Final Step - A | Chemistry

Stoichiometry & Redox Reaction

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1.	In whic	h of the following r	eactions H	I2O2 acts as a reducin	ng agent?						
	1.	$H_2O_2 + 2e^- + 2$	$H^+ \longrightarrow$	2H ₂ O	2.	$H_2O_2 - 2e^-$ —	$\rightarrow O_2 + 2$	$2H^+$			
	3.	$H_2O_2 + 2e^-$	$\rightarrow 20H^{-}$		4.	$H_2O_2 + 2OH^$	- 2e ⁻	$\rightarrow O_2 + 2H_2O$			
	(A)	1,2	(B)	3,4	(C)	1, 3	(D)	2,4			
2.	What p	roduct are expected	from the o	disproportionation re	action of l	hypochlorous acid ?					
	(A)	HClO ₃ & Cl ₂ O	(B)	HClO ₂ & HClO ₄	(C)	HCl & Cl ₂ O	(D)	HCl & HClO ₃			
3.	Which	of the following che	emical read	ctions depicts the oxi	idizing bel	dizing behaviour of H ₂ SO ₄ ?					
	(A)	2 HI + H $_2$ SO $_4$ —	\longrightarrow I ₂ +S	$O_2 + 2H_2O$	(B)	(B) $Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O$					
	(C)	$NaCl + H_2SO_4 -$	—→ NaH	$ISO_4 + HCl$	(D)	$2PCl_5 + H_2SO_4$	$2PCl_5 + H_2SO_4 \longrightarrow 2POCl_3 + 2HCl + SO_2Cl_2$				
4.	The ox	idation state of Cr in	n [Cr(NH	$_{3})_{4}Cl_{2}]^{+}$ is :							
	(A)	0	(B)	+1	(C)	+2	(D)	+3			
5.	MnO_4^-	is a good oxidizing	agent in c	lifferent medium cha	anging to :						
	MnO_4^-	$\longrightarrow Mn^{2+}$; Mn	$0_4^- \longrightarrow$	$MnO_4^{2-}; MnO_4^{-}$	$\rightarrow MnO_2$; $MnO_4^- \longrightarrow Mn$	1 ₂ O ₃				
	Change	es in oxidation numb	er respect	ively, are :							
	(A)	1, 3, 4, 5	(B)	5, 4, 3, 2	(C)	5, 1, 3, 4	(D)	2, 6, 4, 3			
6.	Which	of the following rea	ction is po	ossible at anode ?							
	(A)	$F_2 + 2e^- \longrightarrow 2$	$2F^{-}$		(B)	$2H + + \frac{1}{2}O_2 + 2$	$e^{-} \longrightarrow$	H ₂ O			
	(C)	$2Cr^{3+} + 7H_2O -$	$\longrightarrow Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2$	$D_7^{2-} + 14H^+ + 6e^-$	(D)	None of the abov	e				
7.	A meas	sured temperature or	n Fahrenhe	eit scale is 200 °F. W	hat will th	nis reading be on Ce	lsius scale	?			
	(A)	40°C	(B)	94°C	(C)	93.3°C	(D)	30°C			
8.		-			is equal t	to Avogadro numbe	r. Which o	of the following element			
	contain (A)	s the greatest number 4g He	er of atom (B)	s ? 46g Na	(C)	0.40g Ca	(D)	12g He			
		C		0	, í	U		e			
9.					molecules	s. Number of molect	ules of H	₂ SO ₄ present in 100 mL			
		M H_2SO_4 solution				22					
	(A)	·			(B)	6.022×10^{23} molecules					
	(C)	1×10^{23} molecul	es		(D)	12.044×10^{23} m	olecules				

If the density of a solution is 3.12 g mL^{-1} , the mass of 1.5 mL solution in significant figure is 10. 4680×10^{-3} g (A) 4.7g **(B) (C)** 4.680g **(D)** 46.80g 11. Which of the following statements about a compounds is incorrect ? (A) A molecule of a compound has atoms of different elements **(B)** A compound cannot be separates into its constituent elements by physical methods of separation **(C)** A compound retains the physical properties of its constitution elements **(D)** The ratio of atoms of different elements in a compound is fixed 12. Which of the following statements indicates that law of multiple proportion is being followed. Sample of carbon dioxide taken from any source will always have carbon and oxygen in the ratio 1:2 (A) **(B)** Carbon forms two oxides namely CO₂ and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1 **(C)** When magnesium burns in oxygen, the amount of magnesium taken for the reaction is equal to the amount of magnesium in magnesium oxide formed **(D)** At constant temperature and pressure 200mL of hydrogen will combine with 100 mL oxygen to produce 200 mL of water vapour One mole of oxygen gas at STP is equal to . *13. 6.022×10^{23} molecules of oxygen 6.022×10^{23} atoms of oxygen (A) **(B) (C)** 16g of oxygen 32g of oxygen **(D)** *14. Which of the following solutions have the same concentration? 20 g of NaOH in 200 mL of solution 0.5 mol of KCl in 200 mL of solution (A) **(B)** (C) 40 g of NaOH in 100 mL of solution **(D)** 20 g of KOH in 200 mL of solution *15. Which of the following terms are unitless ? (A) Molality **(B) (C)** Mole fraction **(D)** Mole percent Molarity *16. One of the statements of Dalton's atomic theory is given below: "Compounds are formed when atoms of different elements combine in a fixed ratio". Which of the following laws is not related to this statement? (A) Law of conservation of mass **(B)** Law of definite proportions (C) Law of multiple proportions **(D)** Avogadro law This sulphate reacts differently with iodine and bromine in the reactions given below : $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$ 17. $S_2O_3^{2-} + Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 2Br^- + 10H^+$ Which of the following statements justifies the above dual behaviour of thiosulphate ? (A) Bromine is a stronger oxidant than iodine **(B)** Bromine is a weaker oxidant than iodine (C) Thiosulphate undergoes oxidation by bromine and reduction by iodine in the reactions. Bromine undergoes oxidation and iodine undergoes reduction in these reactions. **(D)** 18. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect ? The oxidation number of hydrogen is always +1 (A) **(B)** The algebraic sum of all the oxidation numbers in a compound is zero An element in the free or the uncombined state bears oxidation number zero **(C)** In all its compounds, the oxidation number of fluorine is -1**(D)** 19. In which of the following compounds, an element exhibits two different oxidation states. (A) NH₂OH **(B)** NH₄NO₃ **(C)** N_2H_4 **(D)** N₂H 20. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number ? $3d^{5}4s^{2}$ $3d^14s^2$ $3d^34s^2$ $3d^{5}4s^{1}$ (A) **(B) (C) (D)**

21.	Identify dis	sproportionation	reaction :								
	-	$CH_4 + 2O_2 \longrightarrow$		H ₂ O	(B)	$CH_4 + 4Cl_2 -$	$\longrightarrow CCl_4 +$	4HCl			
		$2F_2 + 2OH^-$	-	-	(D)	. 2	•	$\overline{5} + NO_{\overline{3}} + H_2O$			
*22.		he following state 2 KClO ₃ $\rightarrow 2$ KCl		(are) not true abou	it the follow	ving decomposit	ion reaction?				
	(C) (Potassium is unde Dxygen is reduced None of the specie	d	dation rgoing oxidation o	(B)	Chlorine is un	dergoing oxi	dation			
*23.	Identify the	e correct statemer	nt (s) in rel	ation to the follow	ing reactio	n: Zn + 2HCl	\rightarrow ZnCl ₂ + l	H ₂			
	(A) Z	Zinc is acting as a Hydrogen ion is a	n oxidant		(B) (D)	Chlorine is ac Zinc is acting	ting as a redu	ıctant			
*24.	The exhibition of various oxidation states by an element is also related to the outer orbital electronic configuration of atoms. Atom(s) having which of the following outermost electronic configurations will exhibit more than one oxida state in its compounds.										
	(A)	$3s^1$	(B)	$3d^14S^2$	(C)	$3d^24s^2$	(D)	$3s^2 3p^3$			
Reaso	oning Type	Questions for	25 - 26								
(A) (B) (C) (D)	Both A and A is true b			rect explanation of correct explanation							
25.	Assertion (A) : Among halogens F₂ is the best oxidant.Reason (R) : F is the most electronegative atom.										
26.	Assertion Reason (R	oxidising	agent.	veen potassium p anganese changes	-	-	-	ermanganate ior	ns act as		
27.	hydrocarbo		ve upon c (B)	ombustion, 0.72 g	g of water (C)	and 3.08 g of C ₆ H ₅	CO ₂ . The e	mpirical formu C7H8	la of the		
28.	The densit molarity of		epared by	dissolving 120 g o					/mL. The		
20									,		
29.	(Molar ma	-	(B)	e crystals require 0.45 g	(C)	22.05 g	ы 0.6 М м (D)	2.2 g	ution 1s:		
30.	H ₂ SO ₄ . The presence of (A) (B) H ₂ SO ₄ .	te titration gives f HCl because HC Gets oxidised by of Furnishes H ⁺ ions	unsatisfac Cl : oxalic acid in addition	n to those form oxa	carried ou			•			
	(C) H	Reduces permang	anate to M	\ln^{2+}	(D)	Oxidises oxal	ic acid to carl	bon dioxide and	water		
31.	In the react	tion : $2Al(s) + 6$	HCl(aq) –	$\longrightarrow 2Al^{3+}(aq) +$	6Cl ⁻ (aq)+	-3H ₂ (g)					
	(B) 3 (C) 6	33.6 L H ₂ (g) is pr 57.2 L H ₂ (g) at S	oduced T a TP is produ	every 3L H ₂ (g) pr and P for every mo- uced for every mo- uced for every mol-	le Al that r le Al that r	eacts					

32.		onsider that 1/6, in p f a substance will :	blace 1/12	, mass of carbon atc	om is take	n to be the	relative a	tomic ma	ass unit, the mass of one
	(A) (C)		he molecu	lar mass of the subs	tance	(B) (D)	Remain Decreas	unchange e twice	ed
33.		olume of hydrogen g mass 10.8) from the		-			in obtaini	ng 21.6 g	of elemental boron
	(A)	89.6 L	(B)	67.2 L	(C)	44.8 L		(D)	22.4 L
34.		rganic compound of a can be :	molar mas	ss 108 g mol ⁻¹ C, H	and N ato	ms are pres	sent in 9:	1:3.5 by	weight. Molecular
	(A)	C ₆ H ₈ N ₂	(B)	C7H10N	(C)	C5H6N3		(D)	$C_4H_{18}N_3$
35.	In the r	eaction : $2Ag + 2H_2$	so ₄ ——	$\rightarrow Ag_2SO_4 + 2H_2O_4$	+ SO ₂ . Su	ulphuric ac	id acts as	:	
	(A) (D)	an oxidizing agen an acid as well as		a reducing agent	(C)	a catalys	st		
36.	What is	s the equivalent weig	ht of FeS0	O4 in the following	reaction	1?			
		$\operatorname{FeSO}_4 \longrightarrow \operatorname{Fe}_2$	$(SO_4)_3$						
	(A) $(M = m)$	M/2 nolecular weight of F	(B) eSO ₄)	2M	(C)	М		(D)	M/4
				_			O 		O
37.	Oxidat	on state of sulphur a	toms in S	$_4O_6^{2-}$ from left to ri	ght respec	tively are :	∩O – S O	- S - S -	- S - O 0
	(A)	+6, 0, 0, +6	(B)	+3, +1, +1, +3	(C)	+5, 0, 0,	+5	(D)	+4, +1, +1 , +4
38.	Select	he correct statement	in the foll	owing reaction :	NH ₄ N	$O_2 \longrightarrow N$	$N_2 + 2H_2G$)	
	(A)	Oxidation number	r of N has	changed from -2 to	+2				
	(B)	Oxidation number	r of N in 1	$\rm NH_4^+$ changed from	-3 to 0 at	nd that in 1	NO_2^- char	nged from	1 + 3 to 0
	(C) (D)	Oxidation number No change	r of N in 1	$\rm NH_4^+$ changed from	+ 1 to 0 a	and that in	NO_2^- cha	nged fror	n – to 0
39.	1 mole	of FeC2O4 is oxidize	ed by x mo	ples of $Cr_2O_7^{2-}$ in a	cidic medi	ium, x is :			
	(A)	3	(B)	1.5	(C)	0.5		(D)	1.0
*40.	0.1 mo (A)	le of NaHC2O4 is : Neutralized by 0.1	1 mole of	NaOH	(B)	Neutrali	zed by 0.0	5 mole of	f Ca(OH) ₂
	(C)	Oxidized by 0.04	mole of K	MnO4/H ⁺	(D)	Oxidized	d by 0.02 i	mole of K	2MnO4/OH ⁻
41.		s the mass of the pred n ? (Ag = 107.8, N =	-			olution of A	AgNO3 is	mixed wi	th 50 mL of 5.8 % NaCl
	(A)	3.5 g	(B)	7 g	(C)	14 g		(D)	28 g
42.	-	ardo number NA, is c	-		ol^{-1} to 6.0	022×10^{20}	mol^{-1} , th	is would	change :
	(A) (B)	the mass of one m		bon s to each other in a b	valanced e	auation			
	(C)	the ratio of element	nts to each	n other in a compour		quation			
	(D)	the definition of n							
43.	-	masses of H_2 , O_2 arons. The ratio of the					olume V	at temper	rature 27°C in identical
	(A)	8 : 16 : 1	volumes (n gases 112 . O2 . Ille	(B)	16 : 8 : 1	l		
	(C)	16:1:2			(D)	8:1:2			

44.	6.02 × (A)	10 ²⁰ molecules of u 0.001 M	rea are pro (B)	esent in 100 mL of its 0.1 M	solution. (C)	The concentration 0.02 M	of solutior (D)	n is : 0.01 M
45.	10 g o	f hydrogen and 64 n will be :			. ,		. ,	f water produced in this
	(A)	3 mol	(B)	4 mol	(C)	1 mol	(D)	2 mol
46.	An eler	nent, X has the following 200 X : 90%	owing isot ¹⁹⁹ X : 3	· ·	0%			
	The we (A)	ighted average ator 201 amu	nic mass c (B)	of the naturally-occurr 202 amu	ing eleme (C)	ent X is closed to : 199 amu	(D)	200 amu
47.	The ma (A) (C)	ximum number of 1 15 L of H ₂ gas at 0.5 g of H ₂ gas		is present in:	(B) (D)	5 L of N ₂ gas at 10 g of O ₂ gas	STP	
48.	Given t (A) (C)	he numbers: 161 cr 3, 3 and 4 respec 3, 4 and 5 respec	tively	m, 0.0161 cm. The nu	(B) (D)	significant figures f 3, 4 and 4 respec 3, 3 and 3 respec	ctively	e numbers is :
49.				iron by weight. The weight of Fe is 56) pre 6				is approximately 67200. s: 2
50.		reaction, 4NH _{3(g)} + pletion : All the oxygen v 1.0 mole of H ₂ O	vill be con	sumed	when 1 (B) (D)	mole of ammonia a 1.0 mole of NO All the ammonia	will be pro	
51.	At S.T. (A)	P. the density of CO 6.87	Cl4 vapour (B)	in g/L will be nearest 3.42	to : (C)	10.26	(D)	4.57
52.	One lit	re hard water contai	ns 12.00 r	ng Mg ²⁺ . Milli-equiva	lents of v	washing soda requi	red to remo	ove its hardness is :
	(A)	1	(B)	12.16	(C)	1×10^{-3}	(D)	12.16×10^{-3}
53.	The pai (A)	r of compounds tha FeCl ₃ , SnCl ₂	t can exis (B)	t together is : HgCl2, SnCl2	(C)	FeCl ₂ , SnCl ₂	(D)	FeCl ₃ , KI
54.	I.	$H_2O_2 + O_3$	\rightarrow H ₂ O +	20 ₂	II.	$H_2O_2 + Ag_2O -$	$\longrightarrow 2Ag$	$H_2O + O_2$
			d reducing	ove reactions is respec g in II	-	reducing in I and oxidizing in both	-	; in II
55.		ture of potassium bes maximum chan S			(C)	acid is heated. D	uring the	reaction which element
56.				to oxidize one mole				
200	(A)	7.5 moles	(B)	0.2 moles	(C)	0.6 moles	(D)	0.4 moles
57.				aboviour of branin-		ation airon halor-	. /	$Br_2 \longrightarrow HOBr + HBr$
57.	(A) (C)	Proton acceptor Oxidised only			(B) (D)	Both oxidised ar Reduced only	-	-
58.		• •		ood oxidizing agent i ize completely a 20 m				0.15 M alkaline solution the reaction:
		NaOCl + NaC	$CrO_2 + Na$	$OH \rightarrow NaCl + Na_2CrC$	$D_4 + H_2C$)		
	(A)	80 ml	(B)	40 mL	(C)	20 mL	(D)	10 mL

5

50	10 T				110 1 6/	1/0 50 N M (N= 1.4°	· I' I' II				
59.	is :	of H_2O_2 solution	(volume str	ength = x) require	red 10 mL of (1/0.56) N Min	O_4 solution in	acidic medium. Hence, <i>x</i>				
	(A)	0.56	(B)	5.6	(C)	0.1	(D)	10				
60.	Which	of the following	species conta	in an element in	an oxidation	state that is not	a whole numbe	er?				
	(A)	VO_{4}^{3-}	(B)	Mn ₂ O ₃	(C)	$S_4O_6^{2-}$	(D)	Cl ₂ O ₇				
			In	teger Answe	er Type Qu	estions						
	The Ar	nswer to the	following	questions a	are positiv	e integers o	of 1/2/3 dig	its and zero				
61.	10 gm	CaCO ₃ was s	trongly hea	ted and CO ₂	liberated was	absorbed in	1000 ml of 0.	5M NaOH. Assuming				
	90% p	ourity of CaCO	3. How mu	ch solution of	0.5 M HCl ii	n ml would be	e required to a	react with the solution				
	of the	alkali to reach p	ohenolphtha	lein end point	?							
62.	The e	quation for com	plete comb	ustion of meth	anol is 2CH	$_{3}$ OH(1)+3O ₂	$(g) \rightarrow 2CO_2$	$(g) + 4H_2O(l)$. If 64g				
	of CH_3OH is combined with 44.8L of O_2 . measured at STP, the number of moles of CO_2 which can be											
	produ	ced is $\frac{x}{3}$. Find	the value of	x.								
63.		-	-		•	•		tration of 0.080 mol/L				
	in his	gastric juice. It	is possible	to neutralize t	his acid with	n aluminium h	ydroxide, Al	$I(OH)_3$, which reacts				
		ICl according to					c	1 .1 .				
								e per day, the amount				
		minium hydroxi	de in gm m	ust be consum	e per day to	counteract the	e acid is 624	$\times 10^{-x}$. Find the value				
64.	of <i>x</i> . Find ($\mathbf{p} + \mathbf{q}) - (\mathbf{a} + \mathbf{b})$	in the chem	ical reaction:								
04.		$O_4^- + b C_2 O_4^{2-} +$			a COa							
		p & q are sm	2 1	2								
(5	_		_	-	-	$\int C O^{2-}$	· 11. 1 4.	de la la dia a Deviana				
65.								the solution. Barium				
	chrom	ate is filtered, w	vashed and	dissolved in su	uitable acid to	o convert Cr(D_4^{2-} into Cr_2	O_7^{2-} . An excess of KI				

- is added, the liberated iodine requires 90 ml of 0.2 M $Na_2S_2O_3$ for complete reaction. Find the percentage purity of the sample.
- 66. The number of moles of ferrous oxalate oxidized by one mole of aluminium per manganate in acidic medium is —
- 67. The formula weight of an acid is 82g. 100 cm^3 of a solution of this acid containing 39 g of the acid per litre were completely neutralized by 95 cm³ of aqueous NaOH containing 40 g of NaOH per litre. What is the basicity of the acid?
- 68. 3gm mixture of SiO_2 and Fe_2O_3 on very strong heating leaves a residue weighing 2.92 gm because of conversion of Fe_2O_3 to Fe_3O_4 liberating oxygen gas. What is the percentage by mass of SiO_2 in original mixture.
- **69.** A mixture of gas X (mol wt 16) and gas Y (mol. wt 28) in the mole ratio a : b has a mean molecular weight 20. What would be mean molecular weight if the gases are mixed in the ratio b : a under identical conditions (gases are non-reacting)?

- 70. Two elements A and B combine to form compound X and Y. For the fix mass of A, masses of B combined for the compounds X and Y are in 3 : 7 ratio. If in compound X, 4 gm of A combines with 12 gm B, then in compound Y, 8 gm of A will combine with gm of B.
- 71. A certain oxide of iron contains 2.5 grams of oxygen for every 7.0 grams of iron. If it is regarded as a mixture of FeO and Fe_2O_3 in the weight ratio a : b. If a is 9, than what is b?
- 72. 500 ml of 0.2M Na₂SO₄ solution is mixed with 100 ml, 17.1% (w/v) Al₂(SO₄)₃ solution and resulting solution is diluted to 5 times. The molarity of SO₄²⁻. ions in the final solution is x/12M. Find the value of x.
- 73. H_2 gas is often used as reducing gas. In a particular set up 17.4 gm of MnO₂ on reacting with excess of Hydrogen gas gives water and new oxide Mn_xO_y. Such that mass of the oxide obtained is 12.6 gm. What will be value of y if x is 2.
- 74. If M represents molecular mass of Mn_3O_4 , the equivalent mass of Mn_3O_4 is $\frac{x}{26}M$, if it undergoes disproportionation reaction as shown-

 $Mn_3O_4 \longrightarrow MnO_4^- + Mn^{2+}$, find the value of *x*.

75. 50 ml 0.1M CuSO₄ are mixed with 50 ml of 0.1 M KI. The number of moles of electrons involved in the reaction is 2.5×10^{-x} . Find the value of x.

Atomic Structure

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- *1. Which of the following conclusions could be derived from Rutherford's α -particle scattering experiment?
 - (A) Most of the space in the atoms is empty
 - (B) The radius of the atom is about 10^{-10} m while that of nucleus is 10^{-15} m
 - (C) Electrons move in a circular path of fixed energy called orbits
 - (D) Electrons and the nucleus are held together by electrostatic forces of attraction
- 2. Which of the following options does not represent ground state electronic configuration of an atom ?
 - (A) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$ (B) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$

(C)
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$$
 (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

*3. Which of the following statement is are correct about the characteristics of cathode rays ?

- (A) They start from the cathode and move towards the anode
- (B) They travel in straight line in the absence of an external electrical or magnetic field
- (C) Characteristics of cathode rays do not depend upon the material of electrodes in cathode ray tube
- (D) Characteristics of cathode rays do not depend upon the nature of gas present in the cathode ray tube
- *4. Which of the following statements about the electron is(are) correct ?
 - (A) It is a negatively charged particle (B) The mass of electron is equal to the mass of neutron

(B)

Spectra of hydrogen atom.

(C) It is basic constituent of all atoms (D) It is constituent of cathode rays

5. Which of the following properties of atom could be explained correctly by Thomson model of atom ?

- (A) Overall neutrality of atom
- (C) Position of electrons, protons and neutrons in atom (D) Stability of atom.

6.	Two at	oms are sa	id to be is	obars if.							
	(A)	They ha	ave same a	atomic nu	mber but different m						
	(B) (C)	-			electrons but differe neutrons but differe						
	(C) (D)	-			ons and neutrons is s				otons is di	fferent	
7.	The nu	mber of ra	dial nodes	for 3p or	bital is						
	(A)	3		(B)	4	(C)	2		(D)	1	
8.	The nu (A)	mber of an 4	ıgular nod	es for 4d ((B)	orbital is 3	(C)	2		(D)	1	
9.	Which	of the foll	owing is r	esponsible	e to rule out the exist	ence of d	efinite pa	ths or traje	ectories of	electrons ?	
	(A)		exclusion			(B)	Heisenberg's uncertainly principle				
	(C)				nultiplicity	(D)		u principle	2		
10.		ir of ions h	aving san	ne electror	nic configuration is _			2.		2	
	(A)	Cr ³⁺ , I	Fe ³⁺	(B)	$\mathrm{Fe}^{3+}, \mathrm{Mn}^{2+}$	(C)	Fe ³⁺ ,	Co ³⁺	(D)	Sc^{3+}, Cr^{3+}	
11.					hich of the following						
	(A) (B)				orbital is the same as I has the same energ			-			
	(D) (C)				bital is the same as 2	-		-			
	(D)	The two	o electrons	s present i	n the 2s orbital have	spin quai	ntum nun	nbers m _s l	out of oppo	osite sign	
*12.	Identif	y the pairs	which are	not of isc	otopes ?						
	(A)	${}^{12}_{6}$ X, ${}^{1}_{6}$	³ Y	(B)	$^{35}_{17}$ X , $^{37}_{17}$ Y	(C)	$_{6}^{14}X$,	$^{17}_{7}Y$	(D)	⁸ ₄ X, ⁸ ₅ Y	
*13.	Out of	the follow	ing pairs o	of electron	s, identify the pairs of	of electro	ns presen	t in degene	erate orbita	ls :	
	(A)	(i) n =	3, $l = 2$,	m _l	$=-2, m_{s}=-\frac{1}{2}$	(ii)	n = 3	, l = 2,	m _l = -	$-1, m_{\rm s} = -\frac{1}{2}$	
	(B)	(i) n =	3, $l = 1$,	m_l	$= 1, m_{\rm s} = +1/2$	(ii)	n = 3	, l = 2,	$m_{l} = 1$	$m_{\rm s} = +1/2$	
					$= 1, m_{\rm s} = +1/2$;				•	5	
				•	$=+2, m_s = -1/2;$		n = 3	, l = 2,	m _l = -	$-2, m_{\rm s} = +1/2$	
*14.	Which		-	-	um numbers are corr	ect?					
		n	1	m _l			n	1	m _l		
	(A) (C)	1 3	1 2	+2		(B) (D)	2 3	1 4	+1 -2		
*15.				oirs the i	ons are iso-electronic		5		2		
-15.		Na ⁺ , N	• • •	(B)	Al^{3+}, O^{-}	(C)	Na ⁺ ,	Ω^{2-}	(D)	N^{3+}, Cl^{-}	
	(A)	INA, IN	ng	(b)	AI ,O	(C)	īna ,	0	(D)	N,CI	
<u>Reaso</u>	ning Ty	pe Quest	tions for	r 16 - 17							
(A)					et explanation of A						
(B) (C)		And R are		R is not co	orrect explanation of	A					
(D)		and R are									
16.	Assertion (A) : All isotopes of a given element shown the same type of chemical behaviour.Reason (R) : The chemical properties of an atom are controlled by the number of electrons in the atom.										
17.	Assert	ion (A) :			ideal body that emits						
	Reason	n(R) :				y a body	goes from	n a lower	frequency	to higher frequency with	
			an incre	ease in ten	nperature.						

