1. State and illustrate law of multiple proportions.
(3)

Ans: It states that if two elements combine to form more than one compound, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.

Illustration: Hydrogen combines with oxygen to form two compounds - water and hydrogen peroxide.

Hydrogen + Oxygen \rightarrow Water		
2 g	16 g	18 g
Hydrogen + Oxygen \rightarrow	Hydrogen Peroxide	
2 g	32 g	34 g

Here, the masses of oxygen (i.e. 16 g and 32 g) which combine with a fixed mass of hydrogen (2 g) bear a simple ratio, i.e. 16:32 or 1: 2.
2. (i) Calculate the mass of $\mathrm{CO}_{2}(\mathrm{~g})$ in gram produced by the reaction between 3 mol of $\mathrm{CH}_{4}(\mathrm{~g})$ and 2 mol of $\mathrm{O}_{2}(\mathrm{~g})$ according to the equation : $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(ii) Identify the limiting reagent in this reaction.
[December 2021]
Ans: (i) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
According to the equation, $2 \mathrm{~mol} \mathrm{O}_{2}$ requires only 1 mol of CH_{4} for the complete combustion.
So among 3 moles of CH_{4}, only 1 mol undergoes complete combustion, since there is only 2 mol of O_{2}.
So no. of moles of CO_{2} formed $=1 \mathrm{~mol}$, according to the equation

$$
=44 \mathrm{~g} \mathrm{CO}_{2}
$$

(ii) Here CH_{4} is the limiting reagent, since it is completely consumed.
3. (i) Write Avogadro number.
(ii) How many moles of water molecules are present in 180 g of water?
(Molecular mass of water $=18 \mathrm{~g}$).
Ans: (i) 6.022×10^{23}
(ii) No. of moles = Given mass in gram / Molar mass $=180 / 18=\underline{\underline{10} \mathbf{~ m o l}}$
4. (i) Define Molarity.
(ii) State law of multiple proportions.
[September 2021]
Ans: (i) Molarity is the no. of moles of solute present per litre of the solution.
(ii) It states that if two elements combine to form more than one compound, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.
5. (a) Who proposed the law of conservation of mass?
(b) Illustrate the above law by using a chemical reaction.

Ans: (a) Antoin Lavoisier
(b) Consider the reaction $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(g)$
$12 g \quad 32 g \quad 44 g$
Total mass of reactants $=12+32=44 g$
Total mass of products $=44 \mathrm{~g}$
i.e. Total mass of reactants = Total mass of products. This is law of conservation of mass.
6. Determine the empirical formula of an oxide of iron which has 69.9% iron (Fe) and 30.1% oxygen (O) by mass. [Hint: Atomic mass of $\mathrm{Fe}=55.85$].
(3) [December 2020]

Ans:

Element	Percentage	Atomic mass	Percentage/Atom ic mass	Simple ratio	Simplest whole no. ratio
Fe	69.9	55.85	$69.9 / 55.85=1.25$	$1.25 / 1.25=1$	$1 \times 2=2$
O	30.1	16	$30.1 / 16=1.88$	$1.88 / 1.25=1.5$	$1.5 \times 2=3$

Empirical formula $=\mathrm{Fe}_{2} \mathrm{O}_{3}$
7. (a) Classify the following matter as homogeneous mixture, heterogeneous mixture, element and compounds. gold, air, muddy water, water
(b) Define limiting reagent of a reaction.

Ans: (a) Homogeneous mixture: air
Heterogeneous mixture: muddy water
Element: gold
Compound: water
(b) It is the reagent that limits a reaction or completely used up in a reaction.
8. (a) Hydrogen and oxygen combines to form $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$. Which law of chemical combination is illustrated here?
(b) The balanced chemical equation for combustion of CH_{4} is $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$.

