\mathrm{CH}_{3}-\mathrm{CH}_{-1}^{\mathrm{Br}} \mathrm{C}_{\mathrm{OH}}^{0}$ with dilute OH^{-}followed by acidification gives

(A)

(B)

(C)

(D)
13.

The major product of the reaction and major pathway followed is :

(A)

(B)

(C)

(D)
14. Which of the following hexachlorocyclohexane is the least reactive in an E_{2} reaction?

(A)

(B)

(C)

(D)
15. $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O} \xrightarrow{\mathrm{Br}_{2}} \xrightarrow{\mathrm{CH}_{3} \mathrm{MgBr}}(\mathrm{X})$. The structure of compound (X) would be :

(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

16. Identify products of the given reactions :

Reaction-1

Reaction-2

(A)

(B)

(C)
 single product is obtained in both the reactions.
(D)
 Single product is obtained in both the reactions.
17. The decreasing order of reactivity of following compounds in an E2 reaction is :
(A) $\quad 2>3>1$
(B) $\quad 1>3>2$
(C) $\quad 2>1>3$
(D) $\quad 3>1>2$
18.

1

2

3

To get the required alkene, the most suitable base is
(A) $\quad \mathrm{NaOEt} / \mathrm{EtOH}$
(B) $\mathrm{NaOMe} / \mathrm{MeOH}$
(C) t - $\mathrm{BuOK} / \mathrm{t}-\mathrm{BuOH}$
(D) $\quad \mathrm{NaOPr} / \operatorname{PrOH}$
19. \square

$$
\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{O}_{3} / \mathrm{Zn}}(\mathrm{~A}) \xrightarrow{\mathrm{NH}_{3}}
$$ (B) $\xrightarrow{\mathrm{Cl}_{3} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Na}, \Delta}(\mathrm{C})$

The product (C) would be :
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

20. Both the following compounds (a) and (b) undergo base induced elimination of HBr to form the same product (c).

(a)

(b)

(c)

Which of the following statement is true?
(A)
(a) reacts faster than (b)
(B) (b) reacts faster than (a)
(C)
(a) and (b) react at the same rate
(D) Cannot be predicted
21. In an experiment starting with optically pure radioactive 2-iodopentane, the rate of racemization was found to be 1.80 times the rate of loss of radioactivity of the substrate. The $\%$ of reaction that proceeded by $\mathrm{S}_{\mathrm{N}} 2$ mechanism is:
(A) 10%
(B) 20%
(C) 40%
(D) 80%
22.

(A)

(B)

(D)

23.

(P)

(Q)

Which of the following is correct statement about compounds (P) and (Q) ?
(A) Compound (P) undergoes reaction faster than compound (Q)
(B) Compound (P) undergoes reaction slower than compound (Q)
(C) Compound (P) undergoes reaction at the same rate as that of compound (Q)
(D) Can not be commented about their rate of reaction
24. Which of the following is not true about given reaction?
(A) It is an example of electrophilic aromatic substitution reaction
(B) The electrophile is free Br^{+}
(C) It leads to tribromination
(D) If (A) is 2, 4, 6-tribromophenol, then (B) and (C)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

25.

Which of the following is correct about the given reaction sequence?
(A)
(A) is

(B) Conversion of (A) to (B) take place via $\mathrm{S}_{\mathrm{N}} 1$ pathway
(C) Reduction of (B) with LiAlH_{4} gives 2- ketopentan-1-amine
(D) Acidic hydrolysis of (B) followed by heating gives original compound

MULTIPLE CORRECT ANSWERS TYPE
Each of the following Question has 4 choices A, B, C \& D, out of which ONE or MORE Choices may be Correct:
26.

(A) If (P) is a vicinal dihalide, (S) is a cyclic anhydride
(B) If (P) is a geminal dihalide, (S) is a cyclic anhydride
(C) If (P) is a vicinal dihalide, (R) is a butane-1, 4-dioic acid
(D) If (P) is a geminal dihalide, (R) is a propanoic acid
27. Which of the following statement(s) is(are) correct?
(A) $\quad \mathrm{S}_{\mathrm{N}} 1$ reaction of alkyl halides are catalysed by Ag^{+}ion.
(B) $\quad \alpha$-Halo ketones undergo reaction by $\mathrm{S}_{\mathrm{N}} 2$ mechanism but not by $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
(C) Hydrolysis of t - BuF is faster in acidic solution than in pure $\mathrm{H}_{2} \mathrm{O}$.
(D) $\quad \mathrm{S}_{\mathrm{N}} 2$ reactions never involve rearrangement.
28. In the given reaction,

Which of the following statement (s) is/are not true about (A)?
(A) With $\mathrm{S}_{\mathrm{N}} 1$ pathway, the attack takes place through N .
(B) With $\mathrm{S}_{\mathrm{N}} 1$ pathway, the attack takes place through S .
(C) With $\mathrm{S}_{\mathrm{N}} 2$ pathway, the attack takes place through N .
(D) With $\mathrm{S}_{\mathrm{N}} 2$ pathway, the attack takes place through S .