18.	Energy	of an electron is give	ven by E =	$= -2.178 \times 10^{-18} J \left(\frac{Z}{n} \right)$	$\left(\frac{2}{2}\right)$. Wav	elength of light requ	ired to exe	cite an electron in an	
	hydrog	en atom from level i	n = 1 to n	= 2 will be $(h = 6.6)$	52×10^{-34}	Js & $c = 3.0 \times 10^8$ ms	s^{-1})		
	(A)	$1.214 \times 10^{-7} m$	(B)	$2.816 \times 10^{-7} \mathrm{m}$	(C)	$6.500 \times 10^{-7} \text{ m}$	(D)	$8.500 \times 10^{-7} m$	
19.	The ele	ectron identified by a	quantum n	umber n and l : (Inc	reasing of	rder of energy)			
	I.	n = 4, l = 1	II.	n = 4, 1 = 0	III.	n = 3, 1 = 2	IV.	n = 3, 1 = 1	
	(A)	III < IV < II < I	(B)	IV < II < III < I	(C)	II < IV < I < III	(D)	I < III < II < IV	
20.	A gas a (A)	bsorbs photon of 35 1035 nm	5 nm and (B)	emits at two wavele 325 nm	engths. If (C)	one of the emission i 743 nm	s at 680 n (D)	m, the other is at : 518 nm	
21.		of the following?		e transition $n = 4$ to		-		H atom corresponding to	
	(A)	n = 3 to $n = 1$	(B)	n = 2 to $n = 1$	(C)	n = 3 to $n = 2$	(D)	n = 4 to $n = 3$	
22.		ergy required to brea king a single Cl – C 594 nm			in Cl ₂ is 2 (C)	42 kJ mol ⁻¹ . The le	ongest wa (D)	velength of light capable 494 nm	
23.	Ionisati	ion energy of He ⁺ is	19.6×10	$^{-18}$ J atom ⁻¹ . The er	nergy of tl	he first stationary sta	te (n =1) o	of Li^{2+} is :	
	(A)	4.41×10^{-16} J ato	m^{-1}		(B)	-4.41×10^{-17} J a	tom ⁻¹		
	(C)	-2.2×10^{-15} J ato	om^{-1}		(D)	8.82×10^{-17} J ato	m^{-1}		
24.	4. In an atom, an electron is moving with a speed of 600 m/s with an accuracy of 0.005%. Certainty w								
		n of the electron can		_					
	(A)	$1.52 \times 10^{-4} m$	(B)	$5.10 \times 10^{-3} \text{ m}$	(C)	$1.92 \times 10^{-3} \text{ m}$	(D)	3.84×10^{-3} m	
25.	Which (A) (C)	of the following set: n = 3, l = 1, m = 1 n = 4, l = 0, m = 1	s = +1/2	-	nts the hig (B) (D)	ghest energy of an at n = 3, 1 = 2, m = n = 3, 1 = 0, m =	1, s = +1/2	2	
26.	Which (A) (C)	of the following nuc Neutron particle α-particle emission	emission	ions will generate a	n isotope? (B) (D)	Positron emission β-particle emission			
27.	Uncert	ainly in the position	of an elec	tron moving with a	velocity 3	300 ms^{-1} , accurate up	pto 0.0019	% will be :	
	(A)	$19.2 \times 10^{-2} \mathrm{m}$	(B)	$5.76 \times 10^{-2} \mathrm{m}$	(C)	$1.92 \times 10^{-2} \text{ m}$	(D)	$3.84 \times 10^{-2} \mathrm{m}$	
28.	Accord	ling to Bohr's theory	, the angu	lar momentum of a	n electron	in 5th orbit is :			
	(A)	$25\frac{h}{\pi}$	(B)	$1.0\frac{h}{\pi}$	(C)	$10\frac{h}{\pi}$	(D)	$2.5\frac{h}{\pi}$	
29.	Which (A) (B) (C) (D)	•	oitals all ha s are of lo er in energ	ave the same energy wer energy than 3d o y than 3d orbital	C	n is(are) correct?			
*30.		ulti-electron atom, we in the absence of matrix n = 1, l = 0, m = 0 n = 3, l = 2, m = 0	agnetic an 0	-	ls describ (B) (D)	bed by the three qua n = 3, 1 = 2, m = n = 2, 1 = 1, m =	1	bers will have the same	

31.		of the following sets	-					12		
	(A) (C)	n = 4, l = 3, m = 4 n = 4, l = 3, m = 4			(B) (D)	n = 4, l = 4, m = n = 3, l = 2, m =				
32.			<i>.</i>				ctrons with the azimuthal quantum numbers, $l = 1$ and			
32.		espectively :	or cr atom	(Z - 24). The hum	iders of ele	ctrons with the azir	nuthai qua	antum numbers, 1 – 1 and		
	(A)	12 and 4	(B)	12 and 5	(C)	16 and 4	(D)	16 and 5		
33.		r series of lines of hy rbit jumps of the ele				-	ds to whic	h one of the following		
	(A)	$3 \rightarrow 2$	(B)	$5 \rightarrow 2$	(C)	$4 \rightarrow 1$	(D)	$2 \rightarrow 5$		
34.	The nu	mber of d-electrons	retained in	n Fe ²⁺ (Atomic num	ber Fe = 2	6) ion is :				
	(A)	3	(B)	4	(C)	5	(D)	6		
35.	The or	bital angular mome	entum for	an electron revolv	ing in an	orbit is given by	$\sqrt{l(l+1)}$	$\frac{h}{2\pi}$. This momentum for		
	s-electr	on will be :					-			
	(A)	$+\frac{1}{2}\cdot\frac{h}{2\pi}$	(B)	Zero	(C)	$\frac{h}{2\pi}$	(D)	$\sqrt{2} \cdot \frac{h}{2\pi}$		
36.	The end	ergy of H-atom in th	e ground	state is -13.6 eV, t		211	ted state is	:		
	(A)	-6.8 eV	(B)	-3.4 eV	(C)	-1.51 eV	(D)	-4.53 eV		
37.	There is	s a transition from n	= 1 to n =	= 2 and then $n = 2$ to	n = 3, the	n :				
	(A)		•	uency are additive	(B)	wavelength as w	ell as freq	uency are additive		
	(C) (D)			elength are additive , frequency and way		re additive				
38.	. ,	r of waves made by					it is ·			
50.	(A)	2	(B)	3	(C)	4	(D)	∞		
39.	An elec	xtron in H-atom in i	ts ground	state absorbs 1.50	times as m	such as energy as th	ie minimu	m required for its escape		
	-	V) from the atom. T	-			24.0 -17		(0 - V		
40	(A)	13.6 eV	(B)	20.4 eV	(C)	34.0 eV	(D)	6.8 eV		
40.	atom?	of the following el	ectronic ti	ransitions requires	that the gr	eatest quantity of e	energy be	absorbed by a hydrogen		
	(A)	n = 1 to $n = 2$	(B)	n = 2 to $n = 4$	(C)	n = 3 to $n = 6$	(D)	$n = 1$ to $n \infty$		
41.	The pot	tential energy of an	electron ir							
	(A)	-13.6 eV	(B)	-27.2eV	(C)	-54.4 eV	(D)	-108.8 eV		
42.		of the pair of orbital			-					
	(A)	d_{xz}, d_{yz}	(B)	x - y z	(C)	d_{xy}, d_{yz}	(D)	d_{xy}, d_{z^2}		
43.		he condition given a		0	· /					
	(A)	$\sqrt{24}$ BM	(B)	$\sqrt{8}$ BM	(C)	$\sqrt{35}$ BM	(D)	0		
44.		of the following stat		-						
	(A) (B)	•		ero probability that naximum probabilit			nd			
	(C)	Both (A) and (B)		L.	-					
	(D)	None of the abov					.			
45.	The kin	tetic energy of an ele	ectron in t		it of a hy		s Bohr's r	· .		
	(A)	$\frac{h^2}{4\pi^2 m a_0^2}$	(B)	$\frac{h^2}{16\pi ma_0^2}$	(C)	$\frac{h^2}{32\pi^2 ma_0^2}$	(D)	$\frac{\mathrm{h}^2}{64\pi^2\mathrm{ma}_0^2}$		
		Th ma ₀		10/mila ₀		52π ma ₀		υ τ π ma ₀		

46.	Which is (A)	s the corre 4s 3s 3p		f increasin (B)	g energy of the liste 3s 3p 3d 4s	ed orbitals (C)	in the at 3s 3p 4		ium ? (Ato (D)	omic Number Z = 22) 3s 4s 3p 3d	
47.	The num (A) (C)	d-electro	electrons in on in Fe (Z on in Mg (2	Z = 26)	= 26) is not equal to	to the number of electrons in which one of the following ?(B)p-electrons in Ne $(Z = 10)$ (D)p-electrons in Cl $(Z = 17)$					
48.	What is		$1 um numb = 1, m_1 = 0$		als that can be iden	tified with	the follo	owing quar	itum numb	pers?	
	(A)	1		(B)	2	(C)	3		(D)	4	
49.	Based or	n equation	E = -2.1	78×10^{-13}	${}^{8}J\left(\frac{Z^{2}}{n^{2}}\right)$, certain co	oncussions	s are writ	ten. Which	of them i	s not correct ?	
	(A)	Equation	n can be us	sed to calc	ulate the change in	energy wl	hen the e	lectron cha	nges orbit		
	(B)				-	rgy than i	t does for	r n = 6 whi	ch means	that the electron is more	
	(C)	-			t allowed orbit	nat the ene	erov of e	lectron bo	und to the	nucleus is lower than it	
	(C)			-	re at the infinite dis				ind to the	nucleus is lower than it	
	(D)				ger is the orbit radi						
50.	The orbi	tal angula	r moment	um of a p-	electron in given as	:					
	(A)	$\frac{h}{\sqrt{2}\pi}$		(B)	$\sqrt{3} \frac{h}{2\pi}$	(C)	$\sqrt{\frac{3}{2}} \frac{h}{\pi}$	- ;	(D)	$\sqrt{6} \frac{h}{2\pi}$	
51.	If n = 6,	the correc	t sequence	e for fillin	g of electrons will b	be :					
	(A)	$ns \rightarrow (n$	$(n-2)f \rightarrow$	(n-1)d	\rightarrow np	(B)	$\rm ns \rightarrow$	(n - 1)d -	\rightarrow (n - 2) f	$\rightarrow np$	
	(C)	$ns \rightarrow (n$	$(-2)f \rightarrow$	$np \rightarrow (n \rightarrow n)$	-1)d	(D)	$\rm ns \rightarrow$	np(n-1)c	$l \rightarrow (n-2)$	2) f	
52.	Which o	of the follo	wing is no	ot permissi	ible arrangement of	electrons	in an ato	m ?			
	(A)			s = +1/2				l = 2, m =	-3, s = -	1/2	
	(C)	n = 3, <i>l</i>	= 2, m =	-2, s = -1	/2	(D)	n = 4,	l = 0, m =	=0, s = -1	/2	
53.	If uncert	ainty in po	osition and	l momenti	um are equal, then u	incertainty	rtainty in velocity is :				
	(A)	$\frac{1}{m}\sqrt{\frac{h}{\pi}}$		(B)	$\sqrt{\frac{h}{\pi}}$	(C)	$\frac{1}{2m}$	$\frac{h}{\pi}$	(D)	$\sqrt{\frac{h}{2\pi}}$	
54.	The me	asurement	of the e	electron p	osition is associate	ed with a	n uncert	ainty in it	s momen	tum, which is equal to	
	1×10^{-1}	8 g cm s ⁻¹	. The unc	ertainty in	electron velocity is	s : (Mass c	of an elec	tron is $9 \times$	10^{-28} g)		
	(A)	1×10^5 c	cm s ⁻¹	(B)	$1\times10^{11}~\text{cm}~\text{s}^{-1}$	(C)	1×10	9 cm s^{-1}	(D)	$1 \times 10^6 \text{ cm s}^{-1}$	
55.	Conside	r the follow	wing sets	of quantur	n numbers :						
	(n 2	1	m	S + 1/2	('')	n 2	1	<i>m</i>	S + 1 / 2	
	(i) (iii)	3 4	0 3	0 -2	+1/2 -1/2	(ii) (iv)	2 1	2 0	1 -1	+1/2 -1/2	
	(III) (v)	4	5 2	-2	-1/2 +1/2	(1V)	1	0	-1	-1/2	
		-	_	-	m number is(are) no	ot possible	?				
	(A)	(i), (ii), ((iii) and (i	v)		(B)	(ii), (iv	v) and (v)			
	(C)	(i) and (i	iii)			(D)	(ii), (ii	i) and (iv)			
56.	In hydro	gen atom,	if energy	of first ex	cited state is -3.4	eV, then	find out l	KE of same	e orbit of l	ydrogen atom ?	
	(A)	+ 3.4 eV				(B)	+ 6.8 e				
	(C)	-13.6 eV	V			(D)	+ 13.6	eV			

57.	The following quantum numbers are possible for how many orbitals : $n = 3$, $l = 2$, $m = +2$?											
	(A)	1	(B)	2	(C)	3	(D)	4				
58.	The de I	Brogile wave length	of a partic	cle with mass 1g and	d velocity	100 m/s is :						
	(A)	$6.63\times 10^{-35}\ m$			(B)	$6.63\times 10^{-34}\ m$						
	(C)	$6.63\times 10^{-33}\ m$			(D)	$6.65 \times 10^{-35} \text{ m}$						
59.	The ion	that is isoelectronic	with CO i	is :								
	(A)	CN^{-}	(B)	N_2^+	(C)	O ^{2–}	(D)	N_2^-				
60.	Which c	one of the following	is not isoe	electronic with O ²⁻	?							
	(A)	Mg^+	(B)	Na ⁺	(C)	N ³⁻	(D)	F^{-}				

Integer Answer Type Questions The Answer to the following questions are positive integers of 1/2/3 digits and zero

61. A sample of hydrogen contains equal number of H^1 , H^2 and H^3 atoms. The ratio of total number of protons

and neutrons $\left(\frac{P}{n}\right)$ in the sample is:

- 62. Two bulbs 'A' and 'B' emit red light and yellow light at 8000 Å and 4000 Å respectively. The number of photons emitted by both the bulbs per second is the same. If the red bulb is labelled as 100 watts, $x \times 10$ the wattage of the yellow bulb. Find x
- 63. Nitrogen has an atomic number of 7 and oxygen has an atomic number of 8. The total number of electron in the nitrate ion (NO_3^-) is:

64. A light source of wavelength λ illuminates a metal and ejects photoelectron with $(KE)_{max} = 1 eV$. Another light source of wave length $\frac{\lambda}{3}$, ejects photoelectrons from same metal with $(KE)_{max} = 5 eV$. Find the value of work function (eV) of metal.

- **65.** The ionisation potential of a hydrogen like species is 36 volt. What is the value of excitation energy from ground state to 1st excited state (in eV) ?
- 66. The speed of this dust particle (mass $=10^{-3}g$) is measured with the uncertainty of $\frac{3.313}{\pi} \times 10^{-3} m/s$. The minimum uncertainty in position of the dust particle (in order of $10^{-26}m$) is:

67. de Broglie wavelength ' λ ' of an ideal gas molecule at any given temperature is given as $\lambda \propto m^{-x} \times T^{-y}$. Where m = mass of one gas molecule; T = temperature (K). Give x + y = ?

- **68.** Total different spectral lines observed in between 11th excited state and 3rd energy level in H-atom emission spectrum are:
- 69. ' α particle' of 3.6 MeV are fired towards nucleus ${}^{A}_{Z}X$, at point of closest separation distance between ' α particle' and 'X' is $1.6 \times 10^{-14} m$. Calculate atomic number of 'X'.

- 70. A beam of light has three λ , 4144Å, 4972Å and 6216Å with a total intensity of 3.6×10^{-3} Wm⁻² equally distributed amongst the three λ . The beam falls normally on an area 1.0cm² of a clean metallic surface of work function 2.3 eV. Assume that there is no loss of light by reflection etc. Calculate the number of photoelectrons emitted in 2 sec, in scientific notation, $x \times 10^{y}$ find the value of y.
- 71. A particle of charge equal to that of electron and mass 208 times the mass of the electron moves in a circular orbit around a nucleus of charge +3e.Assuming that the Bohr model of the atom is applicable to this system, find the value of n for which the radius of the orbit is approximately the same as that of the first Bohr orbit of the hydrogen atom.
- 72. If $n_1 + n_2 = 4$ and $n_2^2 n_1^2 = 8$, then calculate maximum value of wavelength emitted in transition form $n_2 \rightarrow n_1$ for Li^{2+} in nm [Given $R_H = 10^7 m^{-1}$].
- 73. A cylindrical source of light which emits radiation radially (from curved surface) only, placed at the centre of hollow, metallic cylindrical surface, as shown in diagram.
 The power of source is 90 watt and it emits light of wavelength 4000Å only. The emitted photons strike the metallic cylindrical surface which results in ejection of photoelectrons. All ejected

photocurrent (in amp) is:

photoelectrons reaches to anode (light source). The magnitude of

- 74. Calculate the energy (in KJ) required to excite one litre of hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of H—H is 436 KJ mol⁻¹. Give your answer excluding decimal places.
- **75.** The work function (ϕ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is:

Metal	Li	Na	K	Mg	Cu	Ag	Fe	Pt	W
\$ (eV)	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75

Periodic Properties of Elements

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

The cor	prrect order of second ionization potential of carbon, nitrogen, oxygen and fluorine is :										
(A)	C > N > O > F	(B)	O>N>F>C	(C)	O > F > N > C	(D)	F > O > N > C				
Which l	has most stable +2 of	xidation st	tate?								
(A)	Sn	(B)	Pb	(C)	Fe	(D)	Ag				
Conside	er the isoelectronic s	pecies, Na	$^{+}$, Mg ²⁺ , F ⁻ and O ²	The co	rrect order of increas	sing lengtl	h of their radii is				
(A)	$F^- < O^{2-} < Mg^{2-}$	$^{+} < Na^{+}$		(B)	$Mg^{2+} > Na^+ > F$	$V^{-} > O^{2-}$					
(C)	$O^{2-} > F^- > Na^+$	> Mg ²⁺		(D)	$O^{2-} < F^- < Mg^2$	+ < Na ⁺					
Which o	of the following is no	ot an actin	oid ?								
(A)	Curium ($Z = 96$)			(B)	Californium (Z =	98)					
(C)	Uranium $(Z = 92)$			(D)	Terbium $(Z = 65)$						
	 (A) Which I (A) Consider (A) (C) Which of (A) 	(A) $C > N > O > F$ Which has most stable +2 or(A)SnConsider the isoelectronic sp(A) $F^- < O^{2-} < Mg^{2-}$ (C) $O^{2-} > F^- > Na^+$ Which of the following is not(A)Curium (Z = 96)	(A) $C > N > O > F$ (B)Which has most stable +2 oxidation static(A)SnConsider the isoelectronic species, Na(A) $F^- < O^{2-} < Mg^{2+} < Na^+$ (C) $O^{2-} > F^- > Na^+ > Mg^{2+}$ Which of the following is not an acting(A)Curium (Z = 96)	(A) $C > N > O > F$ (B) $O > N > F > C$ Which has most stable +2 oxidation state?(A)Sn(B)PbConsider the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ² (A)F ⁻ < O ²⁻ < Mg ²⁺ < Na ⁺ (C)O ²⁻ > F ⁻ > Na ⁺ > Mg ²⁺ Which of the following is not an actinoid ?(A)Curium (Z = 96)	(A) $C > N > O > F$ (B) $O > N > F > C$ (C)Which has most stable +2 oxidation state?(A)Sn(B)Pb(C)Consider the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The construction of the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ .(A) $F^- < O^{2-} < Mg^{2+} < Ma^+$ (B)(C) $O^{2-} > F^- > Na^+ > Mg^{2+}$ (D)Which of the following is not an actinoid ?(A)Curium (Z = 96)(B)(B)	(A) $C > N > O > F$ (B) $O > N > F > C$ (C) $O > F > N > C$ Which has most stable +2 oxidation state?(A)Sn(B)Pb(C)FeConsider the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The correct order of increase(A)F ⁻ < O ²⁻ < Mg ²⁺ < Na ⁺ (B)Mg ²⁺ > Na ⁺ > F(C)O ²⁻ > F ⁻ > Na ⁺ > Mg ²⁺ (D)O ²⁻ < F ⁻ < Mg ² Which of the following is not an actinoid ?(A)Curium (Z = 96)(B)Californium (Z =	Which has most stable +2 oxidation state?(C)Fe(D)(A)Sn(B)Pb(C)Fe(D)Consider the isoelectronic species, Na^+ , Mg^{2+} , F^- and O^{2-} . The correct order of increasing length(A) $F^- < O^{2-} < Mg^{2+} < Na^+$ (B) $Mg^{2+} > Na^+ > F^- > O^{2-}$ (A) $F^- < O^{2-} < Mg^{2+} < Na^+$ (D) $O^{2-} < F^- < Mg^{2+} < Na^+$ (C) $O^{2-} > F^- > Na^+ > Mg^{2+}$ (D) $O^{2-} < F^- < Mg^{2+} < Na^+$ Which of the following is not an actinoid ?(A)Curium (Z = 96)(B)(B)Californium (Z = 98)				

5.	The ord (A)	der of screening effe $s > p > d > f$	ct of elect (B)	from s of s, p, d and f f > d > p > s	orbital of a (C)	a given shell of an at $p < d < s < f$	om on its (D)	outer shell electrons is : f > p > s > d
6.	(A) (C)	Na < Mg > Al < S Na < Mg < Al < S	i i	Mg, Al and Si are in	(B) (D)	: Na <mg>Al>Si Na>Mg>Al<si< th=""><th></th><th></th></si<></mg>		
7.	The ele			linium (Atomic num $[Xe]4f^75d^26s^1$		$[Xe]4f^75d^16s^2$	(D)	$[Xe]4f^85d^66s^2$
8.	Which	of the following is t	he correct	order of size of the	given spec	vies :		
	(A)	$\mathrm{I} > \mathrm{I}^- > \mathrm{I}^+$	(B)	$\mathrm{I}^+ > \mathrm{I}^- > \mathrm{I}$	(C)	$\mathrm{I} > \mathrm{I}^+ > \mathrm{I}^-$	(D)	$I^- > I > I^+$
9.		mation of the oxide	ion, O ²⁻	(g), from oxygen	atoms requ	uires first an exother	mic and	then an endothermic step
		$O(g) + e^- \longrightarrow$	$O^{-}(g)$; Δ	$H^{\Theta} = -141 \text{ kJ mol}^{-1}$	-1			
		$O^{-}(g) + e^{-} \longrightarrow$	$O^{2-}(g); \Delta$	$\Delta H^{\Theta} = +780 \text{ kJ mol}$	-1			
	Thus pr fact tha		of O ^{2–} in g	as phase is unfavou	rable even	through O ²⁻ is isoel	ectronic	with neon. It is due to the
	(A) (B) (C)		ron in oxy	ative. gen results in larger hs the stability gain			figuration	1
	(D)		0	smaller size than ox	•	6 6	8	_
10.	. ,		•	ments A, B, C and D				
	I.	$1s^2 2s^2 2p^6$		$1s^2 2s^2 2p^4$		$1s^2 2s^2 2p^6 3s^1$	IV.	$1s^2 2s^2 2p^5$
	Which (A)	of the following is t I <iii<ii<iv< th=""><th>he correct (B)</th><th>order of increasing I<ii<iii<iv< th=""><th>tendency t (C)</th><th>o gain electrons ? IV<ii<iii<i< th=""><th>(D)</th><th>IV<i<ii<iii< th=""></i<ii<iii<></th></ii<iii<i<></th></ii<iii<iv<></th></iii<ii<iv<>	he correct (B)	order of increasing I <ii<iii<iv< th=""><th>tendency t (C)</th><th>o gain electrons ? IV<ii<iii<i< th=""><th>(D)</th><th>IV<i<ii<iii< th=""></i<ii<iii<></th></ii<iii<i<></th></ii<iii<iv<>	tendency t (C)	o gain electrons ? IV <ii<iii<i< th=""><th>(D)</th><th>IV<i<ii<iii< th=""></i<ii<iii<></th></ii<iii<i<>	(D)	IV <i<ii<iii< th=""></i<ii<iii<>
*11.	Which (A)	of the following ele Be	ments can (B)	show covalency gro P	eater than 4 (C)	4 ? S	(D)	В
*12.	The ele	ments of which of t	he followi	ng groups will impa	rt colour to	o the flame ?		energy for the ionisation.
	(A)	2	(B)	13	(C)	1	(D)	17
*13.	Which (A)	of the following ele S (g)	ments wil (B)	l gain one electron n Na (g)	ore readil	y in comparison to c O (g)	other elem (D)	nents of their group ? Cl (g)
*14.	Which (A) (B) (C) (D)	Chlorine has less Mercury and bro	ighest firs negative mine are l	e correct ? t ionisation enthalpy electron gain enthalp iquids at room temp is of alkali metal is t	oy than flu erature.	orine.		
*15.	Which	-		only isoelectronic io	ns?			
	(A)	Zn ²⁺ , Ca ²⁺ , Ga			(B)	$K^+, Ca^{2+}, Sc^{3+},$		
	(C)	$P^{3-}, S^{2-}, Cl^{-}, K$	+		(D)	${\rm Ti}^{4+}, {\rm Ar}, {\rm Cr}^{3+}, {\rm V}$	V ⁵⁺	
*16.		-	-	-	-	ree with the variation	n of prop	erty indicated against it ?
	(A)	-		(increasing ionic si	ze)			
	(B) (C)	B < C < N < O		- /	almu)			
	(C) (D)			g electron gain enthang metallic radius)	aipy)			
	(1)	$L_1 \rightarrow 1$ a $\sim 1 C \sim 1 C$, (mercasi	ing metanic radius)				

- *17. Which of the following have no unit ?
 - (A) Electronegativity (
 - (C) Ionisation enthalpy

- (B) Electron gain enthalpy(D) Metallic character
- y (
- ***18.** Ionic radii very in :
 - (A) Inverse proportion to the effective nuclear charge.
 - (B) Inverse proportion to the square of effective nuclear charge.
 - (C) Direct proportion to the screening effect.
 - (D) Direct proportion to the square of screening effect.
- *19. An element belongs to 3rd period and group-13 of the periodic table. Which of the following properties will be shown by the element?
 - (A) Good conductor of electricity (B) Liquid, metallic
 - (C) Solid, metallic (D) Solid, non metallic

Reasoning Type Questions for 20 – 21

- (A) Assertion is correct statement and reason is wrong statement.
- (B) Assertion and reason both are correct statements and reason is correct explanation of assertion.
- (C) Assertion and reason both are wrong statements.
- (D) Assertion is wrong statement and reason is correct statement.
- 20. Assertion (A) : Generally, ionisation enthalpy increases from left to right in a period.
 - **Reason (R) :** When successive electrons are added to the orbitals in the same principle quantum level, the shielding effect of inner core of electrons does not increase very much to compensate for the increased attraction of the electron to the nucleus.
- 21. Assertion (A) : Electrons gain enthalpy generally becomes less negative as we go down a group.
- **Reason (R) :** Size of the atom increases on going down the group and the added electron would be farther from the nucleus.
- 22. Which of the following represents the correct order increasing first ionization enthalpy for Ca, Ba, S, Se and Ar?
 - (A) Ca < S < Ba < Se < Ar (B) S < Se < Ca < Ba < Ar(C) Ba < Ca < Se < S < Ar (D) Ca < Ba < S < Se < Ar
- 23. The first ionization potential of Na is 5.1 eV. The value of electron gain enthalpy of Na⁺ will be : (A) -2.55 eV (B) -5.1 eV (C) -10.2 eV (D) +2.55 eV

24. Which one the following orders presents the correct sequence of the increasing basic nature of the given oxides?

- (A) $Al_2O_3 < MgO < Na_2O < K_2O$ (B) $MgO < K_2O < Al_2O_3 < Na_2O$ (C) $Na_2O < K_2O < MgO < Al_2O_3$ (D) $K_2O < Na_2O < Al_2O_3 < MgO$
- The correct sequence which shows decreasing order of the ionic radii of the elements is :
- (A) $Al^{3+} > Mg^{2+} > Na^{+} > F_{-} < O^{2-}$ (B) $Na^{+} > Mg^{2+} > Al^{3+} > O^{2-} > Al^{3+}$
- (C) $Na^+ > F^- > Mg^{2+} > O^{2-} > Al^{3+}$ (D) $O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$

26. The set representing the correct order of ionic radius is :

25.