Calculate the amount of water formed by the combustion of 32 g of CH_{4}. (2)
[March 2020]
Ans: (a) Law of multiple proportion

$16 \mathrm{~g} \mathrm{CH}_{4}$ produces 36 g water.
So the amount of water formed by the combustion of $32 \mathrm{~g} \mathrm{CH} 4=36 \times 32 / 16=72 \mathrm{~g}$.
9. Which of the following contains the maximum number of molecules?
a) 1 g N
b) $1 \mathrm{~g} \mathrm{CO}_{2}$
c) 1 g H
d) 1 g NH

Ans: c) $1 g \mathrm{H}_{2}$
(1)
10. Calculate the mass of $\mathrm{SO}_{3}(\mathrm{~g})$ produced, if $500 \mathrm{~g} \mathrm{SO}_{2}(\mathrm{~g})$ reacts with $200 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$ according to the equation: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~S})$. Identify the limiting reagent. (3) [July 2019]
Ans: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~S})$
$128 \mathrm{~g} \quad 32 \mathrm{~g} \quad 160 \mathrm{~g}$
$128 \mathrm{~g} \mathrm{SO}_{2}$ requires 32 g Oxygen for the complete reaction.
So 500 g SO 2 requires $32 \times 500 / 128=125 \mathrm{~g} \mathrm{O}$
Here there is $200 \mathrm{~g} \mathrm{O} \mathrm{O}_{2}$. So SO_{2} is completely used up and hence it is the limiting reagent.
11. Round off 0.0525 to a number with two significant figures.
(1)

Ans: 0.052
12. A reaction mixture for the production of NH_{3} gas contains 250 g of N_{2} gas and 50 g of H_{2} gas under suitable conditions. Identify the limiting reactant if any and calculate the mass of NH_{3} gas produced. (3)
[March 2019]
Ans: Nitrogen reacts with Hydrogen to form ammonia according to the equation,

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
& 28 \mathrm{~g}
\end{aligned} \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

i.e. $28 g \mathrm{~N}_{2}$ requires $6 \mathrm{~g} \mathrm{H}_{2}$ for the complete reaction.

So $250 \mathrm{~g} \mathrm{~N}_{2}$ requires, $6 \times 250 / 28=53.57 \mathrm{~g} \mathrm{H}$.
But here there is only $50 \mathrm{~g} \mathrm{H}_{2}$.
So we have to consider the reverse case.
i.e. $6 \mathrm{~g} \mathrm{H}_{2}$ requires $28 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$.

So $50 \mathrm{~g} \mathrm{H}_{2}$ requires $28 \times 50 / 6=233.33 \mathrm{~g} \mathrm{~N}_{2}$
Here H_{2} is completely consumed. So it is the limiting reagent.
Amount of ammonia formed $=50+233.33=\underline{\underline{\mathbf{2 8}} .33 \mathrm{~g}}$
13. Which among the following measurements contains the highest number of significant figures?
a) $1.123 \times 10^{-3} \mathrm{~kg}$
b) $1.2 \times 10^{-3} \mathrm{~kg}$
c) $0.123 \times 10^{3} \mathrm{~kg}$
d) $2 \times 10^{5} \mathrm{~kg}$ Ans: a) $1.123 \times 10^{-3} \mathrm{~kg}$
(1)
14. State and illustrate the law of multiple proportions. (2)

Ans: It states that if two elements combine to form more than one compound, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.

Illustration: Hydrogen combines with oxygen to form two compounds - water and hydrogen peroxide.

Hydrogen + Oxygen \rightarrow Water		
2 g	16g	18g
Hydrogen + Oxygen \rightarrow Hydrogen Peroxide		
2 g	32 g	34g