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

29. The rate law for the substitution reaction of 2-bromobutane and OH^{-}in 75% ethanol and $25 \% \mathrm{H}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}$ is Rate $=3.2 \times 10^{-5}$ [2-bromobutane $]\left[\mathrm{OH}^{-}\right]+1.5 \times 10^{-6}$ [2-bromobutane].

Which of the following is/are true statement(s) when the concentration of OH^{-}is 1.0 M ?
(A) $\%$ of reaction occurring by $\mathrm{S}_{\mathrm{N}} 1$ mechanism is 4.4%
(B) $\quad \%$ of reaction occurring by $\mathrm{S}_{\mathrm{N}} 1$ mechanism is 44%
(C) $\%$ of inversion product is 97.8%
(D) $\%$ of racemization in the reaction is 44%
30. Select the correct addition products among the following reactions.
(A) $\quad \mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{HCl}(\mathrm{aq}.) \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}$
(B) $\quad \mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{HBr}($ aq. $) \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$
(C)

(D)
$\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{HI} \xrightarrow{\text { Peroxide }} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{3}$
31. Which of the following reagent(s) can be used to distinguish between $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$?
(A) Sodium fusion; $\mathrm{HNO}_{3}+\mathrm{AgNO}_{3}$
(B) Tollen's reagent
(C) $\quad \mathrm{AgNO}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(D) Cold aq. KMnO_{4}
32.

The given reaction involves:
(A) Nucleophilic substitution at acyl carbon.
(B) Nucleophilic substitution at alkyl carbon.
(C) Elimination
(D) Ring contraction
33. The product of the given solvolysis reaction would be :

(A)

(B)

(C)

(D)

OCH_{3}
34.
(A) : $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$
(B) :
$\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{2} \mathrm{Br}$
Which of the following is/are true about compounds (A) and (B)?
(A) Solvolysis of compound (A) is faster than compound (B)
(B) $\quad \mathrm{S}_{\mathrm{N}} 2$ reaction of compound (A) is faster than compound (B)
(C) $\quad \mathrm{S}_{\mathrm{N}} 2$ reaction of compound (B) is faster than compound (A)
(D) Compound (A) undergoes rearrangement under $\mathrm{S}_{\mathrm{N}} 1$ as well as $\mathrm{S}_{\mathrm{N}} 2$ conditions

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

35. In which of the following reactions, inversion of configuration is mainly taking place?
(A)

(B)

(C)

(D)

36.

Which of the following is(are) intermediate(s) formed during the formation of product (A)?
(A)

(B)

(C)

(D)

37.

Which of the following is correct about the given reaction?
(A) During formation of (A), Cl at 1 is displaced by OH
(B) During formation of (A), F at 4 is displaced by OH
(C) During formation of (B), Cl at 2 is displaced by OH
(D) During formation of (B), F at 4 is displaced by OH
38.

Which of the following is/are true about the reaction leading to formation of (X)?
(A) Aryl bromide is more reactive than aryl chloride towards Grignard formation
(B) The intermediate formed in the reaction is benzyne
(C) The product formed has three six membered rings
(D) $\quad(\mathrm{X})$ is formed via Diels - Alder reaction

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

39. When 2-iodo-3, 3-dimethylbutane is treated with AgNO_{3} in ethanol/ethoxide, elimination reaction takes place. Identify all the products formed in the reaction.
(A)

(B)

(C)

(D)

40. Which of the following compound(s) is(are) formed in the given reaction?

(A)

(B)

(C)

(D)
41. Which of the following compound(s) will give iodoform test on warming with $\mathrm{I}_{2} / \mathrm{NaOH}$?
(A)

(B)

(C)