(A)	$Li^+ > Be^{2+} > Na^+ > Mg^{2+}$	(B)	$Na^+ > Li^+ > Mg^{2+} > Be^{2+}$
(C)	$Li^{2+} > Na^+ > Mg^{2+} > Be^{2+}$	(D)	$Mg^{2+} > Be^{2+} > Li^+ > Na^+$

- 27. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K^+ , Ca^{2+} , Mg^{2+} , Be^{2+} ?
 - (A) $Mg^{2+} < Br^{2+} < K^+ < Ca^{2+}$ (B) $Be^{2+} < K^+ > Ca^{2+} < Mg^{2+}$ (C) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$ (D) $Ca^{2+} < Mg^{2+} < Be^+ < K^+$

28. The ionic mobility of alkali metal ions in aqueous solution is maximum for :

- (A) K^+ (B) Rb^+ (C) Li^+ (D) Na^+
- 29. The increasing order of the first ionization enthalpies of the element B, P, S and F (lowest first) is :

(A)	$\mathbf{F} < \mathbf{S} < \mathbf{P} < \mathbf{B}$	(B)	S < P < B < F
(C)	$\mathbf{B} < \mathbf{P} < \mathbf{S} < \mathbf{F}$	(D)	$\mathbf{B} < \mathbf{S} < \mathbf{P} < \mathbf{F}$

30.		ving statements regar			chemical rea	activity of the alka	ali metals an	d the halogens are g	given.
	(A)	of these statements a The reactivity de	-	-	but increase	es in the halogen v	with increase	in atomic number	down
	(B)	the group	i metals a	and the halogens f	he chemica	1 reactivity decre	ases with in	crease in atomic nu	mber
	(D)	down the group		and the halogens t	ne enemiea	r reactivity deere.	ases with his	rease in atomic ne	unoer
	(C)		ity increa	uses with increase	in atomic r	number down the	group in bo	oth the alkali metal	s and
	(D)	halogens In alkali metals, t the group	the reactiv	vity increases but i	in the halog	ens it decreases v	with increase	in atomic number	down
31.		ch of the following a	-		-	to the property inc	licated again	st it ?	
	(A) (B)			sing metallic radiu electron gain entha		egative sign)			
	(C)	B < C < N < O In	ncreasing	first ionization entl	halpy	egutive sign)			
	(D)	-		creasing ionic size.					
32.		on lattice energy and hest melting point?	d other co	onsiderations which	h one of the	e following alkali	metals chlor	rides is expected to	have
	(A)	RbCl	(B)	KCl	(C)	NaCl	(D)	LiCl	
33.		one of the following		-					
	(A)	Li^+	(B)	B^{3+}	(C)	O ²⁻	(D)	F ⁻	
34.	Which (A)	among the following Electron affinity	g factors i	s the most importa	nt in makin (B)	g fluorine the stro Ionisation enth	•	ing agent?	
	(C)	Hydration enthal	ру		(D)	Bond dissociat			
35.	-	g Al ₂ O ₃ , SiO ₂ , P ₂ O ₃ a			-	th is :			
	(A) (C)	$SO_2 < P_2O_3 < SiO_2$ $Al_2O_3 < SiO_2 < S$			(B) (D)	$SiO_2 < SO_2 < Al_2O_3 < SiO_2 < Al_2O_3 < SiO_2 < Block $			
26									4 - 41
36.		dius of La ³⁺ (atomic of Lu ³⁺ (atomic num			A. which o	one of the followi	ing given val	ues will be closest	to the
	(A)	1.60 Å	(B)	1.40 Å	(C)	1.06 Å	(D)	0.85 Å	
37.		omic numbers of var one of these may be	-		-		· •	tively 23, 24, 25 ar	nd 26.
	(A)	V	(B)	Cr	(C)	Mn	(D)	Fe	
38.		a^{3+} , Pm ³⁺ and Yb ³⁺ l					- 21 - 21		
	(A) (C)	$La^{3+} < Ce^{3+} < Pm$ $La^{3+} < Ce^{3+} < Pm$			(B) (D)	Yb ³⁺ < Pm ³⁺ < Yb ³⁺ < Pm ³⁺ <			
39.		is not the correct or			(2)	10 111	2		
	(A)	Ba > Sr > Mg;	atomic		(B)	F > O > N;		nization enthalpy	
÷40	(C)	Cl > F > I;		n affinity	(D)	O > Se > Te;		negativity	: 41
*40.		rst element of each group. This is due to		nd p-blocks shows	s anomalou	s benavior as cor	npared to the	e rest of elements	in the
	(A)		-	ed to atoms of othe	er elements i	in the same group			
	(B) (C)	Its comparatively Its highest electro							
	(C) (D)			als for the formatic	on of bond				
41.		one of the followin		ements represents t	the correct	order of least neg	gative to mo	st negative electron	ı gain
	enthalı (A)	by for C, Ca, Al, F and $Al < Ca < O < C$			(B)	Al < 0 < C < 0	Ca < F		
	(A) (C)	AI < Ca < O < C C < F < O < AI <			(В) (Д)	AI < O < C < C Ca < AI < C < C			

42.	Identif	y the wrong stater		e				
	(A)	e	•			ge on the cation, s		
	(B)		-			ge on the anion, la		onic radius
	(C)					own the first group		
	(D)	Atomic radius table	of the elem	ents decreases as	one moves a	cross from left to	right in the	2 nd period of the per
43.	What i	s the value of elec	tron gain en	thalpy of Na ⁺ if I	E_1 of Na = 5.	1 eV ?		
	(A)	-5.1 eV	(B)	+ 5.1 eV	(C)	-10.2 eV	(D)	+ 10.2 eV
44.	Which	one of the follow	ing ionic spe	ecies has the grea	test proton af	finity to form stat	ole compoun	d ?
	(A)	$\rm NH_2^-$	(B)	F^{-}	(C)	Ι-	(D)	HS^{-}
45.	Which	one of the follow	ing orders is	not in accordance	e with the pro	operty stated agai	nst it ?	
	(A)	$F_2 > Cl_2 > Br_2$	> I ₂ : bond d	lissociation energ	gy (B)	$F_2 > Cl_2 > Br_2$	> I ₂ : Oxidis	sing power
	(C)	HI > HBr > HG	Cl > HF : Ac	cidic property in v	water (D)	F > Cl > Br >	I : Electrone	gativity
46.	The io	ns $O^{2-}, F^-, Na^+,$, Mg^{2+} and	Al ³⁺ are isoelect	tronic. Their i	ionic radii show.		
	(A)	a significant in	crease from	O^{2-} to Al^{3+}				
	(B)	a significant de	ecrease from	O^{2-} to Al^{3+}				
	(C)	an increase fro	m O^{2-} to F	⁻ and then decre	ase from Na	$^{+}$ to Al ³⁺		
	(D)	a decrease from	$n O^{2-}$ to F	and then increas	se from Na ⁺	to Al ³⁺		
47.	In the j	periodic table from	n left to righ	t in a period, the	atomic volun	ne		
	(A)	decreases			(B)	increases		
	(C)	remains same			(D)	first decrease	hen increase	

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 48. Find the total number of species having two unpaired electrons from the following species. Fe²⁺, Cr, Cr³⁺, Ti²⁺, Mn²⁺, Mn²⁺, V³⁺
- 49. Find the number of p-block elements from the following atomic numbers given below. 83 79 42 64 37 54 34
- Find the total number of paramagnetic species among the following? 50. Sc³⁺, Fe³⁺, Mn²⁺, Co⁴⁺, Co³⁺, Cr⁺, Fe²⁺, Mn³⁺, Cr³⁺, Zn²⁺, Ti⁺⁴, V³⁺
- 51. Select the number of elements which are called transition metals. B, Sc, Al, Pd, Os, Zr, Rb, Ba, Fr
- Among the following species, how many have their ionic size greater than O^{2-} ? 52. Se²⁻, F⁻, N³⁻, P³⁻
- 53. Find the number of species which have size smaller than Cs. Li, Na, Mg, Rb, Fr, Ba, Sr, Ca
- 54. Find the number of transition elements in the following: Zn,Cd,Hg,Pt,U,Sn
- The element with the lowest atomic number that has a ground-state electronic configuration of $(n-1)d^5ns^2$ 55. is located in Period.

- 56. Period number of Sc = xModern periodic table group number of Tl = y (according to 1 to 18 convention) Find the value of y - x.
- 57. Number of unpaired electrons in $Mn^{+7} = a$ Number of d-subshell electrons in Cr = bNumber of f-subshell electrons in Hf (Atomic no. = 72) = c. Find the value of c - b + a.
- **58.** The oxidation state of fluorine in F_2 is x. Find value of |x|.
- 59. The number of oxides which are expected to be neutral amongst the oxides of nitrogen (viz. $N_2O, NO, NO_2, N_2O_4, N_2O_5$) = x. The number of oxides which are expected to be more basic with respect to NiO amongst MgO,SrO, $K_2O = y$. Find the value of x + y.
- 60. What is the value of $(n + \ell)$ for the unpaired e^- in an atom of an element which is present in the 3rd period and seventeenth group of the periodic table.
- **61.** If 3e⁻ can be accommodated in each orbital then how many elements will be present in the 7th period of periodic table?
- 62. How many elements are present in the 7th period of periodic table.

Chemical Bonding - 1 & 2

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1.	Highes	t covalent charac	ter is found in	n which of the f	ollowing ?			
	(A)	CaF ₂	(B)	CaCl ₂	(C)	Cal ₂	(D)	CaBr ₂
*2.	Which	is(are) correct an	nong the follo	owing ?				
	(A)	Radius of Cl	- ion is 1.56	Å, while that c	of Na ⁺ ion is 0.	.95 Å		
	(B)	Radius of Cl a	tom is 0.99 v	vhile that of Na	atom is 1.54			
	(C)	The radius of	Cl atom is 0.	95, while that of	f ion is 0.81			
	(D)	Radius of Na	atom is 0.95,	while that of N	a ⁺ ion is 1.54			
3.	Which	of the following	anions is mos	st easily polarize	ed?			
	(A)	Cl ⁻	(B)	Se ^{2–}	(C)	Br ⁻	(D)	Te ²⁻
4.	The ge	ometrical configu		· · · · · · · · · · · · · · · · · · ·		s is :		
	(A)			covalency of th				
	(B)		-	olar and NF ₃ is 1	-			
	(C)			on-polar and NF		_		
	(D)	Different beca	use the centr	al atom in BF3 i	s sp ² and NF ₃ i	s sp ³ hybridised	1	
*5.	Select	correct statement	about valenc	e-bond approac	h :			
	(A)	Each bond is f	formed by ma	aximum overlap	for its maximu	ım stability		
	(B)	It represents lo	ocalised elect	ron model of bo	onding			
	(C)	Most of the el	ectrons retair	the same orbita	al locations as i	n a separated at	oms	
	(D)	The electron s	hare the mult	i-nuclear syster	n after overlapp	oing		
			OH					
6.	The co	mpound (CH ₃ –	$ _{C = CH_2} cc$	ontains				
	(A)	10σ -bonds, 1τ	t-bond and 1	lone pair	(B)	8σ -bonds, 2π	-bonds and 2	lone pairs
	(C)	9σ -bonds, 1π -	bond and 2 l	one pairs	(D)	9σ -bonds, 2π	-bonds and 1	lone pair

7.	How m	nany σ and π -box	nds are the	ere in the molecule of	tetracyan	o-ethylene?		
		$N \equiv C$	C≡	Ν				
		$N \equiv C$ $N \equiv C$	C≡	N				
	(A)	4σ,14π	(B)	5σ,13π	(C)	8σ,10π	(D)	9σ, 9π
8.		-		as NCl ₃ is pyramidal	because :			
	(A) (B)	BCl bond is mo N—Cl bonds is	-	an N—CI bond lent that B—Cl bond				
	(C) (D)	Nitrogen atom i	s smaller tl			of electrons		
9.		-	H–CH=CF	I ₂), the carbon atoms		bridised as :		
	(A)	sp	(B)	sp^2	(C)	sp ³	(D)	sp^2 and sp^3
*10.	Which (A)	of the following st HF is more pola			(B)	CuCl is more cov	alent that	n NaCl
	(C)	HF is less polar	than HBr					
	(D)			takes place when for			e forces o	f repulsion
11.	In whic (A)	ch of the following CH4	molecule, (B)	all the atoms lie in or BF3	e plane ?	PF ₅	(D)	NH ₃
12.			airs and tot	al lone pairs of electro	ons are re		(2)	
	(A)	2,6	(B)	2,8	(C)	2, 10	(D)	2,9
13.		ctural pairs.			_			iven species identify the
	(A)	$\left[NF_3 \text{ and } BF_3 \right]$	(B)	$\left[\mathrm{BF}_{4}^{-} \text{ and } \mathrm{NH}_{4}^{+} \right]$	(C)	$\left[BCl_{3} \text{ and } BrCl_{3} \right]$	(D)	$\left[\text{NH}_3 \text{ and } \text{NO}_3^- \right]$
14.	shape o			e dipole moment depo blowing has the high	-			the constituent atoms and
	(A)	CO ₂	(B)	HI	(C)	H ₂ O	(D)	SO_2
15.				gen in NO_2^+ , NO_3^- ar				
	(A)	sp, sp ³ and sp ²	(B)	sp, sp^2 and sp^3	(C)	sp^2 , sp and sp^3	(D)	sp ² , sp ³ and sp
16.					-	-		ch compounds depends to
		extent on the stren points of above co			number o	f hydrogen bonds. T	The correct	et decreasing order of the
	(A)	$\mathrm{HF} > \mathrm{H}_2\mathrm{O} > \mathrm{N}$	-	H ₂ O>HF>NH ₃	(C)	$NH_3 > HF > H_2$	O (D)	$NH_3 > H_2O > HF$
17.	In NC	9^{-}_{3} ion, the number	of bond pa	irs and lone pairs of o	electrons	on nitrogen atom ar	e:	
	(A)	2, 2	(B)	3, 1	(C)	1,3	(D)	4, 0
18.		of the following sp		-		2		
10	(A)	BH ₄	(B)	NH ⁻ 2	(C)	CO_{3}^{2-}	(D)	H_3O^+
19.		-		on all the bonds are r	-		(m)	¢;E
20.	(A) In whic	XeF ₄ ch of the following	(B) substances	BF_4^- will hydrogen bond	(C) be strong	C_2H_4 est ?	(D)	SiF ₄
	(A)	HCl	(B)	H ₂ O	(C)	HI	(D)	H ₂ S
21.				element is $1s^2 2s^2 2p$	$b^6 3s^2 3p^6$	$3d^2 4s^2$, the four el	ectrons ir	nvolved in chemical bond
	format (A)	ion will be 3p ⁶	 (B)	$3p^{6}, 4s^{2}$	(C)	$3p^{6}, 3d^{2}$	(D)	$3d^2, 4s^2$

22.	The elec	etronic cor	nfiguratior	n of the o	uter most shell of the	most el	ectronegative elem	ent is :	
	(A)	$2s^2 2p^5$	-	(B)	$3s^2 3p^5$	(C)	$4s^2 4p^5$	(D)	$5s^2 5p^5$
23.	Amongs enthalpy		owing eler	nents wh	ose electronic config	urations	are given below, th	ie one havi	ing the highest ionization
	(A)	$[Ne]3s^2$	² 3p ¹	(B)	$[Ne]3s^23p^3$	(C)	$[Ne]3s^23p^2$	(D)	$\left[\text{Ar}\right]3\text{d}^{10}4\text{s}^24\text{p}^3$
24.	Assertio	on (A) :	Among	the two	$O-H$ bonds in H_2	O molect	ule, the energy requ	uired to br	eak the first O-H bond
					-H bond is same.				
	Reason	(R) :	This is O–H		the electronic enviro	onment ar	ound oxygen is th	e same ev	en after breakage of one
	(A)				nd R is correct expla				
	(B) (C)				out R is not the correct	_		a falsa	
25	(C) TI		e not R is :			(D)	A and R both ar	e laise.	
25.	(A)		ovalent mo		le CsI ₃ is :	(B)	It contains Cs ⁺ a	and I^-	
	(A) (C)		ins Cs ³⁺ ar		9			5	tiga la malagula
• ((D)	It contains Cs ⁺ ,	1 and lat	
26.	(A)	lecule hav NCl ₃	ing smalle	est bond a (B)	ngle 1s : AsCl ₃	(C)	SbCl ₃	(D)	PCl ₃
27.	. ,		llowing pa	· ·	wo species are not is			(D)	1 015
	(A)	CO_3^{2-} a	nd NO ₃	(B)	PCl_4^+ and $SiCl_4$	(C)	PF5 and BrF5	(D)	AIF_6^{3-} and SF_6
28.	Among	the follow	ving, the m	naximum	covalent character is	shown b	y the compound :		
	(A)	FeCl ₂		(B)	SnCl ₂	(C)	AlCl ₃	(D)	MgCl ₂
29.		icture of II							
	(A) (C)	Square j Octahed				(B) (D)	Trigonal bipyra pentagonal bipy		
30.	Which o	of the follo	wing has	maximur	n number of lone pai	rs associa	ted with Xe?		
	(A)	XeO ₃		(B)	XeF ₄	(C)	XeF ₆	(D)	XeF ₂
31.	The num	nber of typ	pes of bon	ds betwe	en two carbon atoms	in calciu	n carbide is :		
	(A)	One sign	ma, two p	i (B)	One sigma, one p	i (C)	Two sigma, one	pi (D)	Two sigma, two pi
32.	Which o	of the follo	wing hyd	rogen bo	nd is the strongest?				
	(A)	0 – H	N	(B)	$F\!-\!H\!\cdots\!F$	(C)	$O - H \cdots O$	(D)	$O - H \cdots F$
33.	In whicl	h of the fo	llowing m	olecules/	ions, all the bonds ar	e not equ	al?		
	(A)	SF_4		(B)	SiF4	(C)	XeF ₄	(D)	BF_4^-
34.	The dec	reasing va	lues of bo	nd angles	s from $NH_3(107^\circ)$ t	oSbH ₃ (9	01°) down group-1	5 of the pe	riodic table is due to :
	(A) (C)		ng bp-bp i ing lp-bp :	•		(B) (D)	Increasing p-orb Decreasing elec		
35.	Lattice	energy of a	an ionic co	ompound	depends upon :				
	(A) (C)	-	on the ion		of the ion	(B) (D)	Packing of ions Charge on the io	•	
36.	The mo	lecular sha	apes of SF	4, CF4 an	d XeF4 are :				
	(A)				one pair of electrons of		-	-	
	(B) (C)				one pair of electrons one pair of electrons				
	(C) (D)				one pair of electrons		-		
							_		

37.	The ma (A)	aximum number of 9 dsp ³ hybridisation	•	between bond pair-b sp ³ d hybridisation	•	of electrons is obser dsp ² hybridisation		sp ³ d ² hybridisation
38.	Which	one of the following	has the re	gular tetrahedral stru	icture? (A	tomic number : B =	5, $S = 16$, Ni = 28, Xe = 54)
	(A)	XeF ₄	(B)	SF4	(C)	BF_4^-	(D)	$[Ni(CN)_4]^{2-}$
39.	(A)	rrect order of bond ar H ₂ S < SiH ₄ < NH	$I_3 < BF_3$	allest first) in H2S, N	(B)	$NH_3 < H_2S < SiH_2$		
	(C)	$H_2S < NH_3 < SiH_3$	$I_4 < BF_3$		(D)	$H_2S < NH_3 < SiH_3$	$H_3 < BF_4$	
40.	The sta (A)	tes of hybridisation of sp ² and sp ²	of boron a (B)	nd oxygen atoms in l sp ² and sp ³	boric acid (C)	(H ₃ BO ₃) are respect sp ³ and sp ²	tively (D)	sp ³ and sp ³
41.	The pai (A)	ir of species having i CF4, SF4	dentical s (B)	hapes for molecules o XeF2, CO2	of both sp (C)	ecies, is : BF3, PCl3	(D)	PF5, IF3
42.	Which (A)	one of the following SO ₂	compoun (B)	ds has the smallest b OH2	ond angle (C)	? SH ₂	(D)	NH3
43.	Which	one of the following	pairs of n	nolecules will have p	ermanent	dipole moments for	· both men	nbers?
	(A)	SiF4 and NO ₂	(B)	NO ₂ and CO ₂	(C)	NO ₂ and O ₃	(D)	SiF4 and CO2
44.	Select t (A) (B) (C) (D)	Pure H ₂ O does no	oond is fo t contain when attr	rmed transfer of elec any ion active forces overcor		-		
45.	Bond a	ngle of 109° 28' is fo	ound in :					
	(A)	NH ₃	(B)	H ₂ O	(C)	⊕ CH5	(D)	$\stackrel{\oplus}{\mathrm{N}}\mathrm{H}_4$
46.		isation of the underli	ne atom c	hanges in :		5		
	(A)	<u>Al</u> H ₃ changes to		C	(B)	$H_2 O$ changes to I	H_3O^+	
	(C)	$\underline{N}H_3$ changes to	$\rm NH_4^+$		(D)	In all cases		
47.	Which (A) (C)	of the following state FeCl ₂ is more cov Both FeCl ₂ and Fe	alent thar	n FeCl ₃	(B) (D)	FeCl ₃ is more cov FeCl ₂ and FeCl ₃ d		FeCl ₂ e any covalent character
48.	Out of I.	the two compounds s O_2N	shown bel)H II.	ОН	ure of II a	t a particular temper	rature is e	xpected to be :
	(A) (C) vessel	Higher than that o Same as that of I	fI	(B) (D)		han that of I higher or lower depe	ending up	on the size of the
49.	Which (A)	one of the following HF	hydrogen (B)	halides has the lowe HCl	est boiling (C)	point ? HBr	(D)	HI
50.	If a mo (A)	lecule MX3 has zero Pure p	dipole mo (B)	oment, the sigma bon sp hybrid	iding orbit (C)	tals used by M (aton sp ² hybrid	nic numbe (D)	er < 21) are : sp ³ hybrid
51.	The set	representing the cor	rect order	of ionic radius is :				
	(A)	$Li^+ > Na^+ > Mg^2$			(B)	$Mg^{2+} > Be^{2+} > I$	$Li^+ > Na^+$	
	(C)	$\mathrm{Li}^+ > \mathrm{Be}^{2+} > \mathrm{Na}^+$			(D)	$Na^+ > Li^+ > Mg^2$	$^{2+} > \mathrm{Be}^{2+}$	

	(A) (C)	nd between two ide Unequally share With identical s		the two	(B) (D)	Transferred fully Equally shared b		e atom to another em
53.	The co	mpound in which (* C uses the	sp ³ hybrid orbitals fo	or bond fo	ormation is :		
	(A)	HCOOH	(B)	(H ₂ N) ₂ CO	(C)	(CH ₃) ₃ [*] COH	(D)	CH ₃ ČHO
54.	The cy	anide ion, CN^- an	d N ₂ are is	oelectronic. But a co	ntrast to	CN^- , N_2 is chemic	al inert, be	ecause of :
	(A) (C)	Low bond energ Unsymmetrical	-	(B) 1 (D)		ce of bond polarity ce of more number	of electror	ns in bonding orbitals
55.	Among	g the following spec	cies, identif	fy the isostructural participation of the second se	airs. NF ₃ ,	NO ₃ ⁻ , BF ₃ , H ₃ O ⁺ ,	HN ₃	
	(A)	$[NF_3, NO_3^-]$ an	d [BF3, H3	O ⁺]	(B)	$[NF_3, HN_3^-]$ an	d [NO ₃ ⁻ , E	3F ₃]
	(C)	[NF ₃ , H ₃ O ⁺] a	nd [NO ₃ , 1	BF ₃]	(D)	$[NF_3, H_3O^+]$ at	nd [HN ₃ ,	BF ₃]
56.	Among	g KO ₂ , AlO ₂ , BaO	2 and NO	⁺ ₂ , unpaired electror	n is prese	ent in :		
	(A)			KO_2 and AlO_2^-			(D)	BaO ₂ only
57.			dization of nd sp ³	the central atom in t		_	tCl4] ^{2–} , PC p ²	2
58.	Specify (A) (C)	y the coordination g N : tetrahedral, s N : pyramidal, s	sp^3 ; B:to		ion of N a (B) (D)	nd B atoms in a 1 : N : pyramidal, s N : pyramidal, s	p ³ ; B : j	pyramidal, sp ³
59.	SF2, SI (A) (C)	F_4 and SF ₆ have the sp ² , sp ³ , sp ² d ² sp ³ , sp ³ d, sp ³ d ²	hybridisati	ion on sulphur atoms	respectiv (B) (D)	rely as : sp ³ , sp ³ , sp ³ d ² sp ³ , spd ² , d ² sp ³		
60.	Which (A) (C)	is correct statemen All HBH bond a It has two three-	ingles are e	qual	(B) (D)	All H-B bond le All hydrogens a	e	equal toms are in one plane
61.	In whic	ch pair of species, b	oth species	s do have the similar	geome	try ?		
	(A)	CO_2, SO_2	(B)	$\rm NH_3, BH_3$	(C)	CO ₃ ²⁻ , SO ₃ ²⁻	(D)	SO_4^{2-}, ClO_4^{-}
62.	Which	of the following or	der of ener	gies of molecular or	bitals of 1	N_2 is correct ?		
	(A)	$(\pi 2p_y) < (\sigma 2p_z)$	$(\pi^* 2p)$	$_{\rm x}$) $\approx \left(\pi^* 2 p_{\rm y}\right)$	(B)	$(\pi 2p_y) > (\sigma 2p_z)$	$(\pi^* 2p)$	$\left(\pi^{*}2p_{y}\right) \approx \left(\pi^{*}2p_{y}\right)$
	(C)	$(\pi 2p_y) < (\sigma 2p_z)$. () ())		$(\pi 2 p_y) > (\sigma 2 p_z)$	`	, , ,
63.	Which (A)		atement is 1	not correct from the			. () (-)
	(B)	He ₂ is not stable	but He ₂ ⁺	is expected to exist.				
	(C) (D)	The order of end	ergies of m	olecular orbitals in N	V2 molecu	le is	_	ging to the second period
				$2p_z < (\pi 2p_x = \pi 2p_y)$		$a_x = \pi^* 2p_y) < \sigma^* 2p_y$	z	
64.			-	sents the correct bond				
	(A)	$O_2^- > O_2 > O_2^+$	(B)	$O_2^- < O_2 < O_2^+$	(C)	$O_2^- > O_2 < O_2^+$	(D)	$O_2^- < O_2 > O_2^+$
65.	Which	one of the followin	g molecule	es is expected to exh	ibit diama	gnetic behaviour?		