Here, the masses of oxygen (i.e. 16 g and 32 g) which combine with a fixed mass of hydrogen $(2 \mathrm{~g})$ bear a simple ratio, i.e. 16:32 or 1: 2.
15. Calculate the amount of $\mathrm{CO}_{2}(\mathrm{~g})$ produced by the reaction of 32 g of $\mathrm{CH}_{4}(\mathrm{~g})$ and 32 g of $\mathrm{O}_{2}(\mathrm{~g})$. (3)
[August 2018]
Ans: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$16 \mathrm{~g} \quad 64 \mathrm{~g} \quad 44 \mathrm{~g} \quad 36 \mathrm{~g}$
$64 \mathrm{~g} \mathrm{O} \mathrm{O}_{2}$ requires 16 g CH 4 for the complete reaction.
So, $32 g \mathrm{O}_{2}$ requires 8 gCH 4 .
$16 \mathrm{~g} \mathrm{CH}_{4}$ combines with $64 \mathrm{~g} \mathrm{O}_{2}$ to form 44 g CO 2 .
Therefore, $8 \mathrm{~g} \mathrm{CH}_{4}$ combines with 32 g Oxygen to form 22 g CO 2 .
16. The number of oxygen atoms present in 5 moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is \qquad
Ans: $30 \times 6.022 \times 10^{23}$ atoms
17. Find the molecular formula of the compound with molar mass $78 \mathrm{~g} \mathrm{~mol}^{-1}$ and empirical formula CH . (2)

Ans: Molar mass $=78 \mathrm{~g} / \mathrm{mol}$
Empirical Formula mass $=12+1=13$
Molecular formula $=$ Empirical formula $\times n$
$n=\frac{\text { Molar mass }}{\text { Empirical formula mass }}=78 / 13=6$
So, Molecular formula $=(\mathrm{CH}) \times 6=\mathrm{C}_{6} \mathrm{H}_{6}$
18. Calculate the mass of oxalic acid dihydrate $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$ required to prepare $0.1 \mathrm{M}, 250 \mathrm{ml}$ of its aqueous solution. (3)
[March 2018]
Ans: Molarmass of Oxalic acid dihydrate $=126$
Molarity $=0.1 \mathrm{M}$
Volume of the solution $=250 \mathrm{~mL}$
Molarity =
Mass of the solute $\times 1000$
Molar mass of the solute x volume of solution in mL
So Mass of the solute $=($ Molarity \times Molar mass of the solute x volume of solution in mL$) / 1000$

$$
=(0.1 \times 126 \times 250 / 1000=3.15 \mathrm{~g}
$$

19. a) NO and NO_{2} are two oxides of nitrogen.
i) Which law of chemical combination is illustrated by these compounds?
ii) State the law. (1)
b) Calculate the mass of a magnesium atom in grams.
c) What is molality?
[July 2017]
Ans: a) i) Law of multiple proportions
ii) It states that if two elements combine to form more than one compound, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.
b) Atomic mass of magnesium $=24 \mathrm{~g}$
i.e. Mass of 6.022×10^{23} atoms of Magnesium $=24 \mathrm{~g}$

So, Mass of one magnesium atom $=24 /\left(6.022 \times 10^{23}\right)=3.98 \times 10^{-23} \mathrm{~g}$
c) Molarity is the no. of moles of solute present per litre of the solution.
20. a) Determine the number of moles present in 0.55 mg of electrons.
i) 1 mole
ii) 2 moles
iii) 1.5 moles
iv) 0.5 mole
b) Give the empirical formula of the following.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}
$$

c) Two elements, carbon and hydrogen combine to form $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$. Identify the law illustrated here. (1)
[March 2017]
Ans: (a) (i) 1 mol (Score 1)
[Explanation: Mass of one electron $=9.1 \times 10^{-28} \mathrm{~g}=9.1 \times 10^{-25} \mathrm{mg}$.
Mass of 1 mol of electron $=9.1 \times 10^{-25} \times 6.022 \times 10^{23} \mathrm{mg}=0.55 \mathrm{mg}$.
So, 0.55 mg of electron $\equiv 1 \mathrm{~mol}$ of electron.]
(b) Empirical formulae are: $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHCl}$.
(Score 2)
(c) Law of multiple proportions
(Score 1)
21. Empirical formula represents the simplest whole number ratio of various atoms present in a compound.
a) Give the relation between empirical formula and molecular formula. (1)
b) An organic compound has the following percentage composition $\mathrm{C}=12.36 \%, \mathrm{H}=2.13 \%, \mathrm{Br}=85 \%$. Its vapour density is 94 . Find its molecular formula.
c) What is mole fraction?