42. Ethyl alcohol, on treatment with bleaching powder gives chloroform. Which of the following is/are the function(s) of bleaching powder?
(A) Chlorinating agent
(B) Oxidising agent
(C) Hydrolysing agent
(D) None of these
43. Which of the following reaction products (major) is(are) incorrect?
(A) $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}+\mathrm{Ag}-\mathrm{CN} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CN}+\mathrm{AgCl}$
(B) $\quad \mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{Na}^{+} \mathrm{CN}^{-} \quad \longrightarrow \mathrm{CH}_{3}-\mathrm{NC}+\mathrm{NaCl}$
(C) $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}+\mathrm{Ag}-\mathrm{NO}_{2} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{NO}_{2}+\mathrm{AgCl}$
(D) $\quad \mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{NaNO}_{2} \longrightarrow \mathrm{CH}_{3}-\mathrm{NO}_{2}+\mathrm{NaCl}$
44. Which of the following compound(s) would result in the formation of isobutene on treatment / warming with alcoholic KOH ?
(A) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$
(B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
(C) $\quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2} \mathrm{Cl}$
(D)

45. In the reaction, $\mathrm{R}-\mathrm{COOAg}+\mathrm{X}_{2} \rightarrow \mathrm{R}-\mathrm{X}+\mathrm{AgX}+\mathrm{CO}_{2}$ the best yield of $\mathrm{R}-\mathrm{X}$ is obtained when :
(A) R - is 3° alkyl group
(B) $\quad X_{2}$ is bromine
(C) R - is 1° alkyl group
(D) $\quad X_{2}$ is iodine
46. In which of the following reactions, meta isomer is the major product?
(A) o-chlorotoluene $+\mathrm{NaNH}_{2}$ in $\mathrm{NH}_{3}(l)$
(B) o-chloroanisole $+\mathrm{NaNH}_{2}$ in $\mathrm{NH}_{3}(l)$
(C) $\quad \mathrm{m}$-chlorotoluene $+\mathrm{NaNH}_{2}$ in $\mathrm{NH}_{3}(l)$
(D) $\quad \mathrm{m}$-chloroanisole $+\mathrm{NaNH}_{2}$ in $\mathrm{NH}_{3}(l)$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

47. Which of the following reaction will give chloroethene?
(A) Thermal decomposition of ethylene dichloride at $600-650^{\circ} \mathrm{C}$.
(B) Acetylene is passed into dilute hydrochloric acid at $65^{\circ} \mathrm{C}$ in the presence of mercuric ions as catalyst.
(C) Ethylene dichloride is heated in presence of 1 equivalent of alc. KOH .
(D) Ethane is heated in presence of chlorine at $400^{\circ} \mathrm{C}$.
48. The reaction of isopropyl bromide with silver nitrite gives :
(A) 1-nitropropane
(B) propane
(C) 2-nitropropane
(D) 2-nitritopropane
49. Which of the following is(are) correct statement(s)?
(A) Rate of reaction of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$ is greater than that of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
(B) Rate of reaction of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$ is greater than that of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{OH}$
(C) Rate of reaction of $\mathrm{Et}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$ is equal to that of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
(D) Rate of reaction of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{SH}$ is greater than that of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{OH}$
50. Which of the following reaction involves neighbouring group participation?
(A)

(B)

(C)

(D)

\qquad
51. Which of the following is/are correct statement:

(B)

 e^{-}density
(C)

all are aromatic
(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

52. Which of the following stability order of anions is/are correct :
(A)

(I)

(II)

(III)

(B)

(II)

(C)

II

$$
\text { I }>\text { II }>\mathrm{III}
$$

(D)

53. Which of the following pairs have same dipole moment
(A)

\&

(B)

\&

(C)
 \&

(D)

\&

54. Which is/are the correct order of electron density in aromatic ring?
(A)

$>$

(B)

$>$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

55. In which cases delocalization of charge is possible?
(A)

(B)
$\stackrel{\ominus}{\mathrm{O}}-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}$
(C) $\quad \stackrel{\ominus}{\mathrm{O}}-\stackrel{\oplus}{\mathrm{P}}\left(\mathrm{CH}_{3}\right)_{3}$
(D) $\quad \stackrel{\ominus}{\mathrm{O}}-\mathrm{B}\left(\mathrm{CH}_{3}\right)_{2}$
56. Observe the following reaction and given products.

In this reaction the structures of reaction intermediate should be :
(A)

(B)

(C)

(D)

57.