66.	In which	ch of the following	pairs of mo	olecules/ions both th	ne species	are not likely to exis	st?	
	(A)	H_2^+, He_2^{2-}	(B)	H_2^-, He_2^{2-}	(C)	H_2^{2+}, He_2	(D)	H_2^-, He_2^{2+}
67.	Stabili	ty of the species Li ₂	, Li_2^- and	Li_2^+ increases in the	ne order of	`:		
	(A)	$\mathrm{Li}_2 < \mathrm{Li}_2^+ < \mathrm{Li}_2^-$	(B)	$\mathrm{Li}_2^- < \mathrm{Li}_2^+ < \mathrm{Li}_2$	(C)	$\mathrm{Li}_2 < \mathrm{Li}_2^- < \mathrm{Li}_2^+$	(D)	$Li_{2}^{-} < Li_{2} < Li_{2}^{+}$
68.	Using	MO theory, predict	which of t	he following specie	s has the s	hortest bond length?		
	(A)	O_2^{2+}	(B)	O_2^+	(C)	O_2^-	(D)	O_2^{2-}
69.	Which	one of the followin	g pairs of	species have the san	ne bond oi	der?		
	(A)	CN^- and NO^+	(B)	CN^- and CN^+	(C)	O_2^- and CN^-	(D)	NO^+ and CN^+
70.	In whi	ch of the following	ionisation	processes, the bond	order has	increased and the m	agnetic be	haviour has changed?
	(A)	$C_2 \rightarrow C_2^+$	(B)	$\rm NO \rightarrow \rm NO^+$	(C)	$O_2 \rightarrow O_2^+$	(D)	$N_2 \rightarrow N_2^+$
71.		one of the followin	ig species i					
	(A)	H_2^-	(B)	H_2^+	(C)	H ₂	(D)	He_2^+
72.	The bo (A) (C)	ond order in NO is 2 Bond length in N Bond length in N	NO ⁺ is grea	ater than in NO	ch of the f (B) (D)	ollowing statements Bond length in N Bond length is u	IO is great	er than in NO ⁺
73.	Increas	sing order of bond s	trength of	O_2, O_2^-, O_2^{2-} , and	O_2^+ is :			
	(A)	$O_2^+ < O_2^- < O_2^- <$	$< O_2^{2-}$		(B)	$O_2 < O_2^+ < O_2^- <$	O_2^{2-}	
	(C)	$O_2^- < O_2^{2-} < O_2^+$	$< O_2$		(D)	$O_2^{2-} < O_2^- < O_2^-$	$< O_2^+$	
*74.	Which	of the following ha	ve identica	al bond order ?				
	(A)	CN^{-}	(B)	NO^+	(C)	O_2^-	(D)	O_2^{2-}
*75.	Which (A)	of the following att BeCl ₂	tain the line (B)	ear structure ? SO ₂	(C)	NO ₂	(D)	CS_2
*76.	CO is i	isoelectronic with :						
	(A)	NO^+	(B)	N ₂	(C)	SnCl ₂	(D)	NO_2^-
*77.	Which	of the following sp	ecies have	the same shape ?				
	(A)	CO_2	(B)	CCl ₄	(C)	O ₃	(D)	NO_2^-
*78.	Which	of the following sta	atement are	e correct about CO ₃	-?			
	(A) (B) (C) (D)		ucture has mal charge	one $C - O$ single be on each oxygen ato		To $C = O$ double bon units	ds	
*79.	Diama	gnetic species are th	nose which	contain no unpaire	d electrons	s. Which among the	following	are diamagnetic?
	(A)	N ₂	(B)	N_{2}^{2-}	(C)	0 ₂	(D)	O_2^{2-}
*80.	Specie	s having same bond	l order are	:				
	(A)	N ₂	(B)	N_2^-	(C)	F_2^+	(D)	O_2^-
81.	In whic (A)	ch of the following Diamond, Silico	-	the species are not	iso-structu (B)	ral ? NH3, PH3		
	(C)	XeF4, XeO4			(D)	SiCl ₄ , PCl ₄ ⁺		
82.	Which	of the following pa	irs of ions	are isoelectronic an	d iso-struc	ctural ?		
	(A)	SO_3^{2-}, NO_3^{-}		ClO_{3}^{-}, SO_{3}^{2-}		CO_3^{2-}, SO_3^{2-}	(D)	ClO_{3}^{-}, CO_{3}^{2-}

83.	Which	of the following o	ptions repre	esents the correct bou	und order	?		
	(A)	$O_2^- > O_2 < O_2$	0^{+}_{2}		(B)	$\mathrm{O}_2^- < \mathrm{O}_2 > \mathrm{O}$	+2	
	(C)	$O_2^- > O_2 > O_2$	D_{2}^{+}		(D)	$O_2^- < O_2 < O_2$	p_{2}^{+}	
84.	Maxim	num bond angle at	nitrogen is j	present in which of the	he follow	ing?		
	(A)	NO_2^+	(B)	NO_3^-	(C)	NO ₂	(D)	NO_2^-
85.	Which (A)	of the following is (BH ₃) ₂	s electron-de (B)	eficient ? PH3	(C)	(CH ₃) ₂	(D)	(SiH3)2
86.	Dipole (A) (C)	-induced dipole in HCl and He ato H2O and alcoho	oms	re present in which o	f the follo (B) (D)	wing pairs SiF4 and He ato Cl2 and CCl4	ms	
87.		ch of the following agnetic to diamagn	-	on processes the bor	nd energy	increases and the	magnetic	behaviour changes from
	(A)	$O_2 \rightarrow O_2^+$	(B)	$C_2 \rightarrow C_2^+$	(C)	$\rm NO \rightarrow \rm NO^+$	(D)	$N_2 \rightarrow N_2^+$
88.	Which	of the following s	pecies conta	ains three bond pairs	and one l	one pair around the	e central ato	om?
	(A)	H ₂ O	(B)	BF ₃	(C)	$\rm NH_2^-$	(D)	PCl ₃
89.	Four d	-		w. Identify the correct	et order in			easing in them :
	(A)	$NO < O_2^- < O_2^-$	$C_2^{2-} < He_2^+$		(B)	$O_2^- < NO < C_2^2$	$e^{-} < He_{2}^{+}$	
	(C)	$C_2^{2-} < He_2^+ < 0$	$D_2^- < NO$		(D)	$\mathrm{He}_2^+ < \mathrm{O}_2^- < \mathrm{N}$	$O < C_2^{2-}$	
90.		of the two ions fis, NO_2^- , NO_3^- , NF			we the ge	cometry that is exp	lained by t	he same hybridization of
	(A)	NO_2^- and NO_2^-	, (B)	NH_4^+ and NO_3^-	(C)	SCN^- and NH	⁻ ₂ (D)	NO_2^- and NH_2^-
91.	The co	prrect order of incre	easing bond	length of C-H, C-	-О, С-С	and C=C is:		
	(A)	C - H < C = C	< C – O <	C - C	(B)	C - C < C = C	< C – O <	С – Н
	(C)	C - O < C - H	< C – C <	C = C	(D)	C - H < C - O	< C – C <	C = C
92.		ch one of the follo other three ?	wing specie	es the central atom ha	as the typ	e of hybridization v	which is no	ot the same as that present
	(A)	SF_4	(B)	I_3^-	(C)	$SbCl_5^{2-}$	(D)	PCl ₅
93.	What i (A) (C)	s the dominant into Dipole-dipole i London dispers	nteraction	force or bond that m	ust be ov (B) (D)	ercome in convertin Covalent bonds Hydrogen bond		CH ₃ OH to a gas ?
94.	Which (A) (B) (C) (D)	The electron-de The canonical	are always eficient mol structures ha	ect statement ? shorter than correspo ecules can act as Lev ave no real existence in fact have square p	vis acids	-		
95.	In whi	ch of the following	g bond angle	e is maximum ?				
	(A)	NH3	(B)	NH_4^+	(C)	PCl ₃	(D)	SCl ₂
96.	$d\pi - p_{2}$	π bond present in	:					
	(A)	CO_{3}^{2-}	(B)	PO_{4}^{3-}	(C)	NO_3^-	(D)	NO_2^-

97.	N_2 and O_2 are converted into monocations, N_2^+ and O_2^+ respectively. Which is wrong $?$								
	(A)	In O ₂ parama	agnetism decre	eases	(B)	N_2^+ become	nes diamagnetic		
	(C)	In N ₂ , the N	– N bond wea	knes	(D)	In O ₂ , the O	O – O bond orde	r increases	
98.	Which	of the following	g molecule doe	es not possess a	permanent dipo	le moment ?			
	(A)	CS_2	(B)	SO_3	(C)	H_2S	(D)	SO_2	
99.	Which one of the following is the correct order of strengths of interactions ?								
	(A)	Covalent < hydrogen bonding < van der Waals < dipole-dipole							
	(B)	van der Waals < hydrogen bonding < dipole < covalent							
	(C)	van der Waals < dipole-dipole < hydrogen bonding < covalent							
	(D)	Dipole-dipole < van der Waals < hydrogen bonding < covalent							
100.	Which	h of the following molecule has the maximum dipole moment ?							
	(A)	CO ₂	(B)	CH4	(C)	NH ₃	(D)	NF ₃	

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- The number of species which consists of sp³d hybridized central atom for the underlined atoms in the 101. following species/molecules is/are: $\underline{X}eF_4$, $\underline{I}Cl_2^-$, $\underline{X}eO_3F_2$, $\underline{P}Cl_4^+$, $\underline{P}Cl_6^-$, $\underline{S}F_4$, $\underline{S}OF_4$, $\underline{X}eOF_4$
- 102. Find number of planar species out of SF_2 , SF_4 , SF_6 , SO_2 , SO_3 . CH_4 , P_4 , NO^+ , CN^- , CO, N_2O , H_2O

- Find the number of ions/molecules which are isoelectronic with O_2^{2+} . 103.
- 104. No. of P - O - P bonds present in pentamer of cyclometaphosphoric acid are:
- 105. Find the number of chemical species having P—H linkage as well as —OH linkage. H₄P₂O₅, H₃PO₂, H₃PO₃, H₄P₂O₇, H₄P₂O₈, H₃PO₅
- 106. Find the number of compounds of Xe which is/are associated with 180° bond angles. XeF₂, ICl₂, I₃, XeF₄, XeO₆⁴⁻, XeO₄, XeCl₄, TeCl₄
- Find the number of P-O-P linkages in P₄O₁₀, B-O-B linkages in Na₂B₄O₇·10H₂O,Si-O-Si 107. linkages in H₆Si₃O₉ S—O—S linkage in S₃O₉ respectively.
- 108. How many of the following having regular tetrahedral geometry? CCl₄, CHCl₃, SO₃, SiF₄, BF₄⁻, NH₃, H₂O, SiO₄⁴⁻
- 109. Find the total number of correct statements out of following.
 - Orbitals having large energy difference of an element can participate in hybridization (a)
 - In XeO₂F₂ all bond lengths are not identical (b)
 - Dipole moment of CCl_4 is more than NF₃ (c)
 - (d) All allotropes of carbon have same hybridization of each carbon atom

- 110. Find the total number of molecules in which total number of antibonding e⁻ are less than the total number of bonding e⁻.
 O₂, C₂, B₂, F₂, N₂
- 111. Assuming 2s-2p mixing is not operative, the paramagnetic species among the following are: Be₂, B₂, C₂, N₂, O₂, O⁺₂, NO
- 112.Find the number of molecules which are planar but not polar.(a) $H_2C = C = CH_2$ (b) $B_3N_3H_6$ (c) SiF_4 (d) $C_3O_2(e)NO_2$
- 113. Total number of species in which highest occupied molecular orbital has gerade type of symmetry. $B_2, N_2, C_2, N_2^{2+}, O_2, O_2^{2-}, N_2^{2-}$
- 114. Find the number of chemical species which are paramagnetic in nature. $O_2^{2^-}$, NO, ClO₂, OF, B₂, C₂, N₂
- 115. The total number of chemical specie(s) is/are paramagnetic and have fractional bond order: $B_2, C_2^{2-}, N_2^+, O_2^-, NO^+, OF$

States of Matter

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which of the following property of water can be used to explain the spherical shape of rain droplets ?
 - (A) Viscosity (B) Surface tension
 - (C) Critical Phenomena (D) Pressure
- 2. A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in Fig. 5.1. Which of the following order of pressure is correct for this gas ?
 - (A) $p_1 > p_2 > p_3 > p_4$
 - **(B)** $p_1 = p_2 = p_3 = p_4$
 - (C) $p_1 < p_2 < p_3 < p_4$
 - **(D)** $p_1 < p_2 = p_3 < p_4$
- **3.** The interaction energy of London force is inversely proportional to sixth power of the distance between two interacting particles but their magnitude depends upon ?
 - (A) Charge of interacting particles (B) Mass of interacting particles
 - (C) Polarisability of interacting particles (D) Strength of permanent dipoles in the particles
- **4.** As the temperature increases, average kinetic energy of molecules increases. What would be the effect of increase of temperature on pressure provided the volume is constant ?
 - (A) Increases (B) Decreases
 - (C) Remains same (D) Becomes half

5. Gases possess characteristic critical temperature which depends upon the magnitude of intermolecular forces between the particles. Following are the critical temperatures of some gases. Gases : H_2 He O_2 N_2 Tc (in K) 33.2 5.3 154.3 126 From the above data what would be the order liquefaction of these gases ? Start writing the order from the gas liquefying first: H₂, He, O₂, N₂ (A) **(B)** He, O_2 , H_2 , N_2 N₂, O₂, He, H₂ O₂, N₂, H₂, He **(C) (D)** 6. What is SI unit of viscosity coefficient (η) ? Nsm⁻² $\mathrm{km}^{-2}\mathrm{s}$ **(B)** (C) **(D)** Nm^{-2} (A) Pascal 7. Which curve in the given figure represents the curve for an ideal gas ? p E and F only (A) B only **(B)** C and D only **(C) (D)** A and B only 8. Increase in kinetic energy can overcome intermolecular forces of attraction. How will the viscosity of liquid be affected by the increase in temperature ? Increase **(B)** (A) No effect (C) Decrease **(D)** No angular pattern will be followed 9. How does the surface tension of a liquid vary with increase in temperature ? (A) Remains same **(B)** Decreases (C) Increases **(D)** No regular pattern is followed *10. With regard to the gaseous state of matter which of the following statements are correct ? Complete order of molecules **(B)** Complete disorder of molecules (A) (C) Random motion of molecules **(D)** Fixed position of molecules *11. Under which of the following two conditions applied together, a gas deviates most from the ideal behaviour ? High pressure Low temperature **(D)** High temperature Low pressure **(B)** (A) **(C)** *12. Which of the following charges decrease the vapour pressure of water kept in sealed vessel? (A) Decreases the quantity of water **(B)** Adding salt to water (C) Decreasing the volume of the vessel to one-half (D) Decreasing the temperature of water **Reasoning Type Questions for 13 - 17** Both A and R are true and R is the correct explanation of A (A) Both A and R are true but R is not the correct explanation of A **(B)** A is true but R is false (C) **(D)** A is false but R is true 13. Three states of matter are the result of balance between intermolecular forces and thermal energy of Assertion (A) : the molecules. Reason (R) : Intermolecular forces tend to keep the molecules together but thermal energy of molecules tends to keep them apart. 14. Assertion (A) : At constant temperature, pV vs V plot for real gases is not a straight line. At high pressure all gases have Z > 1 but at intermediate pressure most gasses have Z < 1. Reason (R) :

27

15.	Assertion (A) :	temperature.						
	Reason (R) :	At high attitude a	atmospheric pressur	e is high.				
16.	Assertion (A) : Reason (R) :	Above critical te	uefy above their crit mperature, the mole ler because they esc	ecular speed	l is high and intern		pressure. ttractions cannot hold the	
17.	Assertion (A): Reason (R):		ave maximum num os have spherical sh		cules at their surfa	ce.		
18.	If Z is a compress	sibility factor, van d	ler Waals' equation	at low pres	sure can be written	as :		
	(A) $Z = 1 + $	$\frac{\text{RT}}{\text{pb}}$ (B)	$Z = 1 - \frac{a}{VRT}$	(C)	$Z = 1 - \frac{pb}{RT}$	(D)	$Z = 1 + \frac{pb}{RT}$	
19.	-		peed is denoted by s of these speeds are		ge speed by \overline{C} and	mean squa	are speed by C, then for a	
	(A) $C^*: \bar{C}$: C = 1.225 : 1.128	3:1	(B)	$\mathbf{C}^* : \overline{\mathbf{C}} : \mathbf{C} = 1.1$	28:1.225	:1	
	(C) C*: Ē	: C = 1:1.128:1.2	25	(D)	$\mathbf{C}^*: \overline{\mathbf{C}}: \mathbf{C} = 1: \mathbf{I}$.225:1.12	28	
20.	The compressibili	ity factor for a real	gas at high P is:					
	(A) $1 + \frac{RT}{Pb}$	(B)	1	(C)	$1 + \frac{Pb}{RT}$	(D)	$1 - \frac{Pb}{RT}$	
21.	(A) a and b	for $Cl_2 > a$ and b for	for gases. Chlorine or C_2H_6 o for $Cl_2 > b$ for C_2H_6	(B)	a and b for $Cl_2 >$	a and b fo		
22.	(A) Inverse(B) Inverse	ly proportional to a	: ne square root of ter bsolute temperature uare root of tempe	(C)	Directly proport	ional to squ	uare of temperature	
23.	equilibrium is est	ablished? $[V.P = 2]$	6.7mm Hg]				n the vapour phase when	
	(A) 5.56×1	0^{-3} mol (B)	1.53×10^{-2} mol	(C)	4.46×10^{-2} mol	(D)	$1.42 \times 10^{-3} \text{ mol}$	
24.	 Which one of the following statements is not true about the effect of an increase in temperature on the distribution on molecular speeds in gas? (A) The area under the distribution curve remains the same as under the lower temperature (B) The distribution becomes broader (C) The fraction of the molecules with the most probable speed increases (D) The most probable speed increases 							
25.	As the temperatur of the following?	re is raised from 20	0° C to 40° C, the a	verage kine	tic energy of neon	atoms chai	nges by a factor of which	
	(A) 1/2	(B)	$\sqrt{313/293}$	(C)	313/293	(D)	2	
26.	In van der Waals'	equation of state o	f the gas law, the co	onstant ' b'	is a measure of :			
	. ,	blecular repulsions e occupied by the m	olecules	(B) (D)	Intermolecular a Intermolecular c		er unit volume	
27.	(A) In a circ	kinetic theory of ga cular path aight line path	ses, in an ideal gas,	between tw (B) (D)	vo successive collis In a wavy path With an accelera	-		
28.	Based on kinetic (A) Boyle's		owing laws can be j	proved : (B) (D)	Charles' law All of these			

29.	For an	ideal gas, number of	f moles pe	er litre in terms of its	pressure j	o, temperature	T and gas const	ant R is :		
	(A)	pT R	(B)	pRT	(C)	$\frac{p}{RT}$	(D)	RT p		
30.	-	hass and P of an idea $P_1 = P_2 = P_3$ $P_1 > P_2 > P_3$ $P_1 < P_2 < P_3$	al gas. It f	of V/T as a functior ollows from the curv bout the pressures		a V	//T	$\begin{array}{c} P_3 \\ P_2 \\ P_1 \\ \hline \end{array}$		
31.	Hydrogen gas is contained in two vessels connected by a closed stopcock as shown in the diagram. The volumes and pressure are also shown. When the stopcock is opened and the gases are allowed to mix at constant temperature, the final pressure will be (neglecting the volume of the tube between the bulbs) (A) 0.50 atm (B) 0.75 atm (C) 0.67 atm (D) 1.50 atm									
*32.	Which	of the following is(a	are) correc	et statements ?		0.50 atm	/	1.00 atm		
	(A)	The S.I. unit of E	Boltzmann	's constant is $\frac{J}{mol K}$	-					
	(B)	Avogadro's num	ber (N _A) i	s a dimensionless qu	antity					
	(C)	The S.I units of v	van der W	aal's constants 'a' ar	nd ' b ' are	$\frac{J-m^3}{mol^2}$ and $\frac{m}{m}$	$\frac{n^3}{n}$ respectively			
	(D)	If $\Delta N_c = 4\pi N a^3$ $c + \Delta c$	$e^{-bc^2}c^2\Delta$	c, where ΔN_c rep	resents th	e number of r	nolecules havin	g speed between c and		
33.	Maxim (A)	um deviation from i CH4(g)	ideal gas i (B)	s expected from NH _{3(g)}	(C)	H _{2(g)}	(D)	N _{2(g)}		
34.	(C_P/C_V)) of the mixture will	be :		-	-		ne ratio of specific heats		
25	(A)	0.83	(B)	1.50	(C)	3.3	(D)	1.67		
35.				^	-			to the surface where the		
	(A) (C)	Volume will bec	ome great	re is 1.0 bar, what w er by a factor of 1.6 ler by a factor of 0.76	(B)	Volume wi	ll become greate	er by a factor of 1.1 er by a factor of 2.5		
36.	If a gas (A) (C)	-	molecule	sure, it indicates that s remains the same s decreases	: (B) (D)		he molecules of the gas increase	-		
37.	Which (A) (B) (C) (D)	(B) Volume of the gas is equal to volume of container confining the gas(C) Gases do not have a definite shape and volume								
38.	Absolu (A) (C)	te zero is defined as at which all mole at which ether bo	cular mot		(B) (D)	at which lic all of the ab	uid helium boil	s		
39.	Pressu	re remaining the sar ature by definite fra			iss of an i	deal gas incre	ases for every o	legree centigrade rise in		
	(A) (C)	0°C absolute zero			(B) (D)	its critical t it Boyle ten	_			

40. Correct gas equation is :

(A)
$$\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$$
 (B) $\frac{P_1 V_2}{P_2 V_2} = \frac{T_1}{T_2}$ (C) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ (D) $\frac{V_1 V_2}{T_1 T_2} = P_1 P_2$

Integer Answer Type Questions The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 41. 3.2g of oxygen (At. wt. = 16) and 0.2g of hydrogen (At. wt. = 1) are placed in a 1.12 litre flask at 0°C. The total pressure (in atm) of the gas mixture will be.
- **42.** Pressure of 1 g of an ideal gas A at 27°C is found to be 2 bar. When 2 g of another ideal gas B is introduced in the same flask at same temperature, the pressure becomes 3 bar. Find the ratio of molecular masses.
- **43.** 127 ml of a certain gas diffuse in the same time as 100 ml of chloride under the same conditions. Calculate the molecular mass of the gas.
- 44. A gaseous hydrocarbon requires 6 times its own volume of O_2 for complete oxidation and produces 4 times its volume of CO_2 . What is its Molecular mass ?
- **45.** Volume of 2.9g of a gas at 95°C occupied the same volume as 0.184g of H₂ gas at 17°C and at the same pressure. What is the molar mass of the gas?
- 46. The sealed containers of the same capacity and at the same temperature are filled with 44 g of H_2 in one and 44 g of CO_2 in the other. If the pressure of carbon dioxide in the second container is 1 atm. then pressure (in atm) in the first container would be:
- 47. If pressure becomes double at the same absolute temperature of 2 litre CO_2 , then the volume of CO_2 becomes
- 48. Molecular weight of a gas that diffuses twice as rapidly as the gas will molecular weight 64 is:
- **49.** An LPG cylinder contains 15 kg of butane gas at 27°C and 10 atmospheric pressure. It was leaking and its pressure fell down to 8 atmospheric pressure after one day. The gas (in kg) leaked is
- 50. The temperature in °C which average velocity of SO_2 gas is equal to the average velocity of O_2 gas at 27°C, is
- **51.** The root mean square velocity of molecules of a triatomic gas μ . If the temperature in Kelvin scale is increased to 3 times, atoms are produced. The runs of the atoms is :
- **52.** To what temperature (in K) should an open vessel be heated to expel two-fifth of air, if initial temperature is 27°C?
- **53.** 40 cc of gas 'X' diffuses through a porous pot in 20 second while under the same conditions 80 cc of another gas 'y' diffuse in the same time. If the molar mass of 'X' is 128, the molar mass of 'Y' is:

- 54. A gas gets liquefied at 40 atm when its critical volume is 3L. What is its critical temperature in K? $(R = 0.8 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1})$
- 55. At 2 bar and 27°C, density of a gas is 5.46 $g dm^{-3}$. Its density ($g dm^{-3}$) at STP is:

Thermo-chemistry & Thermodynamics

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which of the following statements is correct ?
 - (A) The presence of reacting species in a covered beaker is an example of open system.
 - (B) There is an exchange of energy as well as matter between the system and the surroundings in a closed system.
 - (C) The presence of reactants in a closed vessel made up of copper is an example of a closed system.
 - (D) The presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system
- 2. The volume of gas is reduced to half from its original volume. The specific heat will be _____.
 - (A) Reduce to half (B) Be doubled (C) Remain constant (D) Increase four times
- 3. $\Delta_f H$ of formation of $CH_4(g)$ at certain temperature is -393 kJ mol⁻¹. The value of $\Delta_f H^{\Theta}$ is :
 - (A) Zero (B) $<\Delta_{\rm f} {\rm H}^{\Theta}$ (C) $>\Delta_{\rm f} {\rm H}^{\Theta}$ (D) Equal to $\Delta_{\rm f} {\rm H}^{\Theta}$
- 4. In an adiabatic process, no transfer of heat takes place between system and surrounding. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following.

(A)
$$q = 0, \Delta T \neq 0, w = 0$$
 (B) $q \neq 0, \Delta T = 0, w = 0$

(C)
$$q = 0, \Delta T = 0, w = 0$$
 (D) $q = 0, \Delta T = 0, w \neq 0$

5. The pressure-volume work for an ideal gas can be calculated by using the expression $w = -\int_{V_t}^{V_f} p_{ex} dV$. The work can

also be calculated from pV- plot by using the area under the curve within the specified limits. When an ideal gas is compressed (a) reversibly or (b) irreversibly from volume V_t to V_f . Choose the correct option.