Ans: a) Molecular formula = Empirical formula $\times n$
b)

Element	Percentage	Atomic mass	Percentage/Atom ic mass	Simple ratio	Simplest whole no. ratio
C	12.36	12	$12.36 / 12=1.03$	$1.03 / 1.03=1$	1
H	2.13	1	$2.13 / 1=2.13$	$2.13 / 1.03=2$	2
Br	85	80	$85 / 80=1.06$	$1.06 / 1.03=1$	1

Empirical Formula $=\mathrm{CH}_{2} \mathrm{Br}$
Empirical Formula Mass $(E F M)=12+2+80=94$
Molar mass $(M M)=2 \times$ vapour density $=2 \times 94=188$

$$
n=M M / E F M=188 / 94=2
$$

Molecular formula $=$ Empirical formula $\times n$

$$
\begin{equation*}
=\left(\mathrm{CH}_{2} \mathrm{Br}\right) \times 2=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2} \tag{2}
\end{equation*}
$$

c) Mole fraction is the ratio of the number of moles of a particular component to the total number of moles of solution.
(1)
22. a) When nitrogen and hydrogen combines to form ammonia, the ratio between the volumes of gaseous reactants and products is $1: 3: 2$. Name the law of chemical combination illustrated here.
b) A compound is made up of two elements A and B, has $A=70 \%$ and $B=30 \%$. The relative number of moles of A and B in the compound are 1.25 and 1.88 respectively. If the molar mass of the compound is 160 , find the molecular formula of the compound. (3)
[March 2016]

Ans: a) Gay - Lussac's law of Gaseous volumes
b) The relative number of moles means \%/atomic mass.

Elements	\%	Relative no. of moles	Simple ratio	Simplest whole no. ratio
A	70	1.25	$1.25 / 1.25=1$	2
B	30	1.88	$1.88 / 1.25=$	
1.5	3			

Empirical formula is $A_{2} B_{3}$
(Here at. Mass is not given. But it can be find out from \% composition and the no. of moles as follows)
Atomic mass of $A=\% /$ no. of moles $=70 / 1.25=56$
Atomic mass of $B=\% /$ no. of moles $=30 / 1.88=15.96$
So, emp. Formula mass $=56 \times 2+15.96 \times 3=159.88=160$
$n=$ Mol.mass/Emp. Formula Mass $=160 / 160=1$
Molecular formula $=\left(e m p\right.$. Formula) $\times n=\left(A_{2} B_{3}\right) \times 1=A_{2} B_{3}$
23. 12 g of ${ }^{12} \mathrm{C}$ contains Avogadro's number of carbon atoms.
a) Give the Avogadro's number.
(1)
b) The mass of 2 moles of ammonia gas is
(i) 2 g
(ii) $1.2 \times 10^{22} g$
(iii) 17 g
(iv) 34 g
(1)
c) Calculate the volume of ammonia gas produced at STP when 140 g of nitrogen gas reacts with 30 g of hydrogen gas. (Atomic mass: $\mathrm{N}=14 \mathrm{u}, \mathrm{H}=1 \mathrm{u}$) (2) [October 2015]
Ans: a) 6022×10^{23}
b) (iv) $34 g$
c) No. of moles of $N_{2}=$ Mass in gram/ molar mass $=140 / 28=5 \mathrm{~mol}$

No. of moles of $\mathrm{H}_{2}=$ Mass in gram/ molar mass $=30 / 2=15 \mathrm{~mol}$
N_{2} combines with H_{2} to form NH_{3} according to the equation: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)$
From the equation, it is clear that 1 mol nitrogen reacts with $3 \mathrm{~mol} \mathrm{H}_{2}$ to form $20 \mathrm{~mol} \mathrm{NH}_{3}$.
So, $5 \mathrm{~mol} \mathrm{~N}_{2}$ reacts with $15 \mathrm{~mol}_{2}$ to form $10 \mathrm{~mol} \mathrm{NH}_{3}$.
Volume of 1 mol of ammonia at STP $=22.4 \mathrm{~L}$
So volume of 10 mol of ammonia at STP $=224 \mathrm{~L}$
24. 'A given compound always contains exactly the same proportion of elements by weight.'
a) (i) Name the above law. (1)
(ii) Write the name of the Scientist who proposed this law. (1)
b) Calculate the number of molecules in each of the following:
i) $1 \mathrm{~g} \mathrm{~N}_{2}$ ii) $1 \mathrm{~g} \mathrm{CO}_{2}$ (Given that N_{A} is 6.022×10^{23}, molecular mass of $\mathrm{N}_{2}=28$ and $\mathrm{CO}_{2}=44$)
[March 2015]
Ans: a) (i) Law of definite (constant) proportions
(ii) Joseph Proust
(1)
b) No of molecules $=$ Given mass in gram \times NA