Out of the followings which one is/are correct :
(A)

(B)

(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

58. Friedel craft acylation is/are not observed in :
(A)

(B)

(C)

(D)

59. In which of following electrophilic aromatic substitution reaction takes place on left hand side phenyl ring ?
(A)

(B)

(C)

(D)

60. $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph} \xrightarrow{\mathrm{Na} / \mathrm{NH}_{3}} \mathrm{~A} \xrightarrow{\mathrm{HOCl} / \mathrm{H}^{+}} \mathrm{B}$
B is/are :
(A)

(B)

(C)

(D)

61.

What is correct about the given reaction?
(A) It is unimolecular nucleophilic substitution reaction
(B) Major product obtained by rearranged carbocation
(C) It is two step process
(D) Rate of reaction depends on the concentration of alkyl halide and nucleophile
62.

In the above reaction which of the following are correct?
(A) step- 1 is an acid-base reaction
(B) step-2 is an $\mathrm{S}_{\mathrm{N}} 2$ reaction
(C) $\quad \mathrm{X}=\mathrm{n}$-Butane; $\mathrm{Y}=$ aromatic salt
(D) the nucleophile in $2^{\text {nd }}$ reaction is $: \mathrm{Bu}^{\ominus}$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

63.

(A)

(B)
 (C)

(D)

64. Which of the following will give major product by $\mathrm{S}_{\mathrm{N}} 2$?
(A)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SNa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \longrightarrow$
(B)

(C)

(D)

65. Consider the following reaction sequence and choose the correct options.

(A) (A) and (B) are diastereomer's of each other
(B) Upon catalytic hydrogenation (A) and (B) gives same product
(C) \quad Product (C) and (D) are identical
(D) Product (C) and (D) can be separated by fractional distillation
66. Two optically active acyclic compounds X and Y (molecular formula $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$) give following reactions :

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{\mathrm{H}_{2}(1 \text { mole })} \mathrm{W}(\text { achiral }) \\
& Y \xrightarrow{\mathrm{H}_{2}(1 \text { mole })} \mathrm{S}(\text { chiral })
\end{aligned}
$$

Which of the following is/are correct?
(A) $\mathrm{W}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(B) $\mathrm{Y}=\mathrm{CH}_{3}-\underset{\mathrm{Br}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
(C)

(D)

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

MATRIX MATCH TYPE

Each of the following question contains statements given in two columns, which have to be matched. Statements in Column 1 are labelled as (A), (B), (C) \& (D) whereas statements in Column 2 are labeled as p, q, r, s \& . More than one choice from Column 2 can be matched with Column 1.
67. Match the following reaction in list I with appropriate products in list II and select the correct answer using the code given below the lists.

	List I			List II	
(P)			1.	N	
(Q)			2.		
(R)			3.		
(S)			4.		
	$\mathbf{P} \quad \mathbf{Q} \quad \mathbf{R} \quad \mathbf{S}$			P $\quad \mathbf{Q} \quad \mathbf{R}$	R
(A)	$\begin{array}{llll}2 & 4 & 1 & 3\end{array}$	(B)		31	4
(C)	43	(D)		132	4

68. Match the following reaction in list -I with appropriate reaction in list - II and select the correct answer using the code given below the lists:

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

69. Match the following reaction in list -I with appropriate comment in list - II and select the correct answer using the code given below the lists:

	List I		List II
(P)		1.	Nucleophilic substitution
(Q)		2.	Nucleophilic acyl substitution
(R)		3.	Elimination
(S)		4.	Nucleophilic addition

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}		\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(A)	1	4	3	2	(B)	3	4	2	1
(C)	1	4	2	3	(D)	2	4	1	3

70. MATCH THE FOLLOWING:

	Column I		Column II
(P)		(A)	Inversion
(Q)		(B)	Racemization
(R)		(C)	Retention
(S)		(D)	Mixture of inversion and an optically inactive product
		(E)	$\mathrm{S}_{\mathrm{N}} 2$

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

71. MATCH THE FOLLOWING:

	Column I		Column II
(P)	$\mathrm{C}-\mathrm{X}$ is broken in RDS	(A)	E 1 cB
(Q)	Rate of reaction increases to a small extent by the presence of an electron withdrawing group at β-position.	(B)	$\mathrm{S}_{\mathrm{N}} 1$
(R)	$\frac{\mathrm{k}_{\mathrm{H}}}{\mathrm{k}_{\mathrm{D}}}=1$	(C)	$\mathrm{S}_{\mathrm{N}} 2$
(S)	Product formation increases by a large extent by the presence of an electron withdrawing group at β-position.	(D)	E 2

Numerical Value Type

The Answer to the following questions are positive integers of $\mathbf{1 / 2 / 3}$ digits and zero
72. The number of optically active compounds formed on monochlorination of \qquad .
73. How many alkyl chlorides can be used for the preparation of given alkene

74. How many of the following alkyl halides can undergo reaction by $\mathrm{S}_{\mathrm{N}} 2$ mechanism under suitable conditions?