- (A) w (reversible) = w (irreversible) (B) w (reversible) < w (irreversible)
- (C) w (reversible) > w (irreversible) (D) w (reversible) = w (irreversible) + p_{ex} . ΔV

6. The entropy change can be calculated by using the expression $\Delta S = \frac{q_{rev}}{T}$ when water freezes in a glass beaker, choose the correct statement amongst the following :

- (A) ΔS (system) decreases but ΔS (surroundings) remains the same.
- (B) ΔS (system) increases but ΔS (surroundings) decreases.
- (C) ΔS (system) decreases but ΔS (surroundings) increases.
- (**D**) ΔS (system) decreases and ΔS (surroundings) also decreases.
- 7. On the basis of thermochemical equations (a), (b) and (c), find out which of the algebric relationship given in options (i) to (iv) is correct.
 - I. $C(\text{graphite}) + O_2(g) \longrightarrow CO_2(g) ; \Delta_r H = x \text{ kJ mol}^{-1}$
 - II. $C(\text{graphite}) + \frac{1}{2}O_2(g) \longrightarrow CO(g) ; \Delta_r H = y \text{ kJ mol}^{-1}$

III.
$$\operatorname{CO}(g) + \frac{1}{2}\operatorname{O}_2(g) \longrightarrow \operatorname{CO}_2(g) ; \Delta_r H = z \text{ kJ mol}^{-1}$$

(A) z = x + y (B) x = y - z (C) x = y + z (D) y = 2z - x

8.	Consider the reactions given below. On the basis of these reactions find out which of the algebric relations given in options (i) to (iv) is correct ? ($x < 0$; $y < 0$)									
	I.	$C(g) + 4 H(g) \longrightarrow CH_4(g) ; \Delta_r H = x kJ mol^{-1}$								
	II.	C(graphite,s)	$+ 2H_2(g) -$	$\longrightarrow CH_4(g) ; \Delta_r H$	H = y kJ m	ol ⁻¹				
	(A)	$\mathbf{x} = \mathbf{y}$	(B)	$\mathbf{x} = 2\mathbf{y}$	(C)	x > y	(D)	x < y		
9.	The en	thalpies of element	nts in their st	andard states are ta	iken as zero	o. The enthalpy	of formation o	f a compound :		
	(A)	is always nega			(B)	is always p				
	(C)	may be positiv			(D)	is never neg	gative			
10.	Enthalj (A)	py of sublimation		-	n (B)	Enthelmy of	ffusion			
	(A) (C)	Enthalpy of va		lpy of vapourisatio	(D)	Enthalpy of Twice the e	enthalpy of vapo	ourisation		
11.		of the following	-	9			12 1			
11.	(A)	ΔG is zero fo			(B)	ΔG is positive	itive for a spont	aneous reaction		
	(C)	ΔG is negative	ve for a spont	aneous reaction	(D)	-	-	pontaneous reaction		
*12.	Therm	odynamics mainly	v deals with :							
	(A)	• •		rms of energy and	their transfo	ormation from	one form to and	other.		
	(B)	Energy changes in the processes which depend only on initial and final states of the microscopic systems								
	(C)	containing a fe How and at w		s. energy transforma	tions are c	arried out				
	(C) (D)			state or moving fro			o another equili	brium state.		
*13.	In an e	xothermic reactio	n, heat is evo	olved, and system l	oses heat to	o the surroundi	ng. For such sys	stem :		
	(A)	q _p will be neg		-	(B)	$\Delta_{\rm r} {\rm H}$ will b				
	(C)	q _p will be pos	sitive		(D)	$\Delta_r H$ will	be positive			
*14.	The sp	ontaneity means,	having the p	potential to proceed	d without t	he assistance of	of external agen	cy. The processes which		
		pontaneously are		1 1		c ·	,. , ,	,		
	(A) (C)			warmer body. vailable volume.	(B) (D)			ing into one corner. to give carbon dioxide.		
*15.			-			C		0		
13.	FOI all			de expansion under	i isotherina			by using the expression		
		$w = -nRT \ln t$	V _t							
		· –				-	•	es of its original volume,		
	in two (A)		-	imes the work don			respectively. Cr	noose the correct option.		
	(B)			ce the work done at						
	(C)	Work done at	600 K is twi	ce the work done at	t 300 K					
	(D)	$\Delta U = 0$ in both	th cases.							
*16.	Consid	er the following 1	eaction betw	een zinc and oxyg			_	he options given below :		
		$2 \operatorname{Zn}(s) + \operatorname{O}_2(s)$	$(g) \longrightarrow 2Z$	nO(s);	$\Delta H =$	– 693.8 kJ mol	-1			
	(A)	The enthalpy of 693.8kJ	of two moles	of ZnO is less that	n the total e	enthalpy of two	moles of Zn an	nd one mole of oxygen by		
	(B)	The enthalpy object of the by 693.8 kJ	of two moles	of ZnO is more th	an the tota	l enthalpy of t	wo moles of Zn	and one mole of oxygen		
	(C)	693.8 kJ mol⁻	$693.8 \text{ kJ mol}^{-1}$ energy is evolved in the reaction							
		693.8 kJ mol ⁻¹ energy is absorbed in the reaction								

17. Assertion (A): Spontaneous process is an irreversible process and may be reversed by some external agency. **Reaction (R)**: Decrease in enthalpy is a contributor factor for spontaneity.

- Both A and R are true and R is the correct explanation of A (A)
- **(B)** Both A and R are true but R is not the correct explanation of A
- **(C)** A is true but R is false
- **(D)** A is false but R is true

18. For the complete combustion of ethanol, $C_2H_5OH(\ell) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(\ell)$ the amount of heat produced as measured in bomb calorimeter is 1364.47 kJ mol⁻¹ at 25°C. Assuming ideality, the enthalpy of combustion, $\Delta_{\rm C}$ H for the reaction will be: [R = 8.314 JK⁻¹ mol⁻¹]

 $-1366.95 \text{ kJmol}^{-1}$ (B) $-1361.95 \text{ kJmol}^{-1}$ (C) $-1460.50 \text{ kJ mol}^{-1}$ (D) (A) $-1350.50 \text{ kJ mol}^{-1}$

19. A piston filled with 0.04 mole of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0° C. As it is does so, it absorbs 208 J of heat. The values of q and W for the process will be (R = 8.314 J/mol K, $\ln 7.5 = 2.01$)

(A)
$$q=+208J, W=-208J$$

(B) $q=-208J, W=-208J$
(C) $q=-208J, W=+208J$
(D) $q=+208J, W=+208J$

20. The incorrect expression among the following is :

(A)
$$\frac{\Delta G_{\text{system}}}{\Delta S_{\text{system}}} = -T$$
 (B) In isothermal process, $W_{\text{reversible}} = -nRT \ln \frac{V_f}{V_i}$
(C) $\ln K = \frac{\Delta H^\circ - T\Delta S^\circ}{PT}$ (D) $K = e^{-\Delta G^\circ / RT}$

21. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27° C is:

(A)
$$38.3 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$$
 (B) $35.8 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$ (C) $32.3 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$ (D) $42.3 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$

22. In view of the signs of $\Delta_r G^\circ$ for the following reactions :

RT

 $PbO_2 + Pb \longrightarrow 2PbO, \Delta G^{\circ} < 0 \quad ; \quad SnO_2 + Sn \longrightarrow 2SnO, \Delta_r G^{\circ} > 0$

Which oxidation states are more of	haracteristic for	r lead	and tin?	

For lead +2, for tin +2(A) For lead + 4, for tin + 2**(B)** (D) **(C)** For lead +4, for tin +4For lead +2, for tin +4

23. For a particular reversible reaction, at temperature T, ΔH and ΔS were found to be both +ve. If T_e is the temperature at equilibrium, the reaction would be spontaneous when:

(A)
$$T_e > T$$
 (B) $T > T_e$ (C) T_e is 5 times T (D) $T = T_e$

Oxidising power of chlorine in aqueous solution can be determined by the parameters indicates below 24.

$$\frac{1}{2}Cl_{2}(g) \xrightarrow{\frac{1}{2}\Delta dissH^{\Theta}} Cl(g) \xrightarrow{\Delta_{hyd}H^{\Theta}} Cl^{-}(aq)$$

The energy involved in the conversion of $\frac{1}{2}$ Cl₂(g)to Cl⁻¹(aq) (using the data, $\Delta_{diss}H_{Cl_2}^{\Theta} = 240 \text{ kJ mol}^{-1}$

$$\Delta_{\text{EA}} H_{\text{Cl}}^{\Theta} = -349 \text{ kJ mol}^{-1}, \ \Delta_{\text{hyd}} H_{\text{Cl}}^{\Theta} = -381 \text{ kJ mol}^{-1} \text{) will be:}$$
(A) +152 kJ mol}⁻¹ (B) -610 kJ mol^{-1} (C) -850 kJ mol^{-1} (D) +120 kJ mol^{-1}

25. Identify the correct statement regarding a spontaneous process.

- For a spontaneous process in an isolated system, the change in entropy is positive (A)
- **(B)** Endothermic processes are never spontaneous
- **(C)** Exothermic process are always spontaneous
- **(D)** Lowering of energy in the reaction process is the only criteria for spontaneity

- 26. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, then which of the following statements is correct?
 - (A) $(T_f)_{irrev} > (T_f)_{rev}$
 - (B) $T_f > t_i$ for reversible process but $T_f = T_i$ for irreversible process
 - (C) $(T_f)_{rev} = (T_f)_{irrev}$
 - **(D)** $T_f = t_i$ for both reversible and irreversible processes
- 27. In an irreversible process taking place at constant T and p and in which only pressure volume work is being done, the change in Gibbs free energy (dG) and change in entropy (dS), satisfy the criteria
 - (A) $(dS)_{V,E} < 0, (dG)_{T,p} < 0$ (B) $(dS)_{V,E} > 0, (dG)_{T,p} < 0$
 - (C) $(dS)_{V,E} = 0, (dG)_{T,p} = 0$ (D) $(dS)_{V,E} = 0, (dG)_{T,p} > 0$
- **28.** For all gases, $C_P C_V = R$. This R is the :
 - (A) Change kinetic energy when temperature of 1 mole of a gas is increased by 1°C
 - (B) Mechanical work when the temperature of 1 mole of a gas is increased by 1°C
 - (C) Change in potential energy when gas is allowed to fall
 - (D) None of these

29.
$$\text{LiCl}(s) + \text{H}_2O(\ell) \Longrightarrow \text{Li}^+(aq) + \text{Cl}^-(aq) \quad \Delta \text{H} = -37.1 \text{ kJ mol}^{-1}$$

Variation of solubility s with temperature T is given by :

30. Which of the following statements is correct for the spontaneous adsorption of a gas ?

(A) ΔS is negative and, therefore ΔH should be highly positive

- (B) ΔS is negative and, therefore ΔH should be highly negative
- (C) ΔS is positive and, therefore ΔH should be highly negative
- (D) ΔS is positive and, therefore ΔH should also be highly positive
- **31.** A reaction having equal energies of activation for forward and reverse reactions has

(A)	$\Delta H = 0$	(B)	$\Delta H = \Delta G = \Delta S = 0$
(C)	$\Delta S = 0$	(D)	$\Delta G = 0$

32. Standard enthalpy of vaporization $\Delta_{vap} H^{\circ}$ for water at 100°C is 40.66 kJ mol⁻¹. The internal energy of vaporization of water at 100°C (in kJ mol⁻¹) is :

34

(A)	+ 37.56	(B)	-43.76
(C)	+43.76	(D)	+40.66

33. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition ?

- (A) $q = 0, \Delta T \neq 0, w = 0$ (B) $q \neq 0, \Delta T = 0, w = 0$ (C) $q = 0, \Delta T = 0, w = 0$ (D) $q = 0, \Delta T < 0, w \neq 0$
- 34. For the gas phase reaction, $PCl_{5(g)} \implies PCl_{3(g)} + Cl_{2(g)}$ which of the following conditions are correct?
 - (A) $\Delta H < 0 \text{ and } \Delta S < 0$ (B) $\Delta H > 0 \text{ and } \Delta S < 0$ (C) $\Delta H = 0 \text{ and } \Delta S < 0$ (D) $\Delta H > 0 \text{ and } \Delta S > 0$

35.	Identif	Identify the correct statement for change of Gibbs energy for a system (ΔG_{system}) at constant temperature and pressure.									
	(A)	If $\Delta G_{system} < 0$, the process is not spontaneous									
	(B)	If $\Delta G_{\text{system}} > 0$, the process is spontaneous									
	(C)	If $\Delta G_{\text{system}} = 0$, the system has attained equil	ibrium								
	(D)	If $\Delta G_{\text{system}} = 0$, the system is still moving in		ar direction							
36.	A reac	tion occurs spontaneously if									
	(A)	$T\Delta S < \Delta H$ and both ΔH and ΔS are + ve	(B)	$T\Delta S > \Delta H$ and ΔH is + ve and ΔS is – ve							
	(C)	$T\Delta S > \Delta H$ and both ΔH and ΔS are + ve	(D)	$T\Delta S=\Delta H$ and both ΔH and ΔS are + ve							
37.	Consid	lering entropy (S) as a thermodynamic parameter,	the criterio	on for the spontaneity of any process is :							
	(A)	$\Delta S_{system} + \Delta S_{surroundings} > 0$	(B)	$\Delta S_{system} - \Delta S_{surroundings} > 0$							
	(C)	$\Delta S_{system} > 0$ only	(D)	$\Delta S_{surroundings} > 0$ only							
38.	Identif	y the correct statement regarding entropy.									
	(A)	At absolute zero of temperature, the entropy of	f all crystal	lline substances is taken to be zero							
	(B)	At absolute zero of temperature, entropy of a p	-	-							
	(C)	At absolute zero of temperature, entropy of a p	erfectly cr	ystalline substances is taken to be zero							
	(D)	At 0°C, the entropy of a perfectly crystalline	substances	is taken to be zero							
39.	A cher	nical reaction is catalyzed by a catalyst X. The cat	alyst X :								
	(A)	reduces enthalpy of the reaction	(B)	does not affect equilibrium constant of reaction							
	(C)	decreases rate constant of the reaction	(D)	increases activation energy of the reaction							
40.	Standa	rd state Gibb's free energy change for isome	rization re	eaction : cis-2-pentene trans-2-pentene is							
	-3.67	kJ/mol at 400 K. If more of trans-2-pentene is ac	lded to the	system, then :							
	(A)	equilibrium remains unaffected	(B)	equilibrium is shifted in the forward direction							
	(C)	more cis-2-pentene is formed	(D)	additional trans-2-pentene is formed							

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 41. Two litres of N_2 at 0°C and 5 atm pressure is expanded isothermally against a constant external pressure of 1 atm until the pressure of gas reaches 1 L. Assuming gas to be ideal, calculate the value of work of expansion multiplied by -1.
- **42.** The latent heat of vapourisation of a liquid at 500 K and 1 atm pressure is 30 kcal mol^{-1} . What will be the change in internal energy of mol of liquid at same temperature?
- 43. When a polyatomic gas undergoes an adiabatic process, its temperature and volume are related by the equation $TV^n = constant$, the value of $n \times 100$ will be
- 44. $H_2 + Cl_2 \rightarrow 2HCl, \Delta H = 194 \text{ kJ}$. In this reaction, heat of formation of HCl(in kJ) is
- 45. If bond dissociation energies of xy, x_2 and y_2 (all diatomic molecules) are in the ratio of 1:1:0.5 and ΔH_f for the formation of xy is -200 kJ mol⁻¹, the bond dissociation energy of x_2 will be
- **46.** Enthalpy of neutralization of acetic acid by NaOH is -50.6 kj mol⁻¹. Calculate Δ H for ionization of CH₃COOH. Given, the heat of neutralization of a strong acid with a strong base is -55.6 kJ mol⁻¹.

- 47. One mole of methanol when burnt in O_2 , gives out 723 kJ mol⁻¹ heat. If one mole of O_2 is used, what will be the amount of heat evolved?
- 48. If 150 kJ of energy is need for muscular work to walk a distance of one km, then how much of glucose one has to consume to walk a distance of 5 km, provided only 30% of energy is available for muscular work? (The enthalpy of combustion of glucose is 3000 kJ mol⁻¹) is
- **49.** Melting point of a solid is x K and its latent heat of fusion is 600 cal mol^{-1} . The entropy change for fusion of 1 mol solid is 2 cal mol^{-1} K⁻¹. The value of x will be
- **50.** For a liquid, enthalpy of fusion is 1.435 kcal mol⁻¹ and molar entropy change is 5.26 cal mol⁻¹K⁻¹. The freezing point of liquid in Celsius will be:-
- 51. For the reaction, $Ag_2O(s) \rightleftharpoons 2Ag(s) + \frac{1}{2}O_2(g)\Delta H, \Delta S$ and T are 40.63kJ mol⁻¹, 108.8 J K⁻¹ mol⁻¹ and 373.4K respectively. Free energy change ΔG of the reaction will be:
- 52. ΔG° for the equilibrium $x + y \rightleftharpoons z$ is -4.606 kcal. The value of equilibrium constant of the reaction at 227°C is $(x \times 10^2)$. The value of 'x' is:

In the present graph, the areas of circles A and B are 25 unit and 20 unit respectively. Work done will be unit

54. For the reaction

53.

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Heat of reaction at constant volume exceeds the heat of reaction at constant pressure by the value of xRT. The value of x is:

55. One mole of an ideal gas at 300K is expanded isothermally from initial volume of 1 L to 10 L. The ΔU for this process is (R = 2 cal mol⁻¹ K⁻¹)

Chemical & Ionic Equilibrium

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the standard free energy is $\Delta G^{\Theta} > 0$. The equilibrium constant (K) would be .
 - (A)

 $\mathbf{K} = \mathbf{0}$

(C) K = 1

(D)

K < 1

2. Which of the following is not a general characteristic of equilibria involving physical processes ?

K > 1

- (A) Equilibrium is possible only in a *closed system* at a given temperature.
- (B) All measurable properties of the system remain constant.

(B)

- (C) All the physical processes stop at equilibrium.
- (D) The opposing processes occur at the same rate and there is dynamic but stable condition.
- ***3.** Which of the following statements is correct ?
 - (A) In equilibrium mixture of ice and water kept in perfectly insulated flask mass of ice and water does not change with time
 - (B) The intensity of red colour increases when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate
 - (C) On addition of catalyst the equilibrium constant value is not affected
 - (D) Equilibrium constant for a reaction with negative ΔH value decreases as the temperature increases
- 4. When hydrochloric acid is added to cobalt nitrate solution at room temperature, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the correct answer.

$$\left[\operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{3+}(\operatorname{aq}) + 4\operatorname{Cl}^{-}(\operatorname{aq}) \rightleftharpoons \left[\operatorname{Co}(\operatorname{L}_{4}\right]^{2-}(\operatorname{aq}) + 6\operatorname{H}_{2}\operatorname{O}(l)$$
Blue

- (A) $\Delta H > 0$ for the reaction
- **(B)** $\Delta H < 0$ for the reaction
- (C) $\Delta H = 0$ for the reaction

6.

7.

- (D) The sign of ΔH cannot be predicated on the basis of this information.
- 5. The ionisation constant of an acid, K_a , is the measure of strength of an acid. The K_a values of acetic acid, hypochlorous acid and formic acid are 1.74×10^{-5} , 3.0×10^{-8} and 1.8×10^{-4} respectively. Which of the following orders of pH of 0.1 mol dm⁻³ solutions of these acids is correct?
 - (A) Acetic acid < hypochlorous acid < formic acid
 (B) Hypochlorous acid < acetic acid < formic acid
 (C) Formic acid < hypochlorous acid < acetic acid
 (D) Formic acid < acetic acid < hypochlorous acid
 Acidity of BF₃ can be explained on the basis of which of the following concepts ?
 (A) Arrhenius concept
 (B) Bronsted Lowry concept
 - (C) Lewis concept (D) Bronsted Lowry as well as Lewis concept.

In which	of the following solvents is silver chloride most s	oluble ?	
(A)	0.1 moldm ⁻³ AgNO ₃ solution	(B)	$0.1 \mathrm{moldm^{-3}HCl}$ solution
(C)	H ₂ O	(D)	Aqueous ammonia

8. Which of the following options will be correct if reaction attains equilibrium at half completion of the reaction $A \rightleftharpoons B$.

(A) $\Delta G = 0$ (B) $\Delta G > 0$ (C) $\Delta G < 0$ (D) $\Delta G = -RT \ln 2$

9. What will be the correct order of vapour pressure of water, acetone and ether at 30°C. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ?

(A) Water < ether < acetone
(B) Water < acetone < ether
(C) Ether < acetone < water
(D) Acetone < ether < water

*10.	For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, the value of K is 50 at 400 K and 1700 at 500 K. Which of the following option									
	is correc (A) (B) (C)	The reac The reac	tion is endotherm tion is exothermic (g) and $N_2O_4(g)$		00 K at	partial pres	sures 20 bar a	nd 2 bar re	spectively,	
		more N ₂	$O_4(g)$ will be for	rmed						
	(D)	The entro	opy of the system	increases						
*11.		um. Whicl	n of the following nelting point	mospheric pressure, term defines this tem			n temperature	substance ca	an exist in	
Reason (A) (B) (C) (D)	Both A a Both A a A is true	and R are t	rue but R is not th alse	orrect explanation of a correct explanation						
12.	 Assertion (A) : Increasing order of acidity of hydrogen halides is HF < HCl < HBr < HI Reason (R) : While comparing acid formed by the elements belonging to the same group periodic table, H – A bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond. 									
 13. Assertion (A) : The ionisation of hydrogen sulphide in water i Reason (R) : Hydrogen sulphide is a weak acid. 		n water is l	low in the pr	esence of hydroc	hloric acid.					
14.	Assertio Reason		Acidic/basic na	n of ammonium carb ture of a salt solu e of the acid and the	tion of a	salt of w	eak acid and v	veak base d	epends on	
15.	Assertio Reason		-	tion of ammonium ad weak acid and NH4C			r.			
16.	Assertio	on (A) :		on of PCl_5 at constants sociation of PCl_5 .	nt pressur	e and tempe	rature addition o	of helium at e	equilibrium	
	Reason	(R) :	Helium removes	Cl_2 from the field of	of action.					
17.			_	\Longrightarrow SO ₃ (g), if K ₁	$b = K_C (RT)$	T) ^x where the	e symbols have u	isual meaning	gs then, the	
	value of (A)	x is (assur -1	ning ideality). (B)	-1/2	(C)	1/2	(D)	1		
18.		with pH o		added to 1 L of an	aqueous so		Cl with a pH of	1 to create a	an aqueous	
	(A) (C)	0.1 L 2.0 L			(B) (D)	0.9 L 9.0 L				
19.				ith a pressure of 0.5 librium is 0.8 atm, the			is converted into	o CO on the a	addition of	
20.	An acid	HA ionize	s as HA 💳 H	$I^+ + A^-$. The pH of I	1.0 M solut	ion is 5. Its o	dissociation cons	tant would be	:	
	(A)	1×10^{-10})		(B)	5				
	(C)	5×10^{-8}			(D)	1×10^{-5}				

21.	There re	eactions involving 1	H₂PO₄ ar	e given below :				
	I.	$H_3PO_4 + H_2O -$						
	II.	$H_2PO_4^- + H_2O -$	\longrightarrow HPC	$D_4^{2-} + H_3O^+$				
	III.	$H_2PO_4^- + OH^$	\longrightarrow H ₃ P	$O_4 + O^{2-}$				
	In whic	h of the above does	$H_2PO_4^-$ a	ict as an acid?				
	(A)	II only	(B)	I and II	(C)	III only	(D)	I only
22.						$K_1 = 4.2 \times 10^{-7}$ and	$K_2 = 4.8$	$\times 10^{-11}$. Select the
		statement for a satur			carbonic a	cid.		
	(A)	The concentration	•			_		
	(B)			is greater than that				
	(C)			$d \text{ HCO}_3^-$ are approx		qual		
	(D)	The concentration	ı of H ⁺ 1s (double that of CO_3^{2-}				
23.	Solubili	ity product of silver	r bromide	is 5.0×10^{-13} . The	ne quantity	y of potassium bror	nide (mo	lar mass taken as 120 g
	mol^{-1})	to be added to 1 L o	of 0.05 M	solution of silver ni	trate to sta	art the precipitation of	of AgBr is	:
	(A)	$1.2\times\!\!10^{-10}g$			(B)	1.2×10^{-9} g		
	(C)	6.2×10^{-5} g			(D)	$5.0\times 10^{-8}g$		
24.		C, the solubility prod D^2 from a solution of			¹ . At whi	ch pH, will Mg ²⁺ ion	ns start pr	ecipitating in the form of
	Мg(Он (А)	9	(B)	10 1015?	(C)	11	(D)	8
25.	Four sp	ecies are listed below	<i>w</i> :					
	I.	HCO_3^-	II.	H_3O^+	III.	HSO_4^-	IV.	HSO ₃ F
	Which of (A) (C)	one of the following IV < II < III < I I < III < II < IV	is the cor	rect sequence of the	eir acid stro (B) (D)	ength? II < III < I < IV III < I < IV < II		
26.	The pK	a of a weak acid, H	IA is 4.80). The pK_b of a we	eak base, I	BOH, is 4.78. The	pH of an	aqueous solution of the
	-	onding salt, BA, wil 9.58		4.79	(C)	7.01	(D)	9.22
27.	What is	the conjugate base	of OH ⁻ ?					
	(A)	O ^{2–}	(B)	O^{-}	(C)	H ₂ O	(D)	0 ₂
28.	For the	reaction, $CO(g) + c$	$Cl_2(g) \rightleftharpoons$	\Longrightarrow COCl ₂ (g) the H	K _p / K _C is a	equal to :		
	(A)	1/RT	(B)	RT	(C)	$\sqrt{\text{RT}}$	(D)	1.0
29.	The cor	jugate base of H_2P	O_4^- is :					
	(A)	PO_4^{3-}	(B)	P_2O_5	(C)	H ₃ PO ₄	(D)	HPO_4^{2-}
30.	Conside	er the reaction equili	brium 2S	$O_2(g) + O_2(g) =$	$\Rightarrow 2SO_3(g$	g) $\Delta H^\circ = -198 \text{ kJ}$		
	On basi (A) (B) (C) (D)	Lowering of temp increasing temper	erature as ature as w perature a	well as pressure rell as pressure nd increasing the pr		forward reaction is	:	

31. Which one of the following substances has the highest proton affinity?									
	(A)	H ₂ O	(B)	H ₂ S	(C)	NH ₃	(D)	PH ₃	
*32.	Which (A) (B) (C) (D)	pH + pOH = 14 The pH of 1×10^{-1}	base of H_2 I 4 for all aqu 10^{-8} M HC	PO_4^- is HPO_4^{2-} eous solutions at 25 l is 8		ution deposits 1g	equivalent of	f copper at the cathode	
33.	Aqueo (A) (C)	us solution of whi Hydrochloric a Fructose, C ₆ H1	icid, HCl	lowing compounds	is the best (B) (D)	conductor of elect Ammonia, NH Acetic acid, C2	3		
34.	Which (A) (C)	one of the followi CH ₃ COOH and H ₃ PO4 and Na ₃	d CH3COOM	solution is not an ac Na	cidic buffer (B) (D)	? H2CO3 and Na HClO4 and Na			
35.			ring salts wi	ll precipitate last if				0×10^{-13} , 8.3×10^{-17} .	
36.	Which (A) (C)	of the following s KCl Na2CO3	alts will giv	e highest pH in wat	ter ? (B) (D)	NaCl CuSO4			
37.	Which	of these is least li	kely to act a	s Lewis base ?					
	(A)	BF ₃	(B)	PF ₃	(C)	СО	(D)	F ⁻	
38.	The di	ssociation constan	t of a weak	acid is 1×10^{-4} . In	n order to p	repare a buffer sol	ution with a	pH = 5, the [Salt]/Acid]	
	(A)	4:5	(B)	10:1	(C)	5:4	(D)	1:10	
39.	For the	e reaction, $N_{2(g)}$	$+O_{2(g)} \equiv$	$\Rightarrow 2NO_{(g)}$, the eq	uilibrium c	constant is K ₁ . Th	e equilibriur	n constant is K_2 for the	
	reactio	on, $2NO_{(g)} + O_{2(g)}$	$\rightarrow 2N$	$O_{2(g)}$. What is K for	or the reacti	ion, $NO_{2(g)}$	$\frac{1}{2}N_{2(g)} + 0$	D _{2(g)} ?	
	(A)	$\frac{1}{2K_1K_2}$	(B)	$\frac{1}{4K_1K_2}$	(C)	$\left[\frac{1}{K_1K_2}\right]^{1/2}$	(D)	$\frac{1}{K_1K_2}$	
40.	The de	egree of dissociation of K_P	on is <i>x</i> and and total pre	essure P is :	to 1. The	expression relating	g the degree	of dissociation (x) with	
	(A)	$\left(\frac{2K_P}{P}\right)^{1/2}$	(B)	$\left(\frac{K_P}{P}\right)$	(C)	$\left(\frac{2K_P}{P}\right)$	(D)	$\left(\frac{2K_P}{P}\right)^{1/3}$	
41.	-	tive analysis but n	ot those bel	solution of cations onging to the fourth the sulphide ion co	n group. It i	s because :	s the catior	as of seconds group of	

- (B) solubility product of group II sulphides is more than that of group IV sulphides
- (C) presence of HCl increases the sulphide ion concentration
- (D) sulphides of group IV cations are unstable in HCl