Molar mass
(i) $\left(1 \times 6.022 \times 10^{23}\right) / 28=0.0357 \times 10^{23}$ molecules
(ii) $\left(1 \times 6.022 \times 10^{23}\right) / 44=0.0227 \times 10^{23}$ molecules
25. a) How many moles of dioxygen are present in 64 g of dioxygen? (Molar mass of dioxygen is 32). (1)
b) The following data were obtained when dinitrogen $\left(\mathrm{N}_{2}\right)$ and dioxygen $\left(\mathrm{O}_{2}\right)$ react together to form different compounds.

Mass of N_{2}	Mass of O_{2}
14 g	16 g
14 g	32 g
28 g	32 g
28 g	80 g

Name the law of chemical combination obeyed by the above experimental data. (1)
c) Define empirical formula. How is it related to the molecular formula of a compound?
[March 2014]
Ans: a) No. of moles $=$ Mass in gram $/$ Molar mass $=64 / 32=2$ moles
b) Law of multiple proportion
(1)
c) Empirical formula is the simplest formula which gives only the ratio of different elements present in the compound. It is related to molecular formula as Molecular formula $=$ Empirical formula $\times n$
26. Hydrogen combines with oxygen to form two different compounds, namely water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$.
a) Which law is obeyed by this combination?
b) State the law.
(2)
c) How many significant figures are present in the following?
i) 0.0025
ii) 285 (1)
[August 2014]
Ans: a) Law of Multiple proportions
b) It states that if two elements combine to form more than one compound, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.
c) i) 2
ii) 3
(1)
27. a) Atoms have very small mass and so usually the mass of atoms are given relative to a standard called atomic mass unit. What is atomic mass unit (amu)? (1)
b) In a reaction $A+B_{2} \rightarrow A B_{2}$, identify the limiting reagent in the reaction mixture containing $5 \mathrm{~mol} A$ and 2.5 mol B.
c) Calculate the mass of NaOH required to make 500 ml of 0.5 M aqueous solution. (Molar mass of $\mathrm{NaOH}=$ 40)
[October 2013]
Ans: a) $1 / 12^{\text {th }}$ the mass of a C^{12} atom is called atomic mass unit. (1)
b) B
c) Molarity =

Mass of the solute $\times 1000$
Molar mass of the solute x volume of solution in mL
So, Mass of the solute $=($ Molarity \times Molar mass of the solute \times volume of solution in mL$) / 1000$

$$
\begin{equation*}
=(0.5 \times 40 \times 500) / 1000=10 \mathrm{~g} \tag{2}
\end{equation*}
$$

28. The mole concept helps in handling a large number of atoms and molecules in stoichiometric calculations.
a) Define 1 mol .
(1)
b) What is the number of hydrogen atoms in 1 mole of methane $\left(\mathrm{CH}_{4}\right)$?
c) Calculate the amount of carbon dioxide formed by the complete combustion of 80 g of methane as per the reaction:

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { (Atomic mass of } \mathrm{C}=12.01 \mathrm{u}, \mathrm{H}=1.008 \mathrm{u}, \mathrm{O}=16 \mathrm{u})
\end{aligned} \text { (2) } \quad \text { [March 2013] }
$$

Ans: a) 1 mol is the amount of substance that contains as many particles as there are atoms in exactly 12 g C^{12} isotope. (1)
b) 1 mol CH 4 contains 4 mol hydrogen $=4 \times 6.022 \times 10^{23} \mathrm{H}$ atoms.
c) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