9

10

11

12

13

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

75. Which of the following aryl halides will undergo reaction by bimolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ pathway at the fastest rate?

1

2

3

4

5

6

7

8

9
76. How many optically active bromides are possible with molecular formula $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$?
77.

The molecular weight of the compound (A) is ' $x y$ '.
The sum of x and y is \qquad -.
78. How many of the following alkyl halides form a substitution product in an $\mathrm{S}_{\mathrm{N}} 1$ reaction that is different from that formed in an $\mathrm{S}_{\mathrm{N}} 2$ reaction?

1

2

5

9

6

10

3

7

11

4

8

12

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

79. In how many of the following reactions, the rate of reaction increases by increasing the concentration of nucleophile?
80.
81. In the given reaction, $\xrightarrow[27^{\circ} \mathrm{C}]{\mathrm{Cl}_{2} / \mathrm{hv}}$ ' m ' products. What is the value of ' m '?
82.

 $\xrightarrow[\Delta]{\mathrm{Na} / \text { Ether }}(\mathrm{A})$. In the given reaction, the degree of unsaturation in product (A) is \qquad .
82. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is treated with I_{2} and NaOH to form yellow precipitate of iodoform. Find out sum of stoichiometric coefficients of all reactants of balanced reaction of acetone with I_{2} and NaOH to form iodoform.
83. An ester $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ on reaction with excess of $\mathrm{CH}_{3} \mathrm{MgBr}$ in dry ether followed by acidification produce alcohol $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ as sole organic product. Find out number of carbon atoms in principal chain of ester $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.
84. Identify total number of theoretically possible dichloro products formed in following reaction.

85. Total number of position isomers of tetrachlorocyclobutane which can show geometrical isomerism are :
86. How many butyl bromide can be converted into Grignard reagent followed by their reaction with acid to form nButane.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

87. Consider the following reaction sequence.

How many hyperconjugative structures are possible for intermediate M of above reaction?
88.

Report your answer as XY.
89.
 Alc. KOH Total number of possible alkenes are :
90.

Report your answer as $\mathrm{X} \mid \mathrm{Y}$
91. Consider the following reaction,

Report your answer as X / Y
92. How many p-electrons are involved in resonance in the given structure ?

93. What is percent of sulphur in major product of the following reaction?

94. How many of the following reactions are correctly matched with reaction mechanism ?
1.

2.

; E2
3.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

4.

 ; E2
5.
 $+$
 ; $\mathrm{S}_{\mathrm{N}} 1$
6.
 ; E1CB
7.

8.

95. How many of the following reactions are most likely to proceed through $\mathrm{S}_{\mathrm{N}} 1$ pathway?
1.

2.

3.

5.

7.

9.

4.

6.

8.

10.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

96. How many of the following reactions are correctly labelled with respect to reaction mechanism and stereochemistry of product wherever possible?
97.

$+$

2.

3.

4.

5.

6.

7.

8.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

97. How many of the following reactions are correctly represented ?
98.

2.

$+$

3.

4.

5.

6.

7.

8.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

98. In the following sequence of reactions, number of Nucleophilic substitution is :

99. Rearrangement of carbon skeleton of substrate is possible in which of the following reactions?

EAS (Electrophilic aromatic substitution), electrophilic addition on alkenes, free radical substitution of alkanes,
$\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, E1, E2, E1cB, $\mathrm{S}_{\mathrm{N}} 2 \mathrm{Ar}$
100. Find the number of products (including stereoisomers) formed in the following reaction (consider only major product).

101.

Find the value of (Z).
102. How many compounds are more reactive than benzene towards Nitration?

103. How many of the following groups exert -M effect?

$\ldots . . . \mathrm{NO}_{2}$,

$\ldots . . \stackrel{\oplus}{N}^{+} \equiv \mathrm{N}: ~$,

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

104.

The maximum number of π-electron pairs in direct conjugation with each other is :
105. Number of carbocations which are more stable than $\mathrm{CH}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$ from the following is:
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

106. How many compounds are more reactive than ethene towards electrophilic addition?

107. Calculate total number of alkene products when 3-chloro-3-methyl heptane react with alcoholic KOH and heat.