42.	Which	statement is wrong	2 about pH	and H^+ ?				
	(A)	pH of neutral w						
	(B)	-			olution of N	aOH, pH will be se	ven	
	(C)	[H ⁺] of dilute a	nd hot H ₂ S	O4 is more than cor	ncentrated a	nd cold H ₂ SO ₄		
	(D)	Mixing solution	n of CH ₃ CC	OH and HCl, pH v	will be less	than 7		
43.	The st	rongest conjugate b	base is :					
	(A)	SO_4^{2-}	(B)	Cl	(C)	NO_3^-	(D)	CH ₃ COO ⁻
44.	In liqu	id-gas equilibrium,	-	re of vapours above	e the liquid	is constant at :		
	(A)	constant temper			(B)	low temperature		
	(C)	high temperatur	re		(D)	None of these		
45.	The co	ompound whose wa	ter solution	has the highest pH	I is :			
	(A)	NaCl			(B)	NaHCO ₃		
	(C)	Na ₂ CO ₃			(D)	NH ₄ Cl		
46.	-	H at which Mg(O) -11] is :	H) ₂ begins	to precipitate fror	n a solutio	n containing 0.10	M Mg ²⁺ io	ons $[K_{sp} \text{ of } Mg(OH)_2 =$
	(A)	5	(B)	9	(C)	4	(D)	10
47.		nany gram of CaC ular weight is 128).		ssolve in one litre	of saturated	d solution? (K_{sp} of	CaC ₂ O ₄ is	$2.5\times10^{-9}\mbox{ mol}^{-2}$ and its
	(A)	0.0064 g			(B)	0.0128 g		
	(C)	0.0032 g			(D)	0.0640 g		
48.						nd 20 mL of 0.5 M hat is the pH of the b		cetate and then diluted to tion prepared?
	(A)	5.21	(B)	4.76	(C)	4.34	(D)	5.35
49.		ixture of CH3COC ution will increase		COONa, the ratio	of salt to a	cid concentration is	s increased	l by ten folds. The pH of
	(A)	Zero	(B)	1	(C)	2	(D)	3
50.		blume of water add H_3COOH = 10 ⁻⁵)	led to 300 1	ml of 0.1 M CH ₃ C	OOH so th	at the degree of dis	sociation o	of acid to be doubled, is :
	(A)	1200 ml			(B)	900 ml		
	(C)	1000 ml			(D)	800 ml		

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 51. The heat of reaction at constant volume for an endothermic reaction equilibrium is 1200 cal more than at constant pressure at 300 K, Determine the value of $\frac{K_p}{K_c} \times 10^4$ in nearest possible integers in L atm R = 2 cal mol⁻¹K⁻¹.
- 52. Calculate the change in pressure (in atm) when 2 mole of NO and 16 gram O_2 in a 6.25 litre originally at 27°C react to produce the maximum quantity of NO₂ possible according to the equation –

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

(Take $R = \frac{1}{12}$ litre Atm/mol-K)

53. Calculate the pH at which the following conversion (reaction) will be at equilibrium in basic medium

$$I_2(s) \Longrightarrow I^-(aq.) + IO_3^-(aq.)$$

When the equilibrium concentration at 300 K are $[I^-] = 0.10$ M and $[IO_3^-] = 0.10$ M

$$[\text{Given} \rightarrow \Delta G_{f}^{\circ} (I^{-}, \text{aq.}) = -50 \text{KJ/mol}, \ \Delta G_{f}^{\circ} (IO_{3}^{-}, \text{aq.}) = -123.5 \text{ KJ/mol}, \ \Delta G_{f}^{\circ} (H_{2}O, \ell) = -233 \text{ KJ/mol}, \\ \Delta G_{f}^{\circ} (OH^{-}, \text{aq.}) = -150 \text{ KJ/mol}, \ \text{R} (\text{Gas constant}) = \frac{25}{3} \text{ J/mol-K log e} = 2.3]$$

54. 0.1 mole of each C₂H₅OH and CH₃COOH when allowed to react in 100 ml of non-aqueous solution, it is seen

10 ml of the equilibrium mixture require 80 ml of 0.1 (N) NaOH for complete neutralization. The equilibrium constant,

For the reaction $CH_3COOH + C_2H_5OH \xleftarrow{K_C} CH_3 COO C_2H_5 + H_2O$ is expressed as K_C and the value of 32 K_C is

- The plot of log K_p against 1/T for the reaction, $SO_2(g) + \frac{1}{2}O_2(g) \iff SO_3(g)$ is a straight line with 55. slope = 5×10^3 . Determine $K_p \times 10^{-10}$ in nearest possible integer if standard entropy for $SO_2(g), O_2(g)$ and $SO_3(g)$ are 250, 200 and 250 J K^{-1} mol⁻¹ at 25°C respectively. $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Given : antilog (0.556) = 3.597
- The pH of a saturated aqueous solution of CO₂ is 5; For H₂CO₃, Ka₁ = 10^{-7} and Ka₂ = 10^{-11} . At the given 56. pressure the solubility of CO₂ in water is 10^{-2} (M). What is the value of $-\log[CO_3^{2-}]$ in the nearest possible integers?
- How much water in ml must be added to 300 ml of 0.2 M solution of CH_3COOH (K_a=1.8×10⁻⁵) for the 57. degree of ionization (α) of the acid to double?
- K_{SP} of Mg(OH)₂ is 4.0×10⁻¹². The number of moles of Mg²⁺ ions in one litre of it's saturated solution 58. in

0.1 M NaOH is (report answer in term of ans $\times 10^{-10}$)

- In can acid buffer solution, [HA] = 0.01 (M) and [NaA] = 0.1 (M) and for HA, $K_a = 10^{-5}$. In the given 59. buffer solution the degree of hydrolysis, and $h \times 10^7$ is.....
- What is the ratio of moles of $Mg(OH)_2$ and $Al(OH)_3$ in 1 litre of their saturated solution. K_{sp} of 60. $Mg(OH)_2 = 4 \times 10^{-12}$ and K_{sp} of $Al(OH)_3 = 1 \times 10^{-33}$ (give your answer by multiplying the ratio with 10^{-17}).
- The acid ionization constant of Fe^{3+} to $Fe(OH)^+$ and H^+ is 6.5×10^{-3} . At what maximum pH the 50% of 61. Fe^{3+} exist as Fe^{3+} ?

Report your answer in nearest possible integers.

- 62. 100 ml of 0.1 (M) MgCl₂ solution is mixed with 100 ml of 0.2 (M) NaOH solution. Given for Mg(OH)₂ K_{sp} = 12×10^{-12} . What is the pH of the resulting solution in nearest possible integers? $\sqrt{3} = 1.44$; log 2.88 = 0.459
- 63. $100 \text{ ml of } 10^{-5}(\text{M}) \text{ CaCl}_2$ solution is mixed with 100 ml of $10^{-5}(\text{M}) \text{ Na}_2\text{CO}_3$ solution. In order to observe the precipitation of CaCO₃, what percentage of the volume of solution should be reduced in nearest possible integers?

Given: K_{sp} of CaCO₃ = 49×10⁻¹⁰

64. In a given solution Zn^{2+} is present at the concentration of 10^{-2} (M). The given solution is saturated H₂S. To obtain the precipitation of ZnS, what should be the minimum pH required × 10 in nearest possible integers?

Given: In aqueous solution ionic product of H_2S is 10^{-22} and K_{sp} of $ZnS = 10^{21}$.

65. A given solution is saturated with both Ag_2CrO_4 and $Ag_2C_2O_4$. The K_{sp} of $Ag_2CrO_4 = 9 \times 10^{-12}$ and K_{sp} of $Ag_2C_2O_4 = 6 \times 10^{-12}$. In the resulting solution determine $[Ag^+] \times 10^5$ in the nearest possible integers. [Given: $(240)^{1/3} = 6.214$]

Hydrogen, s and p-Block Elements & Compounds

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

*1.			-	ustion of Na in exce	-			
	(A)	Na_2O_2	(B)	Na ₂ O	(C)	NaO ₂	(D)	NaOH
2.	Among (A) (B) (C) (D)	Be forms a very s Be generally form	nore from trong com 1s covalen	other alkali earth m nplex [Be(H ₂ O) ₄] ²⁺		Li does from others	alkali me	tals
3.	Select th (A) (B) (C) (D)	Conductivity of m The hydration nu	by of metanetal ion s netal ion s	l ions in general dec olutions increases de letal ions decreases o ock elements increas	own the gr lown the g	roup group		
4.	Which o (A) (C)	of the following sho Alkali metals hyd Alkali metal chlor	roxide	rease in solubility do	own the gr (B) (D)	oup : Alkali metal carb Alkali earth meta		s
5.	I.	the correct order of K ₂ CO ₃ rect option is : I < II < III < IV	increasin II. (B)	g thermal stabilities MgCO ₃ IV < II < III < I	of : III. (C)	$CaCO_3$ IV < II < I < III	IV. (D)	BeCO3 II < IV < III < I
6.		of the following con KO2		re paramagnetic : Na2O2	(C)	O3	(D)	PbO ₂
*7.	Choose (A) (B) (C) (D)	NaOH is more sol NaOH is a deliqu	sensitive luble in al escent sol	cohols than KOH	-	en on exhaling into it		
8.	(Here 3 Choose (A)	symbols in product the possible option A = X = NaOH, Z	doesn't m : $Z = O_2$	hean that reaction ha	s necessar (B)		have 1, 2 $D_2, X = H$	2 or 3 products). $_2O_2$, U = H $_2O_2$
	(C)	A = NaOH, X = I		-	(D)	A = NaOH, X = 1	NaOH, Y	$=O_2, V = H_2O_2$
9.	(A)	ar formula of Glaub Na ₂ SO ₄ .10H ₂ O	(B)	$MgSO_4.7H_2O$	(C)	FeSO ₄ .7H ₂ O	(D)	Na ₂ CO ₃ .10H ₂ O
*10.		-		solid stable bicarbor				2.
	(A)	Li ⁺	(B)	K^+	(C)	NH_4^+	(D)	Ca ²⁺
*11.	Which o (A)	of the following are Ca(OH) ₂	manufact (B)	ured in the solvay's p Na ₂ CO ₃	process ? (C)	NaHCO ₃	(D)	CaCl ₂
*12.		known to be an exe using CaCl ₂ are : HCl	cellent dry	ying agent. However CH3OH	t it is unat	ble to dry all substan H ₂ O	ces. The c	compounds which can be NH3
13.				he product formed is CO ₂ + H ₂ O		$C + H_2O$	(D)	CH ₃ OH

Class XI | Chemistry

*14.	The reaction calcium carbide with heavy water produces (A) $Ca_3(PO_4)_2$ (B) $Ca(OD)_2$	s: (C)	Na ₂ CO ₃	(D)	NaOCl					
15.	Salt used for performing bead test in qualitative inorganit(A)K2SO4.Al2(SO4)3.24 H2O(C)Na(NH4)HPO4.4H2O	ic analysis (B) (D)	is : FeSO4.(NH4)2SO CuSO4.5 H2O	D4.6 H2O						
16.	 Crude common salt is hygroscopic because of the preser (A) CaSO₄ and MgSO₄ (C) CaBr and MgBr₂ 	nce of impu (B) (D)	rities of : CaCl2 and MgCl Ca (HCO3)2 and		3)2					
17.	A compound X on heating gives a colourless gas. Thethrough aqueous solution of Y when Z is formed. Z on g(A)NaHCO3(B)Na ₂ CO ₃				-					
18.	 The raw materials required for the manufacture of Na₂C (A) CaCl₂, (NH₄)₂CO₃, NH₃ (C) NaCl, (NH₄)₂CO₃, NH₃ 	O3 by Solv (B) (D)	ay process are : NH4Cl, NaCl, C NaCl, NH3, CaC							
19.	 The reaction of slaked lime with Cl₂ gas gives : (A) Only Ca(OCl)₂ (C) Ca(OCl)₂, CaCl₂ and H₂O 	(B) (D)	Only CaCl ₂ Quick lime							
20.	In which of the following alloys Mg is not present ?(A) Electron(C) Duraluminium	(B) (D)	Magnalium Aluminium bron	ze						
*21.	 Which of the following statement regarding the oxides of (A) The reactivity of K₂O towards water is more th (B) The oxide of alkaline earth metals are more based (C) MgO is used as a refractory material for lining (D) The milk of lime and lime water are two different 	han that of sic than th g of electric	Na2O ose of alkali metals furnaces	correct ?						
*22.	 Select the incorrect statement(s): (A) Magnesium can be burnt in the atmosphere of (B) Magnesium reacts with alkyl halides to form C (C) Out of Mg and Ca, only Mg reacts with N₂ to a (D) Calcium is less reactive than magnesium 	Grignard's	reagent							
23.	 A solution of sodium metal in liquid ammonia is strongl (A) Sodium atoms (C) Sodium amide 	y reducing (B) (D)	due to the presence Sodium hydride Solvated electron							
*24.	When Zeolite (hydrate sodium aluminate silicate) is treat(A) H^+ ions(B) Ca^{2+} ions	ted with hat (C)	ard water the sodiun SO_4^{2-}	n ions are e (D)	exchanged with : Mg ²⁺ ions					
25.	Of the following statements only one is incorrect. The st(A)Calcium chloride decreases the freezing point(B)The net material consumed in Solvay's proces(C)Na2CO3 and Ca(OH)2 are both used for water(D)Alums form hexagonal crystals	of water s is a mixt		CO3						
26.	 Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false. I. When lithium is burnt is oxygen, if forms superoxide LiO₃ II. Crude common salt is hygroscopic because of impurities of CaSO₄ and MgSO₄ III. Solubility of CaI₂, is more than that of CaCl₂ IV. A suspension of hydroxide of magnesium is used as a stomach antacid The correct choice is : 									
	(A) FFTF (B) FFFT	(C)	TFTF	(D)	TTFF					

- 27. Why does H⁺ ions always get associated with other atoms or molecules?
 - (A) Ionisation enthalpy of hydrogen resembles that of alkali metals
 - **(B)** Its reactivity is similar tohalogens
 - **(C)** It resembles both alkali metals and halogens
 - **(D)** Loss of an electron from hydrogen atom results in a nucleus of very small size as compared to other atoms or ions. Due to small size it cannot exist free
- 28. Which of the following hydrides is electron-precise hydride?
 - (A) B_2H_6 NH₃ H₂O **(D)** CH₄ **(B) (C)**
- 29. Which of the following equations depict the oxidizing nature of H₂O₂?
 - $2MnO_4^- + 6H^+ + 5H_2O_2 \longrightarrow 2Mn^{2+} + 8H_2O + 5O_2$ (A)
 - $2Fe^{3+} + 2H^+ + H_2O_2 \longrightarrow 2Fe^{2+} + 2H_2O + O_2$ **(B)**
 - $2I^{-} + 2H^{+} + H_2O_2 \longrightarrow I_2 + 2H_2O$ **(C)**
 - $\text{KIO}_4 + \text{H}_2\text{O}_2 \longrightarrow \text{KIO}_3 + \text{H}_2\text{O} + \text{O}_2$ **(D)**
- Which of the following equation depicts reducing nature of H₂O₂? 30.
 - $2[Fe(CN)_6]^{4-} + 2H^+ + H_2O_2 \longrightarrow 2[Fe(CN)_6]^{3-} + 2H_2O_2$ (A)
 - $I_2 + H_2O_2 + 2OH^- \longrightarrow 2I^- + 2H_2O + O_2$ **(B)**
 - $Mn^{2+} + H_2O_2 \longrightarrow Mn^{4+} + 2OH^{-}$ (C)
 - $PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O_4$ **(D)**
- 31. Elements of which of the following group(s) of periodic table do not form hydrides.
 - Groups 7, 8, 9 Group 13 (A) **(B)** (C) Groups 15, 16, 17 (**D**) Group 14

Reasoning Type Questions for 32 - 33

- Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1. (A) **(B)** Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. **(D)** Statement-1 is False, Statement-2 is True. 32. Statement 1 : Permanent hardness of water is removed by treatment with washing soda. Statement 2 : Washing soda reacts with soluble magnesium and calcium sulphate to form insoluble carbonates. 33. Statement 1: Some metals like platinum and palladium, can be used as storage media for hydrogen Platinum and palladium can absorb large volumes of hydrogen. Statement 2 : *34. Which of the following statements are not true for hydrogen? It exists as diatomic molecule (A) **(B)** It has one electron in the outermost shell **(C)** It can lose an electron to form a cation which can freely exist **(D)** It forms a large number of ionic compounds by losing an electron. *35. Dihydrogen can be prepared on commercial scale by different methods. In its preparation by the action of steam on hydrocarbons, a mixture of CO and H₂ gas formed. It is known as (A) Water gas **(B)** Syngas **(C)** Producer gas **(D)** Industrial gas *36. Which of the following statement(s) is/are correct in the case of heavy water?
 - (A) Heavy water is used as a moderator in nuclear reactor.
 - **(B)** Heavy water is more effective as solvent than ordinary water.
 - Heavy water is more associated than ordinary water. **(C)**
 - **(D)** Heavy water has lower boiling point than ordinary water.

(B)

(D)

- *37. Which of the following statements about hydrogen are correct?
 - Hydrogen has three isotopes of which protium is the most common (A)
 - **(B)** Hydrogen never acts as cation in ionic salts
 - (C) Hydrogen ion, H⁺, exists freely in solution
 - **(D)** Dihydrogen does not act as a reducing agent
- *38. Some of the properties of water are described below. Which of them is/are not correct?
 - (A) Water is known to be a universal solvent
 - **(B)** Hydrogen bonding is present to a large extent in liquid water
 - Three is no hydrogen bonding in the frozen state of water **(C)**
 - **(D)** Frozen water is heavier than liquid water
- *39. Hardness of water may be temporary or permanent. Permanent hardness is due to the presence of
 - Chlorides of Ca and Mg in water (A)
- Sulphates of Ca and Mg in water Carbonates of alkali metals in water
- Hydrogen carbonates of Ca and Mg in water **(C)**
- *40. Which of the following statements is correct?
 - Elements of group 15 form electron deficient hydrides (A)
 - **(B)** All elements of group 14 form electron precise hydrides
 - (C) Electron precise hydrides have tetrahedral geometries
 - **(D)** Electron rich hydrides can act as Lewis acids
- *41. Which of the following statements is correct?
 - (A) Hydrides of group 13 act as Lewis acids
 - **(B)** Hydrides of group 14 are electron deficient hydrides
 - **(C)** Hydrides of group 14 act as Lewis acids
 - Hydrides of group 15 act as Lewis bases **(D)**
- *42. Which of the following statements is correct?
 - Metallic hydrides are deficient of hydrogen (A)
 - **(B)** Metallic hydrides conduct heat and electricity
 - Ionic hydrides do not conduct electricity in solid state **(C)**
 - Ionic hydrides are very good conductors of electricity in solid state **(D)**
- 43. Alkali metals react with water vigorously to form hydroxides and dihydrogen. Which of the following alkali metals reacts with water least vigorous?
 - Li **(D)** (A) **(B)** (C) Κ Cs Na
- 44. The reducing power of a metal depends on various factors. Suggest the factor which makes Li, the strongest reducing agent in aqueous solution.
 - (A) Sublimation enthalpy **(B)** Ionisation enthalpy **(D)** Electron-gain enthalpy Hydration enthalpy **(C)**
- 45. Some of the Group 2 metal halides are covalent and soluble in organic solvents. Among the following metal halides, the one which is soluble in ethanol is :
 - **(B)** BeCl₂ MgCl₂ (C) CaCl₂ **(D)** (A) SrCl₂
- 46. The solubility of metal halides depends on their nature, lattice enthalpy and hydration enthalpy of the individual ions. Amongst fluorides of alkali metals, the lowest solubility of LiF in water is due to :
 - (A) Ionic nature of lithium fluoride **(B)** High lattice enthalpy
 - **(C)** High hydration enthalpy for lithium ion. **(D)** Low ionization enthalpy of lithium atom
- 47. Which of the following elements does not form hydride by direct heating with dihydrogen?
 - (A) Be Sr **(B)** Mg (C) **(D)** Ba
- Dehydration of hydrates of halides of calcium, barium and strontium i.e., CaCl₂6H₂O, BaCl₂.2H₂O, SrCl₂.2H₂O, can be 48. achieved by heating. These become wet on keeping in air. Which of the following statements is correct about these halides? (A)
 - Act as dehydrating agent **(B)** Can absorb moisture from air
 - **(C)** Tendency to form hydrate decreases from calcium to barium
 - **(D)** All of the above

Reasoning Type Questions for 49 - 50

Reason	ning typ	e Quest	ions for	49 - 50							
(A) (B) (C) (D)	 Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. Statement 1: The carbonate of lithium decomposes easily on heating to form lithium oxide and CO₂. 										
49.	Stateme	ent 1 :	The carl	oonate of	lithium decomp	oses easily on	heating to form	lithium oxide	and CO ₂ .		
	Stateme	ent 2 :	Lithium Li2O and	-	ry small in size	polarizes large	e carbonate ion l	eading to the	formation of more sta	able	
50.	Stateme Stateme						of carbon dioxid es to give berylli		carbon dioxide.		
*51.		acterized b High boi High neg High der	by which o lling point gative star	of the foll	neir standard ele owing propertie ctrode potential	-	al, fusion enthal	lpy, atomic siz	ze, etc. The alkali me	etals	
*52.	Several (A)	sodium co Na2CO3	mpounds	find use i (B)	n industries. Wl NaHCO3	hich of the foll (C)	lowing compoun NaOH	nds are used fo (D)	r textile industry? NaCl		
*53.	Which o (A)	of the follo BeSO4	wing com	pounds a (B)	re readily solubl MgSO4	le in water? (C)	BaSO ₄	(D)	SrSO ₄		
54.	The volu (A)	ume streng 11.2 V	th of 1 N	solution (B)	of H ₂ O ₂ : 22.4 V	(C)	1 V	(D)	5.6 V		
*55.	Identify (A) (C)	the correc BaCl ₂ .21 CaCl ₂ .61	H ₂ O	of halide	s of alkaline ear	th metals from (B) (D)	the following. BaCl ₂ .4H ₂ O SrCl ₂ .4H ₂ O				
*56.	Choose (A) (B) (C) (D)	Berylliu Berylliu lattice er Berylliu	m is not re m sulphat nthalpy fa m exhibits	eadily atta e is readil ctor s coordina		ter as the gre			he surface of the meta Be ²⁺ overcomes of		
*57.	Which c (A) (C)	Exception	-	ıll size of	its atom		viour of lithium? Its high polar Exceptionally	izing power	on enthalpy		
58.	Moderat (A)	te electrica Silica	l conduct	ivity is sh (B)	own by : Graphite	(C)	Diamond	(D)	None of these		
59.	Name of (A) (C)	Pyrosili			vhich three oxyg	gen atoms of [S (B) (D)	SiO4] ⁴⁻ are share Sheet silicate 3-D silicate				
60.	Which c (A) (C)	of the follo CCl4 SnI4	wing halio	des is leas	st stable and has	doubtful exist (B) (D)	tence ? Gel4 PbI4				
61.	Me ₂ SiC (A) (C)	l2 on hydro Me2Si(C [– O – N	-	produce	:	(B) (D)	Me ₂ Si = O Me ₂ SiCl (OH	[)			

48

62.	Aqueo			h two mole of acid	s. This is b	ecause of :				
	(A)		n of 2 mol of B(C							
	(B)		1 of 2 mol of [B(0)]		ID 1-					
	(C) (D)			$B(OH)_3$ and $B(OH)_3$						
	(D)			f [B(OH)4] ⁻ reacts						
63.		-		cting equimolar am		-		D)	NO	
	(A)	N ₂ O	(B)	N_2O_3	(C)	N_2O_4	(.	D)	N_2O_5	
*64.				oron by the followi	ng steps :	Borax <u>X</u>	\rightarrow H ₃ BO ₃ —	$\xrightarrow{\Delta}$ E	$B_2O_3 \xrightarrow{Y} B$	
	X and (A)	Y are respect HCl, Mg	ively : (B)	HCl, C	(C)	C, Al	(D)	HCl, Al	
65.	(NH ₄)	2Cr2O7 on h	eating liberates a	gas. The same gas	will be obt	ained by :				
	(A) (C)	Heating N Treating I	NH4NO2 Mg3N2 with H2O		(B) (D)		g NH4NO3 g H2O2 on Nal	NO ₂		
66.	N ₂ O is			$\sqrt{3}$, which is the str		$I_2O?$				
		^{2δ–} .Ο.				, 0				
	(A)	δ+ // ⁻ N N	N (B)	$ \stackrel{\delta +}{N} \stackrel{2\delta -}{O} \stackrel{\delta +}{=} \stackrel{N}{N} $	(C)	N	`0 ⁻ (D)	$N \equiv N^+$ —	ō
*67.	NH ₃ ca	an be obtaine	d by :							
	(A)	Heating N	NH4NO3 or NH4N	O ₂	(B)	Heating	g NH4Cl or (N	(H4) ₂ C	CO_3	
	(C)	Heating N	IH4NO3 with Na	DH	(D)	Reaction	on of AIN or N	Ag ₃ N ₂	or CaCN ₂ wit	h H ₂ O
*68.	Which	of the follow	ving statement are	e ture?						
	(A)	Cold and	very dil.HNO3 fo	rm NH4NO3 with Z	Zn or Sn	(B)	Conc. HNO	D3 for	ms NH4NO3 w	vith Sn
	(C)	Cold and	more conc. HNO	3 forms N2 with Cn	l	(D)	HNO ₃ can	be sto	ored in Al – ve	ssel
Parag	raph for	Questions 6	<u> 9 - 70</u>							
The fol	llowing fl	ow diagram r	epresents the ind	ustrial preparation	of nitric aci	id from am	monia :			
	NH ₃ +	- O ₂ - (excess air)	$\xrightarrow{(A)} \text{NO} ;$	NO $\xrightarrow{(B)}_{air}$ (C)	→water	$HNO_3 + 1$	NO			
Answe	r the ques	tions given b	elow :							
69.	Which	line of entry	describes the und	lefined reagents, pr	oducts and	reaction c	onditions?			
		Α	В	С		Α	В		С	
	(A)		cool (-25° C)	NO ₂	(B)	Ni	cool (-25°	C)	N ₂ O	
	(C)	Fe	cool (-11°C)	NO_2	(D)	Pd	high pressu	ıre	N_2O_3	
70.	Forma this ste		3 when (C) is dis	solved in H ₂ O take	s place thr	ough vario	ous reactions.	Select	t the reaction of	observed in
	(A)	$NO_2 + H$	$_2O \longrightarrow HNO_3$	+ HNO ₂	(B)	HNO_2	\longrightarrow H ₂ O +	NO -	+ NO ₂	
	(C)	Both of th		2	(D)	None o	-		2	
71.	The st	rongest reduc	ing agent amongs	st the following is :						
	(A)	$P_2O_7^{4-}$	(B)	$P_2O_6^{4-}$	(C)	H ₃ PO	4 (D)	$\rm H_2PO_2^-$	
72.				dic-strengths of H ₃						
	(A) (B)			e acids are in the di onegative than oxy		uation stat	C			
	(B) (C)			xygen responsible		e of acidic	-strength due	to ind	luctive effect 1	remains the
	(D)		s of phosphorus h	aving same oxidati	on state of	f phosphor	us			
		,	1 1	0		1 1 1				

73. A student prepared a sample of silicon chloride by passing chlorine over heated silicon and collecting the condensed silicon chloride in a small specimen tube. He analysed the chloride by dissolving a known mass of it in water, and titrating the solution with standard silver nitrate solution. The formula of the silicon chloride as obtained by this method was SiCl6 as against a 'true' formula of SiCl4. The silicon chloride contained excess, dissolved chlorine. (A) **(B)** The "standard" silver nitrate solution was les concentrated than was stated on the label. **(C)** More silicon chloride than the student supposed was actually used owing to inaccurate weighing (D) The small specimen tube was not dry 74. Which of the following equation in incorrectly written? $P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$ $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$ **(B)** (A) $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$ **(C) (D)** None of these When PH₃ is passed through copper sulphate solution, then copper phosphide is obtained. This is because : 75. PH₃ is highly unstable (A) **(B)** PH3 shows acidic behaviour (C) PH₃ is a reducing agent **(D)** PH₃ is a strong base 76. Statement 1: Phosphorus reacts with conc. HNO3 to form orthophosphoric acid. Statement 2 : H₃PO₄ is a tribasic acid and has three replaceable H⁺ ions. Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1 (A) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1 **(B)** Statement-1 is True, Statement-2 is False. **(C) (D)** Statement-1 is False, Statement-2 is True. 77. The geometry of a complex species can be understood from the knowledge of type of hybridization of orbital's of central atom. The hybridization of orbitals of central atom in [B(OH)₄]⁻ and the geometry of the complex are respectively. sp³, tetrahedral **(B)** sp³, square planar **(B)** $sp^{3}d^{2}$, octahedral (D) dsp², square planar (A) The exhibition of highest co-ordination number depends on the availability of vacant orbitals in the central atom. Which 78. of the following elements is not likely. (C) **(D)** (A) B **(B)** Al Ga In 79. Catenation i.e., linking of similar atoms depends on size and electronic configuration of atoms. The tendency of catenation in Group 14 elements follows the order : (A) C > Si > Ge > Sn (B) $C >> Si > Ge \approx Sn$ (C) $S_i > C > S_n > G_e$ (D) Ge > Sn > Si > C80. In the structure of diborance All hydrogen atoms lie in one plane and boron atoms lie in a plane perpendicular to this plane (A) 2 boron atoms and 4 terminal hydrogen atoms lie in the same plane and 2 bridging hydrogen atoms lie in the **(B)** perpendicular plane **(C)** 4 bridging hydrogen atoms and boron atoms lie in one plane and two terminal hydrogen atoms lie in a plane perpendicular to this plane **(D)** All the atoms are in the same plane **Reasoning for Questions 81 - 82** (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I. Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I. **(B)** (C) Statement-I is True, Statement-II is False. **(D)** Statement-I is False, Statement-II is True. 81. Statement 1 : If aluminium atoms replace a few silicon atoms in three dimensional network of silicon dioxide, the overall structure acquires a negative charge. Statement 2 : Aluminium is trivalent while silicon is tetravalent. 82. Statement 1 : Silicons are water repelling in nature. Statement 2 : Silicons are organosilicon polymers, which have (- R₂SiO -) as repeating unit.