According to the equation, $16 \mathrm{~g} \mathrm{CH}_{4}$ gives $44 \mathrm{~g} \mathrm{CO}_{2}$
So $80 \mathrm{~g} \mathrm{CH}_{4}$ gives $44 \times 80 / 16=220 \mathrm{~g} \mathrm{CO} 2$
29. a) Mole is a very large number to indicate the number of atoms, molecules etc. Write another name for one mole.
(1)
b) i) How the molecular formula is different from that of empirical formula?
ii) An organic compound on analysis gave the following composition. Carbon $=40 \%$, Hydrogen $=6.66 \%$ and oxygen $=53.34 \%$. Calculate its molecular formula if its molecular mass is 90. (2) [September 2012] Ans: a) Avogadro's Number or Avogadro's constant (1)
b) (i) Empirical formula is the simplest formula which gives only the ratio of different elements present in the compound. But molecular formula is the actual formula that gives the exact number of different elements present in the compound.
(ii)

Element	Percentage	Atomic mass	Percentage/Atom ic mass	Simple ratio	Simplest whole no. ratio
C	40	12	$40 / 12=3.33$	$3.33 / 3.33=1$	1
H	6.66	1	$6.66 / 1=6.66$	$6.66 / 3.33=2$	2
O	53.34	16	$53.34 / 16=3.33$	$3.33 / 3.33=1$	1

Empirical Formula $=\mathrm{CH}_{2} \mathrm{O}$
Empirical Formula Mass $($ EFM $)=12+2+16=30$
Molar mass (MM) = 90

$$
n=M M / E F M=90 / 30=3
$$

Molecular formula $=$ Empirical formula $\times n$

$$
\begin{equation*}
=\left(\mathrm{CH}_{2} \mathrm{O}\right) \times 3=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \tag{2}
\end{equation*}
$$

30. The combination of elements to form compounds is governed by the laws of chemical combination.
a. Hydrogen combines with oxygen to form compounds, namely water and hydrogen peroxide. State and illustrate the related law of chemical combination.
b. What is mean by limiting reagent in a chemical reaction?
c. 28 g of nitrogen is mixed with 12 g of hydrogen to form ammonia as per the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$. Which is the limiting reagent in this reaction?
(1) [March 2012]

Ans: a) Law of multiple proportions (Answer of Qn. No. 6)
(2)
b) A reagent that is completely consumed in a reaction.
(1)
c) No . of mol of $\mathrm{N}_{2}=28 / 28=1 \mathrm{~mol}$

No . of mol of $\mathrm{H}_{2}=12 / 2=6 \mathrm{~mol}$.
Here N_{2} is completely used up. So it is the limiting reagent.
31. The laws of chemical combination govern the formation of compounds from elements.
a) State the law of conservation of mass. Who put forward this law? (11/2)
b) The following data are obtained when dinitrogen and dioxygen react together to form different compounds.

SI. No.	Mass of dinitrogen (in $\mathrm{g})$	Mass of dioxygen (in $\mathrm{g})$
1	14	16
2	14	32
3	28	48
4	28	80

Which law of chemical combination is illustrated by the above experimental data? Explain? (21/2)
Ans: a) It states that matter can neither be created nor destroyed. Or, in a chemical reaction, the total mass of reactants = the total mass of products. This law was put forward by Antoine Lavoisier.
b) Law of Multiple proportion (See the answer of Qn. No. 6)
32. The laws of chemical combination are the basis of the atomic theory.
a) Name the law of chemical combination illustrated by the pair of compounds, CO and CO_{2}.
b) State and explain the law of conservation of mass.
(11/2)
c) Calculate the molarity of a solution containing 8 g of NaOH in 500 mL of water. ($11 / 2$) [March 2011]

Ans: a) Law of multiple proportions
b) It states that matter can neither be created nor destroyed. Or, in a chemical reaction, the total mass
of reactants $=$ the total mass of products.
Consider the reaction $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Here 4 g of H_{2} combines with 32 g of O_{2} to form 36 g of water.
Total mass of reactants $=4+32=36 \mathrm{~g}$
Total mass of products $=36 \mathrm{~g}$
c) Molarity =