*83.	The reas	son for small radius	of Ga con	npared to A	Al is						
	(A)	Poor screening et		nd f orbita	ls	(B)		e in nuclear			
	(C)	Presence of high	er orbitals			(D)	Higher a	atomic nun	nber		
*84.	The line	ear shape of CO2 is	due to		·						
	(A)	sp ³ hybridisation				(B)		dization of			
	(C)	$p\pi - p\pi$ bonding	, between o	carbon and	oxygen	(D)	sp ² hybr	ridisation o	f carbon		
*85.	Me ₃ SiC	l is used during pol	ymerizatio	n of organ	o silicones	because					
	(A)	The chain length	of organo	silicone po	olymers ca	n be contr	olled by a	dding Me ₃	SiCl.		
	(B)	Me ₃ SiCl blocks t			-	-					
	(C)	Me ₃ SiCl improve	-		-						
	(D)	Me ₃ SiCl acts as a	i catalyst d	uring poly	merization	1					
*86.		of the following stat									
	(A)	Fullerenes have d			. 1 1 11 .	(B)		ies are cage	e – like m	olecules	
	(C) (D)	Graphite is therm Graphite is slippe						in maahina			
			-			-					
*87.		of the following stat							\sim	H	\sim
	(A) (B)	The two bridged Out of six B – H						-	(H)	$\overline{}$	-(H)
	(b)	2-electron bonds	bonds two	bonus can	i de desern			litte		B B	$\leq \setminus$
	(C)	Out of six B – H	bonds four	r B – H bo	nds can be	described	l in terms	of 3 centre	H	$\rightarrow \rightarrow \rightarrow$	—H
	(-)	2 electron bonds						-		(H)	
	(D)	The four terminal	l B – H boi	nds are two	o centre-tw	vo electror	n regular b	onds			
*88.	Identify	the correct resonar	ice structur	res of carb	on dioxide	from the	ones giver	n below:			
	(A)	$O - C \equiv O$				(B)	O=C=	= O			
	(C)	$^{-}O \equiv C - O^{+}$				(D)	⁻ O – C	$\equiv O^+$			
89.	Among	the following oxoa	cids, the co	orrect decr	easing ord	er of acid	strength is	5:			
	(A)	HOCl > HCIO ₂ >				(B)		> HOCl > I			
	(C)	$HClO_4 > HClO_3$	> HCIO ₂ $>$	• HOCl		(D)	HClO ₂ >	> HClO ₄ >	$HCIO_3 >$	HOCI	
90.		one of the following			own by NC	0?					
	(A)	It is diamagnetic				(B)		eutral oxide		-	
	(C)	It combines with	oxygen to	form nitro	gen dioxic	le	(D)	Its bond	order is 2.	.5	
91.	Which o	of the following is v	vrong state	ement?							
	(A)	ONCl and ONO ⁻				(B)		cule is ben			
	(C)	Ozone is violet –	black in so	olid state		(D)	Ozone i	s diamagne	etic gas		
92.	Which o	of the following exi		•	ls in the so	olid state?					
	(A)	Iodine	(B)	Silicon		(C)	Sulphur		(D)	Phosphorus	
93.	Which o	of the following on	thermal de	compositio	on yields a	basic as v	well as aci	dic oxide ?	?		
	(A)	NaNO ₃	(B)	KCIO ₃		(C)	CaCO ₃		(D)	NH ₄ NO ₃	
94.	Very pu	ire hydrogen (99.9)	can be ma	de by whic	ch of the fo	ollowing p	rocesses?				
	(A)	Reaction of meth	ane with s	team	(B)	Mixing	natural hy	drocarbons	s of high r	nolecular weig	ght
	(C)	Electrolysis of w	ater		(D)	Reaction	n of salts l	ike hydride	es with wa	ater	
95.	Which o	of the following stat		-							
	(A)	The stability of h	ydrides ind	creases from	m NH ₃ to	BiH₃ in gr	oup 15 of	the period	ic table		
	(B)	Nitrogen can't fo	rm dπ-p	π bond							
	(C)	Single N – N bor	nd is weake	er than the	single P –	P bond					
	(D)	N ₂ O ₄ has two res	onance str	ucture							

96. Which of the following statements regarding sulphur is incorrect?

(A) S₂ molecule is paramagnetic

98.

- (B) The vapour at 200° C consists mostly of S₈ rings
- (C) At 600° C, the gas mainly consists of S₂ molecules
- (D) The oxidation state of sulphur is never less than +4 in its compounds

97. What is the best description of the change that occurs when Na₂O(s) is dissolved in water?

- (A) Oxidation number of sodium decreases (B) Oxide ion accepts a shared pairs of electrons
- (C) Oxide ion donates a pair of electrons (D) Oxidation number of oxygen increases
- Which one of the following order represents the correct sequence of the increasing basic nature of the given oxides?
- (A) $MgO < K_2O < Al_2O_3 < Na_2O$ (B) $Na_2O < K_2O < MgO < Al_2O_3$
- (C) $K_2O < Na_2O < Al_2O_3 < MgO$ (D) $Al_2O_3 < MgO < Na_2O < K_2O$
- 99.Among the following the maximum covalent character is shown by the compound.(A)SnCl2(B)AlCl3(C)MgCl2(D)FeCl2
- 100. In which of the following arrangements, the sequence is not strictly according to the property written against it?
 - (A) $CO_2 < SiO_2 < SnO_2 < PbO_2$ increasing oxidising power
 - (B) HF < HCl < HBr < HI increasing acid strength
 - (C) $NH_3 > PH_3 < AsH_3 < SbH_3$ increasing basic strength
 - (D) B < C < O < N increasing first ionisation enthalpy
- 101. Which of the following reaction of xenon compounds is not feasible?
 - (A) $XeO_3 + 6HF \longrightarrow XeF_6 + 3H_2O$
 - (B) $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1.5O_2$
 - (C) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$
 - (D) $XeF_6 + RbF \longrightarrow Rb[XeF_7]$

102. The bond dissociation energy of B - F in BF_3 is $646 k J mol^{-1}$ whereas that of C - F in CF_4 is $515 k J mol^{-1}$. The correct

reason for higher B-F bond dissociation energy as compared to that of C-F is:

- (A) Smaller size of B-atom as compared to that of C-atom
- (B) Stronger σ -bond between B and F in BF₃ as compared to that between C and F in CF₄
- (C) Significant $p\pi p\pi$ intersection between B and F in BF₃ whereas there is non possibility of such interaction between C and F in CF₄
- (D) Lower degree of $p\pi p\pi$ interaction between B and F in BF₃ that between C and F in CF₄
- 103. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is:
 - (A)
 R₄Si
 (B)
 R SiCl₃

 (C)
 R₂SiCl₂
 (D)
 R₃SiCl
- **104.** Which one of the following is the correct statement?
 - (A) Boric acid is a protonic acid
 - (B) Beryllium exhibits coordination number of six
 - (C) Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase
 - (D) $B_2H_6 \cdot 2NH_3$ is known as 'inorganic benzene'
- **105.** Identify the incorrect statement among the following:
 - (A) Ozone reacts with SO₂ to give SO₃
 - (B) Silicon reacts with NaOH(aq) in the presence of air to give Na₂SiO₃ and H₂O
 - (C) Cl₂ reacts with excess of NH₃ to give N₂ and HCl
 - (D) Br₂ reacts with hot and strong NaOH solution to give NaBr, NaBrO₄ and H₂O

106. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence.

- (A) $GeX_2 < SiX_2 < SnX_2 < PbX_2$ (B) $SiX_2 < GeX_2 < PbX_2 < SnX_2$
- (C) $SiX_2 < GeX_2 < SnX_2 < PbX_2$ (D) $PbX_2 < SnX_2 < GeX_2 < SiX_2$

107.	(A)	of the following staten H ₃ PO ₃ is a stronger	acid than H ₂ SO ₃	3	(B)	•		a stronger acid than HCl	L
100	(C)	HClO ₄ is weaker ac			(D)	HNO ₃ is a strong	-		
108.	A metal correct?		n its $+2$ and $+4$	oxidation st	ates. Whi	ch of the following	ig statemen	ts about the chlorides is	3
	(A) (C)	MCl ₂ is more solubl MCl ₂ is more ionic		(B) (D)		more soluble in ar more easily hydro	-		
109.	The nur (A)	nber of hydrogen aton three	n(s) attached to p (B) one	bhosphorus a	tom in hyj (C)	oophosphorous ac two	id is: (D)	zero	
110.	In silico (A) (B) (C) (D)	n dioxide There are double bo Silicon atom is bond Each silicon atom is Each silicon atom is	led to two oxyge surrounded by t	en atoms two oxygen a	atom and e	each oxygen atom		to two silicon atoms l to two silicon atoms	
111.	The cor	rect order of the therm	al stability of hy	drogen halic	les (H−X) is:			
	(A) (C)	HI > HCl > HF > H HF > HCl > HBr >			(B) (D)	HCl < HF > HB HI > HBr > HCl			
112.	Berylliu (A) (C)	ım and aluminium exh Exhibiting maximu Forming covalent h	n covalency in c		re similar. (B) (D)	Forming polyme	eric hydride		
113.	Which ((A) (B) (C) (D)	one of the following st It is used to fill gas It is used as a cryog It is used to produce It is used in gas-coo	balloons instead enic agent for ca and sustain pow	of hydrogen rrying out ex verful superc	because i xperiments	t is lighter and not s at low temperatu		ble	
114.		ubilities of carbonates			im group d	lue to a decrease i	n		
	(A)	Lattice energies of s			(B)	Hydration energ		ns	
	(C)	Inter ionic attraction	1		(D)	Entropy of solut	ion formati	on	
115.	PCl ₃ and	d PCl5 both exist; NCl	3 exists but NCl5	does not ex	ist. It is du	ie to.			
	(A)	Lower electronegati	•		(B)	•		m covalent bond	
	(C)	Availability of vaca			(D)	Statement is itse	lf incorrect		
116.	I. II. III. Which o	atements about heavy Heavy water is used Heavy water is mor Heavy water is mor of the above statement	l as moderator in e associated than e effective solver s are correct ?	nuclear read ordinary want than ordin	ater. ary water.				
	(A)		(B) I, II an		(C)	II and III	(D)	I and III	
117.	(A)	one of the following pa Copper and HCl (ac		s on reaction	(B)	Iron and steam			
	(A) (C)	Iron and H ₂ SO ₄ (aq	• /		(D) (D)	Sodium and ethy	/l alcohol		
118.		of the following group	<i>.</i>	the water ha		-			
110	(A)	Sodium and bicarbo			(B)	Magnesium and	chlorine		
	(C)	Potassium and sulpl	nate		(D)	Ammonium and			
119.	At its m	elting point ice is ligh	ter than water be	ecause :					
	(A)	H ₂ O molecules are	• •						
	(B)	ice crystals have ho				olecules			
	(C)	on melting of ice the			ıze				
	(D)	ice forms mostly he	avy water on firs	st melting					

120.	Which of the foll	lowing is the true st	ructure of H ₂ O ₂ ?				
			H		Н		H.
	(A) H – O	– O – H (B)	0-0	(C)	O = O	(D)	$0 \rightarrow 0$
			 H		Н		Н
121.	Solubility of the	alkaline earth metal		decreases in	the sequence :		
		a > Mg > Ba		(B)	Ba > Mg > Sr >		
	.,	$C_a > S_r > B_a$		(D)	Ca > Sr > Ba > N	C	
122.	Which of the foll (A) CaSO ₄	lowing alkaline eart	h metal sulphates h	as hydration (B)	enthalpy higher th BeSO4	an the lattic	ce enthalpy ?
	$(C) BaSO_4$			(D) (D)	SrSO ₄		
123.	In the case of alk	ali metals, the cova	lent character decre	eases in the o	order :		
	. ,	MCl > MBr > MI		(B)	MF > MCl > MI		
124.	. ,	/IBr > MCl > MF r of the mobility of t	he alkali metal ion	(D) s in aqueous	MCl > MI > MB solution is :	r > MF	
		$K^+ > Na^+ > Li^+$		(B)	$Li^+ > Na^+ > K^-$	$^{+} > Rb^{+}$	
	(C) Na ⁺ >	$K^+ > Rb^+ > Li^+$		(D)	$K^+ > Rb^+ > Na$	$L^{+} > Li^{+}$	
125.	When a substanc	e (A) reacts with wa	ater it produces a co	ombustible g	gas (B) and a soluti	on of substa	ance (C) in water. When
		. ,		•	e .	,	ing but (D) can produce
		on with dilute sulph ie of Bunsen burner		-	• • •	arts a deep	golden yellow colour to
		, Ca(OH) ₂ , Sn	(E), (E),	(B)	K, H ₂ , KOH, Al		
	(C) Na, H ₂	, NaOH, Zn		(D)	$CaC_2, C_2H_2, Ca($	OH)2, Fe	
126.		water of sulphate d	own the Be group i				
		sing lattice energy se in melting points		(B) (D)	high heat of solv increasing molec		naller ions like Be ²⁺
127.		g substances react w	ith water. The pair	, ,	-	-	
	(A) K and	KO ₂		(B)	Na and Na ₂ O ₃		
	(C) Ca and			(D)	Ba and BaO ₂		
128.		he alkaline earth me r ionic radii	tals, the alkali met		high oct hailing a	ainta	
	()	hardness		(B) (D)	highest boiling p lower ionization		
129.	., -	+1 oxidation state a	mong Al, Ga, ln ar			-	
	$(A) \qquad Al < G$	a < ln < Tl	0 , ,	(B)	Tl < ln < Ga < A	1	
	$(C) \qquad \ln < T1$	< Ga < Al		(D)	Ga < ln < Al < T	1	
130.		s not a monomer for	a high molecular r				
	(A) Me₃Sic(C) MeSiC			(B) (D)	PhSiCl ₃ Me ₂ SiCl ₂		
131.		and point of silicates	is :	(2)	1110201012		
	(A) $\operatorname{SiO}_3^{2^-}$	- (B)	SiO_4^{2-}	(C)	SiO ⁻	(D)	SiO_4^{4-}
132.	Name the structu	re of silicate in whi	ch one oxygen ator	n of [SiO ₄]	$ ^{4-}$ is shared ?		
		chain silicate		(B)	Sheet silicate		
	(C) Pyrosil	licate		(D)	Three dimension	al	
133.	Which of the foll	lowing statements is	correct?				
		odium metal dissolv	-		ue solution		
		reacts with glass to nium reacts with exe					
		O ₃ on heating gives		1 11/3			

- **134.** The straight chain polymer is formed by :
 - (A) hydrolysis of CH₃SiCl₃ followed by condensation polymerisation
 - (B) hydrolysis of (CH₃)₄Si by addition polymerisation
 - (C) hydrolysis of (CH₃)₂SiCl₂ followed by condensation polymerisation
 - (D) hydrolysis of (CH₃)₃SiCl followed by condensation polymerisation
- **135.** Which of the following is the most basic oxide ?

(C)

- (A) SeO_2 (B) Al_2O_3 (C) Sb_2O_3 (D) Bi_2O_3
- $\label{eq:last_state} \textbf{136.} \qquad \text{The BCl}_3 \text{ is a planar molecule whereas NCl}_3 \text{ is pyramidal because :}$
 - (A) nitrogen atom is smaller than boron atom
 - (B) BCl₃ has no lone pair but NCl₃ has a lone pair of electrons
 - B-Cl bond is more polar than N-Cl bond (D) N-Cl bond is more covalent than B-Cl bond
- **137.** Carbon and silicon belong to (IV) group. The maximum coordination number of carbon in commonly occurring compounds is 4, whereas that of silicon is 6. This is due to :
 - (A) availability of low lying *d*-orbitals in silicon (B) large size of silicon
 - (C) more electropositive nature of silicon (D) Both (B) and (C)
- **138.** Which of the following statements about H₃BO₃ is not correct ?
 - (A) It has a layer structure in which planar BO₃ units are joined by hydrogen bonds
 - (B) It does not act as proton donor but acts as a Lewis acid by accepting hydroxyl ion
 - (C) It is a strong tribasic acid (D) It is prepared by acidifying an aqueous solution of borax

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

139. What is the degree of hardness (in ppm) of a sample of water containing 48 mg of $MgSO_4$ (molecular mass = 120) per kg of water?

140. [A] + Na[Cr(OH)₄]
$$\xrightarrow[B \text{ oil}]{H_2O_2}_{B \text{ oil}} \xrightarrow[yelllow]{H_2SO_4}_{(orange colour solution)}$$
 [C]

What is the molar weight of compound (C)?

(At wt of Cr, S, Na, O are 52, 32, 23 and 16 gm/mole respectively)

- **141.** There are three samples labelled as 10 vol., 150 vol. and 20 vol. Half litre of each sample are mixed and then diluted with double volume of water. What is the volume strength (approx.) of the resulting solution?
- 142. How many moles of acidified potassium permanganate are reduced by 10 moles of H_2O_2 ?
- **143.** Consider the following elements
 - Li, Cs, Mg, Pb, Al, N
 - \rightarrow x = number of elements which can form MO type of oxides
 - \rightarrow y = the highest oxidation state shown by any one of them
 - \rightarrow z = the number of elements which can form amphoteric oxide(s)

Find the sum of x, y and z.

144. $Be_2C + H_2O \rightarrow BeO + X$

 $CaC_2 + H_2O \rightarrow Ca(OH)_2 + Y$

What is the sum of molecular wt of X and Y?

145. Reaction of Br_2 with Na_2CO_3 in aqueous solution gives sodium bromide and sodium bromate with evolution of CO_2 gas. The sum of stoichiometric coefficients of product side is –

- **146.** Calcium carbide reacts with nitrogen and forms an important fertilizer, calcium cyanamide. How much calcium cyanamide is formed when 6.4 gm of calcium carbide is completely converted into cyanamide?
- 147. The number of isomers possible for disubstituted borazine $B_3N_3H_4X_2$ is-
- 148. Compound (X) on reduction with $LiAlH_4$ gives a hydride (Y) containing 21.72% hydrogen along with other products. The compound (Y) reacts with air explosively resulting in boron trioxide. What is the molecular weight of Y.
- **149.** If X = number of σ -bonds

Y = number of lone pair of electrons

Then, what is the value of (X + Y) for hydrated borax.

- **150.** Borax is represented as $Na_2[B_4O_5(OH)_4].8H_2O$. How many tetrahedral boron atoms are present in the structure of borax?
- 151. How many negative charges are present on pyrosilicate ion?
- 152. Total number of methods which can remove permanent hardness of water
 - (a) Clark's method
 - (b) Ion-exchange method
 - (c) Synthetic resin method
 - (d) Calgon method

*5.

- (e) Treatment with sodium carbonate
- 153. The number of alkali metals capable of forming superoxide amongst (Li, Na, K, Rb, Cs) is –

IOC & GOC

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1.	Which	of the following is correct IUPAC name?			
	(A)	3-Ethyl-4, 4-dimethylheptane	(B)	4, 4-Dimethyl-3-ethylheptane	
	(C)	3-Ethyl-4-4-dimethylheptane	(D)	4, 4-Bis(methyl)-3-ethylheptane	
		0 0			
2.	The IU	PAC name for $CH_3 - C - CH_2 - CH_2 - C$	H is	_·	
	(A)	1-hydroxypentane-1, 4-dione	(B)	1, 4-dioxopentanol	
	(C)	3-carboxybutan-3-one	(D)	4-oxopentanoic acid	C1
3.	The IU	PAC name for :			NO ₂
	(A)	1-Chloro-1-nitro-4-methylbenzene	(B)	1-Chloro-4-methyl-2-nitrobenzene	
	(C)	2-Chloro-1-nitro-2-methylbenzene	(D)	m-Nitro-p-chlorotoluene	\mathbf{Y}
					ĊH ₃
4.	Electro	negativity of carbon atoms depends upon the	ir state of l	hybridisation. In which of the following	ng compounds,
	the car	bon marked with asterisk is most electronegative	?		
	<i>(</i>))	*		*	
	(A)	$CH_3 - CH_2 - CH_2 - CH_3$	(B)	$CH_3 - CH = CH - CH_3$	

(A)
$$CH_3 - CH_2 - CH_2 - CH_3$$

(B) $CH_3 - CH = CH - CH_3$
(C) $CH_3 - CH_2 - C \equiv CH$
(D) $CH_2 - CH_2 - CH = CH_2$

In which of the following, functional isomerism is possible?

6.	What is the correct order of decreasing stability of the following cations.								
		32.571	H ₃	100	OCH ₃	$CH_3 - CH - CH$	1770 - C	3	
	(A)	I. II > I > III	(B)	II. II > III > I	(C)	III III > I > II	(D)	I > II > III	
7.	Correct	IUPAC name for	H ₃ C – CH C ₂ I	$-CH - CH_3$ is $H_5 C_2H_5$	5:				
	(A) (C)	2-ethyl-3-methy 2-sec-butylbutar	lpentane		(B) (D)	3, 4-dimethylh 2, 3-dimethylb			
8.	In which	n of the following	compounds	the carbon mar	ked with aster	-	-	st positive charge?	
	(A)	* CH ₃ – CH ₂ – C	21		(B)	$^*CH_3 - CH_2 -$			
	(C)	* СН ₃ – СН ₂ – Е	Br		(D)	* CH ₃ – CH ₂ –	CH ₃		
9.	Which c	of the following ca	rboxylate i	on is the most st	able ?				
		$CH_3 - C - O^-$			(B)	$Cl - CH_2 - C$	$C - O^{-}$		
	(O ∥ F – CH ₂ – C– 0			-	$\begin{array}{c} & \\ & \\ & \\ & \\ F_2 \operatorname{CH} - \operatorname{C} - \operatorname{C} \end{array}$	_		
		-				-			
10.	Name th	the type of intermed $H_3C - HC = CH$		-	of the follow	ing addition react	tion.		
	(A)	2° Carbonion	(B)	1° Carbocatio	on (C)	2° Carbocation	n (D)	1° Carbonion	
*11.	Which c (A)	of the following co $H - C \equiv C - C$		ontain all the car	rbon atoms in (B)	the same hybridia $CH_3 - C \equiv C$,	
	(C)	$CH_2 = C = CH_2$	2		(D)	$CH_2 = CH - CH$	$CH = CH_2$		
*12.	Electrop	bhilies are electron	seeking sp	ecies. Which of	the following	groups contain o	nly electropl	niles ?	
	(A)	BF_3 , NH_3 , H_2O			(B)	5 5			
	(C)	NO_2^+, CH_3^+, CH	$I_3 - \overset{+}{C} = O$		(D)	$C_2H_5^-, C_2H_5^-$	$, C_2H_5^+$		
Note :	Consider	the following fou	_	nds for Questio	n 13 and 14.		-		
			0 				O 		
I.	CH ₃ – 0	$CH_2 - CH_2 - CH_2$	$_2 - C - H$		II.	$CH_3 - CH_2 - $	-		
III.	CH ₃ – 0	$CH_2 - C - CH_2 -$	CH ₃		IV.	CH ₃ – CH – CH ₃	$CH_2 - C - I$	1	
		$CH_2 - C - CH_2 - $ $ \parallel O$				CH ₃	0		
*13.	Which c (A)	of the following pa I and II	irs are posi (B)	tion isomers ? II and III	(C)	II and IV	(D)	III and IV	
*14.		of the following pa		functional group II and IV		Land IV	(D)	Indu	
15.	(A) Nucleon	II and III while is a species th	(B) hat should b		(C)	I and IV	(D)	I and II	
13.	(A) (C)	a pair of electron negative charge			(B) (D)	positive charge electron defici			
*16.	Hyperco	onjugation involve			·		_		
	(A) (B) (C) (D)		oon-hydrog carbon-carb	en σ bond of all		-		unsaturated system rged carbon atom.	