Mass of the solute $\times 1000$
Molar mass of the solute x volume of solution in mL

$$
\begin{equation*}
=(8 \times 1000) / 40 \times 500=0.4 \mathrm{M} \tag{1}
\end{equation*}
$$

33. One mole is the amount of substance that contains as many particles as $12 \mathrm{~g} \mathrm{of} \mathrm{C}^{12}$ isotope of carbon.
a) What do you mean by molar mass of a compound?
b) Calculate the number of moles in 1 L of water (Density of water $1 \mathrm{~g} / \mathrm{mL}$). Also calculate the number of water molecules in 1 L water. (3)
[September 2010]
Ans: a) It is the mass of 1 mol of any substance. (1)
b) Since density of water $=1 \mathrm{~g} / \mathrm{mL}, 1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ (mass = density \times volume)

No. of moles $=$ Mass in gram $/$ Molar mass $=1000 / 18=55.55 \mathrm{~mol}$
No of molecules $=$ no. of moles $\times N_{A}=55.55 \times 6.022 \times 10^{23}$ molecules .
34. If the mass percent of various elements of a compound is known, its empirical formula can be calculated.
a) What is mass percent?
(1)
b) A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molecular mass is 98.96. What are the empirical and molecular formulae?
(3) [March 2010]

Ans: a) Mass $\%=\frac{\text { Mass of solute } \times 100}{\text { Mass of solution }}$
OR, Mass percent = Mass of that element in the compound $x 100$
Molar mass of the compound
b)

Element	Percentage	Atomic mass	Percentage/Atom ic mass	Simple ratio	Simplest whole no. ratio
C	24.27	12	$24.27 / 12=2.02$	$2.02 / 2.02=1$	1
H	4.07	1	$4.07 / 1=4.07$	$4.07 / 2.02=2$	2
Cl	71.65	35.5	$71.65 / 35.5=2.02$	$2.02 / 2.02=1$	1

$$
\begin{align*}
& \text { Empirical Formula }=\mathrm{CH}_{2} \mathrm{Cl} \\
& \text { Empirical Formula Mass }(E F M)=12+2+35.5=49.5 \\
& \text { Molar mass }(M M)=98.96 \\
& \quad n=M M / E F M=98.96 / 49.5=2 \\
& \begin{aligned}
\text { Molecular formula } & =\text { Empirical formula } \times n \\
& =\left(\mathrm{CH}_{2} \mathrm{Cl}\right) \times 2=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}
\end{aligned}
\end{align*}
$$

35. Calculate the number of moles of oxygen required to produce 240 g of MgO by burning Mg metal. (Atomic mass $\mathrm{Mg}=24, \mathrm{O}=16$)
[March 2009]
Ans: Here mass of $\mathrm{MgO}=240 \mathrm{~g}$
Molecular mass of $\mathrm{MgO}=24+16=40 \mathrm{~g} / \mathrm{mol}$
No. of moles of $\mathrm{MgO}=$ Mass of $\mathrm{MgO} / \mathrm{Molar}$ mass of $\mathrm{MgO}=240 / 40=6 \mathrm{~mol}$
The chemical equation for the burning of Mg metal can be represented as:
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
i.e. 2 mol MgO require $1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$

So, 6 mol MgO require $1 / 2 \times 6=3 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$. (4)
36. One gram atom of an element contains 6.02×10^{23} atoms.
a) Find the number of oxygen atoms in 4 g of O_{2}.
b) Which is heavier, one oxygen atom or 10 hydrogen atoms?
(1) [February 2008]

Ans: a) No. of moles of $\mathrm{O}_{2}=4 / 32=0.125 \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ contains $2 \times 6.022 \times 10^{23}$ Oxygen atoms.
So, $0.125 \mathrm{~mol} \mathrm{O}_{2}$ contains $0.125 \times 2 \times 6.022 \times 10^{23}$ Oxygen atoms
b) Mass of one oxygen atom $=16 u$

Mass of 10 hydrogen atoms $=10 u$
So one oxygen atom is heavier.
(1)
\#