17. Assertion (A) : Energy of resonance hybrid is equal to the average of energies of all canonical forms. Reason (R): Resonance hybrid cannot be presented by a single Lewis structure. Both A and R are correct and R is the correct explanation of A (A) **(B)** Both A and R are correct but R is not the correct explanation of A (C) Both A and R are not correct **(D)** A is not correct but R is correct 18. The order of stability of the following carbocations : Allyl carbocation Isopropyl carbocation III. Benzyl carbocation I. II. The correct choice is : $\mathrm{II} < \mathrm{II} < \mathrm{II}$ **(B)** II > III > I**(C)** $\mathrm{I} > \mathrm{II} > \mathrm{III}$ **(D)** $\mathrm{III} > \mathrm{I} > \mathrm{II}$ (A) 19. Consider thiol anion (RS^A) and alkoxy anion (RO^A). Which of the following statements is correct ? RS^A is less basic and less nucleophilic than RO^A (A) RSA is less basic but more nucleophilic than ROA **(B)** RS^A is more basic and more nucleophilic than RO^A (C) **(D)** RS^A is more basic but less nucleophilic than RO^A The correct order of increasing basicity of the given base $(R = CH_3)$ is : 20. $\overline{R} < HC \equiv \overline{C} < RCO\overline{O} < \overline{NH}_2$ $RCO\overline{O} < HC = \overline{C} < \overline{R} < \overline{NH}_2$ (A) **(B)** $RCO\overline{O} < \overline{NH}_2 < HC \equiv \overline{C} < \overline{R}$ $RCO\overline{O} < HC \equiv \overline{C} < \overline{N}H_2 < \overline{R}$ **(D) (C)** *21. Out of the following the alkene that exhibits optical isomerism is : 3-Methyl-1-cyclohexene (A) 3-methyl-2-pentene **(B) (C)** 3-methyl-1-pentene **(D)** 2-methyl-2-pentene Arrange the carbanions, $(CH_3)_3\overline{C}$, $\overline{C}Cl_3$, $(CH_3)_2\overline{C}H$, $C_6H_5\overline{C}H_2$, in order of their decreasing stability : 22. $C_6H_5\overline{C}H_2 > CCl_3 > (CH_3)_3\overline{C} > (\overline{C}H_3)_2\overline{C}H$ $(CH_3)_2\overline{C}H > \overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$ **(B)** (A) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > \overline{C}H_2 > \overline{C}Cl_3$ $\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$ **(D) (C)** The number of stereoisomers possible for a compound of the molecular formula CH₃ - CH=CH - CH(OH) - Me is : 23. 6 (A) 3 **(B)** 2 **(D)** (C) 4 24. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is : - COOH, - SO₃H, - CONH₂, - CHO **(B)** - SO₃H, - COOH, - CONH₂ - CHO (A) **(C)** - CHO, - COOH, - SO₃H, - CONH₂ **(D)** - CONH₂, - CHO, - SO₃H, - COOH *25. Which of the following molecules is expected to rotate the plane of polarized light? COOH CHO ∭IIII-H (D) H_2N – (C) ŜΗ Н CH₂OH Which of the following is the correct order of decreasing $S_N 2$ reactivity ? (X = a halogen) 26. (A) $RCH_2X > R_3CX > R_2CHX$ $RCH_2 X > R_2CHX > R_3CX$ **(B)** $R_2CH_2X > R_3CX > RCH_2X$ **(C)** $R_3CX > R_2CHX > RCH_2X$ **(D)** The increasing order of stability of the following free radicals is : 27. $(CH_3)_2$ $\dot{C}H < (CH_3)_3$ $\dot{C} < (C_6H_5)_2$ $\dot{C}H < (C_6H_5)_3$ \dot{C} (A) $(C_6H_5)_3$ $\dot{C} < (C_6H_5)_2$ $\dot{C}H < (CH_3)_3$ $\dot{C} < (CH_3)_2$ $\dot{C}H$ **(B)** $(C_6H_5)_2$ $\dot{C}H < (C_6H_5)_3$ $\dot{C} < (CH_3)_3$ $\dot{C} < (CH_3)_2$ $\dot{C}H$ **(C)** $(CH_3)_2$ $\dot{C}H < (CH_3)_3$ $\dot{C} < (C_6H_5)_3$ $\dot{C} < (C_6H_5)_2$ $\dot{C}H$ **(D)**

28. Due to the presence of an unpaired electron, free midcals are :
(A) cations (B) anions (C) chemically inactive (D) chemically reactive
29. The decreasing order of nucleophiles is :
1.
$$CH_{3}C_{-}O^{-}$$
 II. $CH_{3}O^{-}$ III. CN^{-} IV. $H_{3}C_{-}O^{-}$
The correct choice is :
(A) II > 11 > 1 > 1V (B) II > III > 1> IV (C) IV > III > II > 1 (D) IV > 1 > III > 1
30. Which type of isomerism is shown by 2, 3-dichlorobutante?
(A) A structural (B) Geometric (C) Optical (D) Functional
*31. Which of the following parameters, the structural isomers C; H; OAI and CH; OCH; would be expected to have the same values? (Assume at the same temperature
(C) Boiling points
(D) Guaseous demonstraic at the same temperature
(C) Boiling points
(D) Guaseous demonstraic at the same temperature
(C) Boiling points
(A) L-chloropentane (B) 2-chloropentane
(C) I-chloropentane (B) 2-chloropentane
(C) CH₃ - $\frac{1}{C_{+}}$ (D) $CH_{3} - CH_{2} - CH - CH_{3}$
(C) $CH_{3} - \frac{1}{C_{+}}$ (D) $CH_{3} - CH_{2} - CH - CH_{3}$
(C) $CH_{3} - \frac{1}{C_{+}}$ (D) $CH_{3} - CH_{2} - CH - CH_{3}$
(C) $CH_{3} - \frac{1}{C_{+}}$ (D) $CH_{3} - CH_{2} - CH - CH_{3}$
(D) $CH_{3} - CH_{3} -$

Class XI | Chemistry

39.	Following types of compounds (as I, II)			
	I. $CH_3CH = CHCH_3$	II.	$CH_3 - CH - OH$ $ $ CH_2CH_3	
	Are studied in terms of isomerism in : (A) Chain isomerism (B) Position isomeris	sm (C)	Conformers (D) Stere	eoisomerism
40.	O : The IUPAC name of the compound having formula :	= C – CH OH NH ₂		
	 (A) 3-Hydroxy-2-amino-propanoic acid (C) Amino hydroxyl propanoic acid 	(B) (D)	2-Amino-propan-3-oic acid 2-Amino-3-hydroxy-propanoic aci	id
41.	Which of the following statements is not correct for a nu	cleophile ?		
	(A) Ammonia is a nucleophile(C) Nucleophiles are not electron seeking	(B) (D)	Nucleophiles attack low e densi Nucleophile is a Lewis acid	ty sites
42.	Which of the following is not the product of dehydration	of [OH	
	(A) (B)	(C)		
43.	Treatment of cyclopentanone \bigcirc \bigcirc with methyl	lithium giv	ves which of the following species ?	
	 (A) Cyclopentanonyl radical (C) Cyclopentanonyl anion 	(B) (D)	Cyclopentanonyl biradical Cyclopentanonyl cation	
44.	The total number of π -bond electrons in the following s(A)12(B)16(C)4(D)8	tructure is	H ₃ C CH ₃	
45.	Given : $H_3C \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3}$ Which of the given compounds can exhibit tautomerism (A) II and III (B) I, II and III	CH CH O ? (C)	H ₂ C H	4 111
46.	In Duma's method for estimation of nitrogen, 0.25g of 300 K temperature and 725 mm pressure. If the aqueou compound is :	of an orga	nic compound gave 40 mL of nitro	ogen collected at
	(A) 16.76 (B) 15.76	(C)	17.36 (D) 18.2	0
47.	In the Kjeldahl's method for estimation of nitrogen pre neutralized 10 mL of 1M H ₂ SO ₄ . The percentage of nitro (A) 37.33 (B) 45.33			
48.	The radical, \bigcirc -CH ₂ is aromatic because it has :	(~)		-
	 (A) 7 p-orbitals and 7 unpaired electrons (C) 6 p-orbitals and 6 unpaired electrons 	(B) (D)	6 p-orbitals and 7 unpaired electro 7 p-orbitals and 6 unpaired electro	
49.	Nitrogen detection in organic compound is carried ou	it by Lass	aigne's test. The blue colour forme	d corresponds to
	which of the following formulae ? (A) $Fe_3[Fe(CN)_6]_2$ (B) $Fe_4[Fe(CN)_6]_3$	(C)	$Fe_4[Fe(CN)_6]_2$ (D) $Fe_3[I$	Fe(CN)6]3

Class XI | Chemistry

50. In Duma's method of estimation of nitrogen 0.35g of an organic compound gave 55 mL of nitrogen collected at 300 K temperature and 715 mm pressure. The percentage composition of nitrogen in the compound would be : (Aqueous tension at 300 K = 15 mm). (A) 15.45 **(B)** 16.45 (C) 17.45 **(D)** 14.45 51. The Lassaigne's extract is boiled with conc. HNO3 while testing for halogens. By doing so it : (A) decomposes Na2S and NaCN, it formed **(B)** helps in the precipitation of AgCl (C) increases the solubility product of AgCl (D) increases the concentration of NO_3^- ions 52. The IUPAC name of the following compound is : CH₂CH₃ C H₂C (A) trans-2-chloro-3-iodo-2-pentene **(B)** cis-3-iodo-4-chloro-3-pentane trans-3-iodo-4-chloro-3-pentene **(D)** cis-2-chloro-3-iodo-2-pentene **(C)** 53. Which is most reactive towards electrophilic reagent ? CH₃ CH_3 OH CH₂OH NHCOCH₂ OCH₂ (A) **(B)** (C) **(D)** 54. Which of the following species is not electrophilic in nature ? Ċl H_3O^+ (A) **(B)** BH3 (C) **(D)** NO For (i) I⁻, (ii) Cl⁻, (iii) Br⁻, the increasing order of nucleophilicity would be : 55. $Cl^{-} < Br^{-} < I^{-}$ (B) $I^{-} < Cl^{-} < Br^{-}$ (C) $Br^- < Cl^- < I^-$ **(D)** $I^- < Br^- < Cl^-$ (A) The best method for the separation of naphthalene and benzoic acid from their mixture is : 56. distillation sublimation (A) **(B)** (C) chromatography **(D)** crystallisation 57. Which one of the following orders of acid strength is correct? (A) $RCOOH > ROH > HOH > HC \equiv CH$ **(B)** $RCOOH > HOH > ROH > HC \equiv CH$ $RCOOH > HOH > HC \equiv CH > ROH$ (D) $RCOOH > HC \equiv CH > HOH > ROH$ **(C)** 58. Which of the following is incorrect? FeCl₃ is used in detection of phenol (A) **(B)** Fehling solution is used in detection of glucose **(C)** Tollen's reagent is used in detection of unsaturation **(D)** NaHSO3 is used in detection of carbonyl compound 59. A is a lighter phenol and B is an aromatic carboxylic acid. Separation of a mixture of A and B can be carried out easily by using a solution of : **(B)** (A) sodium hydroxide sodium sulphate sodium bicarbonate (C) calcium **(D)** 60. An organic compound X(molecular formula $C_6H_7O_2N$) has six carbon atoms in a ring system, two double bonds and a nitrogen group as substituent, X is : homocyclic but not aromatic **(B)** aromatic but not homocyclic (A) homocyclic and aromatic **(D)** hetereocyclic and aromatic **(C)**

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 61. The number of stereoisomers possible for a compound of the molecular formula $CH_3 CH = CH CH(OH) CH_3$ is
- **62.** The number of structural isomers for C_6H_{14} is.
- 63. How many chiral centres are there in the following compound?

64. How many geometrical isomers are possible for the following compound?

- 65. How many ethers are possible for the formula $C_5H_{12}O$ including stereosomers?
- 66. How many degrees of unsaturation are there in the following?

- 67. Five alcohols can be drawn for formula $C_4H_{10}O$. How many of these are optically active?
- **68.** Total number of benzene derivatives with the molecular formula $C_6H_3Cl_3$ is
- 69. How many chiral carbons are there in the following compound?

70. The number of resonance contributing structure(s) for the following compound is

71. The total number of non-cyclic isomers formed by C_5H_{10} is _____.

- 72. The total number of isomers of a disubstituted benzene compound _____
- 73. The number of optical isomers for a compound containing 2-dissimilar asymmetric carbon atom is
- 74. How many carbons are present in smallest optically active alkane?
- **75.** How many total structural isomers can be formed from $C_4H_8Br_2$?

Hydrocarbons

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1.The major organic compound formed by the reaction of 1, 1, 1-trichloroethane with silver powder is :(A)Acetylene(B)Ethane(C)2-butyne(D)2-butene
- 2. Compound (A), C₈H₉Br gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anyhydride on heating. Identify the compound (A).

11.	complex is of lowest energy?									
	(A)	(+) H	(B)		(C)	(+) ^H E	(D)	(+) $(+)$		
12.	Alkyl ha (A) (C)	alides react with dia Alkenyl halides Alkyl copper halid		er reagents to give :	(B) (D)	Alkanes Alkenes				
13.	Of the f (A) (C)	ive isomeric hexane 2-methylpentane 2, 3-dimethylbuta		ners which can give	two mono (B) (D)	chlorinated compou 2, 2-dimethylbuta n-hyxane				
14.	 Reaction of one molecule of HBr with one molecule of 1, 3-butadiene at 40°C gives predominantly : (A) 1-bromo-2-butene under kinetically controlled conditions (B) 3-bromobutene under thermodynamically controlled conditions (C) 1-bromo-2-butene under thermodynamically controlled conditions (D) 3-bromobutene under kinetically controlled conditions 							ly :		
15.	Which o (A)	one of the following Ethyl acetate	is reduced (B)	d with Zinc amalgan Acetic acid	n and hydr (C)	ochloric acid to give Acetamide	e the corre (D)	esponding hydrocarbon? Butan-2-one		
16.	Which o (A)	one of the following n-butane	has the m (B)	inimum boiling poir 1-butyne	nt? (C)	1-butene	(D)	Isobutene		
17.	Butene- (A)	1 may be converted Zn-HCl	to butane (B)	by reaction with : Sn-HCl	(C)	Lindlar catalyst	(D)	Pd/H ₂		
*18.	Acetyles (A) (C)	ne can reacts with : Na HCl			(B) (D)	Ammoniacal AgN NaOH	NO ₃			
19.	Acetyler (A)	ne reacts with hypoc Cl ₂ CHCHO	chlorous a (B)	cid to form : ClCH ₂ COOH	(C)	CH ₃ COCl	(D)	CICH ₂ CHO		
20.	CH ₃ M	gI is an organo-me	tallic com	pound due to :						
	(A)	Mg-I bond	(B)	C-I bond	(C)	C-Mg bond	(D)	C – H bond		
21.	I.	the following in de n-butane rect choice is :	creasing c II.	order of their boiling 2-methylbutane	points. III.	n-pentane	IV.	2,2-dimethylpropane		
	(A)	$\mathrm{I} > \mathrm{II} > \mathrm{III} > \mathrm{IV}$	(B)	$\mathrm{II} > \mathrm{III} > \mathrm{IV} > \mathrm{I}$	(C)	$\mathrm{IV} > \mathrm{III} > \mathrm{II} > \mathrm{I}$	(D)	$\mathrm{III} > \mathrm{II} > \mathrm{IV} > \mathrm{I}$		
22.	Arrange	the halogens F_2 , C	l_2, Br_2, I_2	in order of their inc	reasing re	activity with alkanes	s.			
	(A)	$I_2 < Br_2 < Cl_2 < I$	-		(B)	$Br_2 < Cl_2 < F_2 <$	=			
	(C)	$F_2 < Cl_2 < Br_2 <$	I ₂		(D)	$Br_2 < I_2 < Cl_2 <$	F ₂			
23.		e	•	ılkyl halides with zir			D T			
	(A)	R - Cl < R - I < I			(B)	R - Cl < R - Br <				
	(C)	R - I < R - Br < I	K−U		(D)	R - Br < R - I < I	K-U			

24.

*25.

26.

27.

28.

*29.

(A)

(A)
$$\operatorname{CH}_4(g) + 2O_2(g) \longrightarrow \operatorname{CO}_2(g) + 2H_2O(l)$$
 (B) $\operatorname{CH}_4(g) + O_2(g) \longrightarrow \operatorname{C}(s) + 2H_2O(l)$
(C) $\operatorname{CH}_4(g) + O_2(g) \xrightarrow{\operatorname{Mo}_2O_3} \operatorname{HCHO} + H_2O$ (D) $2\operatorname{CH}_4(g) + O_2(g) \xrightarrow{\operatorname{Cu}/523/100 \operatorname{atm}} 2\operatorname{CH}_3OH$

30. Which is correct IUPAC names of the following compound ?

$$HC(CH_{3})_{2}$$

$$|_{H_{3}C-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}-CH_{2}-CH_{2}-CH_{3}-C$$

(B) 5-Ethyl-4-propyldecane

(A) 5-Butyl-4-isopropyldecane 5-sec-Butyl-4-iso-propyldecane 4-(1-Methylethyl)-5-(1-Methylpropyl)-decane **(C) (D)**

31. Which is correct IUPAC names of the following compound ?

$$H_{3}C - CH_{2} - CH_{3}$$

$$\downarrow CH_{2}$$

$$H_{3}C - C - CH_{3}$$

$$\downarrow CH_{3}$$
5-(2',2'-Dimethylpropyl)-decane
(B) 4-Butyl-2, 2-dimethylpnonane

(C) 2,2-Dimethyl-4-pentyloctane **(D)** 5-neo-Pentyldecane products

CH3

H5

- *32. For an electrophilic substitution reaction, the presence of a halogen atom in the benzene ring
 - (A) Deactivates the ring by inductive effect
 - (B) Deactivates the ring by resonance
 - (C) Increases the charge density at ortho and para position relative to meta position by resonance
 - (D) Directs the incoming electrophile to meta position by increasing the charge density relative to ortho and para position
- ***33.** Which of the following are correct ?
 - (A) $CH_3 O CH_2^+$ is more stable than $CH_3 CH_2^+$
 - (B) $(CH_3)_2 CH^+$ is less stable then $CH_3 O CH_2^+$
 - (C) $CH_2 = CH CH_2^+$ is more stable than $CH_3 CH_2 CH_2^+$
 - (D) $CH_2 = CH^+$ is more stable than $CH_3 CH_2^+$
- ***34.** Select the aromatic structures among the following :

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- **36.** Statement 1: The compound cyclooctatetraene has the following structural formula : It is cyclic and has conjugate 8π -electron system but it is not an aromatic compound.
 - **Statement 2**: $(4n + 2)\pi$ electrons rule does not hold good and ring is not planar.
- 37. Statement 1: Among isomeric pentanes, 2, 2-dimethylpentane has lowest boiling point.
- Statement 2: Branching does not affect the boiling point.
- **38.** In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule to give a product 1-chloro-1-methylcyclohexane. The possible alkene is :

(A)
$$(A)$$
 (B) (B) (C) (A) and (B) (D)

39. A single compound of the structure,

is obtainable from ozonolysis of which of the following cyclic compounds ?

Class XI | Chemistry

46. The compound :

$$CH_3 \\ | \\ CH_3 - C = CH - CH_3$$

50. The oxidation of toluene with CrO₃ in the presence of (CH₃CO)₂O gives a product A, which on treatment with aqueous NaOH produces :

(A)	C ₆ H ₅ COONa	(B)	2, 4-diacetyl toluene
(C)	C ₆ H ₅ CHO	(D)	C ₆ H ₅ CH ₂ OH

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 51. The number of unhybridized orbitals present in vinyl acetylene is _____
- 52. Number of CO₂ molecule formed on oxidation of $CH_2 = C CH = CH_2$ with KMnO₄ are _____. | | | CH₃ CH₃

53.
$$OH \xrightarrow{H^{\oplus}/\Delta}$$
 Total no. of product are formed are

L

- 54. How many chiral compounds are possible on monochlorination of 2-methylbutane?
- 55. The number of stereoisomers obtained by bromination of trans-2-butene is
- 56. The maximum number of isomers (including stereoisomers) that are possible on monochlorination of the following compound is _____.

57. The number of optically active products obtained from the reductive ozonolysis of the complete compound is

$$H_{3}C - CH = CH - C - CH = CH - C - CH = CH - CH_{3}$$

58. The number of possible trans only alkenes formed by reduction of alkyne (C_6H_{10}) with Li/Liq. NH₃ are

59.
$$\underbrace{O_{3}/Zn}_{H_2O}$$

Total number of possible different products that can be obtained are

60. An alkyne (A) having molecular mass x×10 is treated with Lindlar's catalyst and H₂ to give a compound (B). (B) reacts with HCl to give a compound (C). When (C) reacts with metallic sodium in presence of ether it gives (D). The molecular mass of (D) is 86. What is the value of x?

61.
$$OH \xrightarrow{\text{conc. } H_2SO_4}$$

The total number of possible products is _____.

62.
$$Br_2$$

Total products upon monohalogenation are:

63. The number of π -bonds in the product formed by passing acetylene through dilute sulphuric acid containing mercuric sulphate is _____.

$$64. \qquad \underbrace{\text{Cold/alk.KMnO}_4}_{P;} P;$$

Number of sp² hybridized carbon in product P are _____.

65. $C_n H_{2n+2} \xrightarrow{Cl_2/nv} P(C_n H_{2n+1}Cl);$

Minimum number of carbon required to make a chiral compound (P : having 1 chiral carbon) are _____.

Environmental Chemistry

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which one of the following is not a common component of Photochemical smog?
 - (A) Ozone (B) Acrolein
 - (C) Peroxyacetal nitrate (D) Chlorofluorocarbons
- 2. Which one of the following statements is not true ?
 - (A) Clean water would have a BOD value of 5 ppm
 - (B) Fluoride deficiency in drinking water is harmful. Soluble fluoride is often used to bring its concentration upto 1 ppm
 - (C) When the pH of rain water is higher than 6.5, it is called acid rain
 - (D) Dissolved Oxygen (DO) in cold water can reach a concentration upto 10 ppm
- 3. Which one of the following statement is not true ?
 - (A) pH of drinking water should be between 5.5 9.5
 - (B) Concentration of DO below 6 ppm is good for the growth of fish
 - (C) Clean water would have BOD value of less than 5 ppm.
 - (D) Oxides of sulphur, nitrogen and carbon, are the most widespread air pollutant
- 4. Green chemistry means such reactions which :
 - (A) are related to the depletion of ozone layer
 - (B) study the reactions in plants
 - (C) produce colour during reactions
 - (D) reduce the use and production of hazardous chemicals
- 5. Which of the following gases is not a green house gas?

(A)	CO	(B)	O3	(C)	CH4	(D)	H ₂ O vapour
-----	----	------------	----	-----	-----	------------	-------------------------

- 6. Photochemical smog occurs in warm, dry and sunny climate. One of the following is not amongst the components of photochemical smog, identify it.
 - (A) NO_2 (B) O_3 (C) SO_2 (D) Unsaturated hydrocarbon
- 7. Which of the following statements is not true about classical smog?
 - (A) Its main components are produced by the action of sunlight on emissions of automobiles and factories
 - (B) Produced in cold and humid climate
 - (C) It contains compounds of reducing nature
 - (D) It contains smoke, fog and sulphur dioxide

8. Biochemical Oxygen Demand, (BOD) is a measure of organic material present in water. BOD value less than 5 ppm indicates a water sample to be ______.

(A)	rich in dissolved oxygen.	(B)	poor in dissolved oxygen.
(C)	highly polluted.	(D)	not suitable for aquatic life.

- 9. Which of the following statements is wrong?
 - (A) Ozone is not responsible for green house effect.
 - (B) Ozone can oxidise sulphur dioxide present in the atmosphere to sulphur trioxide.
 - (C) Ozone hole is thinning of ozone layer present in stratosphere.
 - (D) Ozone is produced in upper stratosphere by the action of UV rays on oxygen.

10. Sewage containing organic waste should not be disposed in water bodies because it causes major water pollution. Fishes in such a polluted water die because of

- (A) Large number of mosquitoes.
- (B) Increase in the amount of dissolved oxygen.
- (C) Decrease in the amount of dissolved oxygen in water.
- **(D)** Clogging of gills by mud.

11.	Which of the following statements about photochemical smog is wrong?												
	(A)	It has high concentration of oxidising agents.											
	(B)	It has low concer	ntration of	oxidising agent.									
	(C)	It can be controlled by controlling the release of NO2, hydrocarbons, ozone etc.											
	(D)	Plantation of som	ne plants lil	ke pinus helps in c	ontrolling p	photochemical smo	g.						
12.	The gaseous envelope around the earth is known as atmosphere. The lowest layer of this is extended upto 10 km from se level, this layer is												
	(A)	Stratosphere	(B)	Troposphere	(C)	Mesosphere	(D)	Hydrosp	here				
13.	Dinitrogen and dioxygen are main constituents of air but these do not react with each other to form oxides of nitrogen because												
	(A)												
	(B)			only in presence	of a catalys	t							
	(C)	oxides of nitroge	n are unsta	ble									
	(D)	(D) N_2 and O_2 are unreactive											
14.	The pollutants which come directly in the air from sources are called primary pollutants. Primary pollutants are												
	sometimes converted into secondary pollutants. Which of the following belongs to secondary air pollutants?												
	(A)	CO	(B)	Hydrocarbon	(C)	Peroxyacetyl ni	trate	(D)	NO				
15.	Which	Which of the following statements is correct?											
	(A)	Ozone hole is a hole formed in stratosphere from which ozone oozes out.											
	(B)	Ozone hole is a h	ole formed	l in the tropospher	e from whi	ch ozone oozes out	•						
	(C)	Ozone hole is thinning of ozone layer of stratosphere at some places.											
	(D)	Ozone hole means vanishing of ozone layer around the earth completely.											
16.	Which	Which of the following practices will not come under green chemistry?											
	(A)	If possible, making use of soap made of vegetable oils instead of using synthetic detergents.											
	(B)	Using H ₂ O ₂ for bleaching purpose instead of using chlorine based bleaching agents.											
	(C)	Using bicycle for travelling small distances instead of using petrol/diesel based vehicles.											
	(D)	Using plastic cans for neatly storing substances.											
*17.	Which of the following conditions shows the polluted environment.												
	(A)												
	(B)	amount of carbondioxide in the atmosphere is 0.03%											
	(C)	biochemical oxygen demand 10 ppm											
	(D)	(D) eutrophication											
*18.	Phosphate containing fertilisers cause water pollution. Addition of such compounds in water bodies causes												
	(A)	enhanced growth	of algae		(B)	decrease in amo	ount of diss	solved oxyge	n in water				
	(C)	deposition of cal	cium phosp	ohate	(D)	increase in fish	population	1					
*19.	The ac	ids present in acid ra	ain are										
	(A)	Peroxyacetylnitra			(B)	H ₂ CO ₃							
	(C)	HNO ₃			(D)	H_2SO_4							
*20.	The co	nsequences of globa	l warming	may be									
	(A)	increase in avera			 (B)	melting of Hima	alayan Gla	ciers					
	(C)	increased biocher			(D)	eutrophication	-						

Integer Answer Type Questions

The Answer to the following questions are positive integers of 1/2/3 digits and zero

- 21. Water is considered as pure if it has BOD less than _____ ppm.
- 22. In haemoglobin, CO and not O_2 links to Fe (if both CO and O_2 are present) because CO is a stronger ligand than O_2 . The number of groups to which Fe is co-ordinated other than vacant site for CO in haemoglobin is
- 23. CO is a pollutant produced due to incomplete combustion of butane. One mole of butane requires 6.5 moles of O_2 for complete combustion. If 6 moles of oxygen are available, the no. of moles of CO produced will be
- 24. $K_2Cr_2O_7$ used as oxidant casues pollution. What is oxidation number of the species formed by reduction?
- 25. SO_2 (air pollutant) is responsible for acid rain. 1000L of this polluted air at STP (containing SO_2) was passed into H_2O and resulting solution required 7.143×10^{-5} mol of KMnO₄ in acidic medium for complete reaction. What is concentration of SO₂ in ppm in air?
- 26. An approach to control industrial pollution is to recover waste products in usable form. Waste H_2S and SO_2 are recovered as elemental Sulphur liquid. How much Sulphur can be recovered if industrial waste contains 1.867 L SO₂ at STP in a given sample?
- 27. How many lone pairs are there in ozone.
- 28. Ozone layer is benig depleted by CFC. How many atoms are there in smallest of unit of CFC?
- **29.** How many of the following gases cause global warming? CO₂, N₂O, CH₄, O₃, N₂, CFC, O₂, H₂
- **30.** Iodine pentaoxide is a very important reagent because it can oxidise CO which is a major pollutant of the atmosphere to carbon dioxide in absence of water. How many moles of carbon monoxide air oxidized per mole of I_2O_5 ?
- 31.
 How many of them are effects of photochemical smog?

 (i) serious health problem
 (ii) Headache, chest pain

 (iii) Cough, difficulty in breathing
 (iv) Irritation in the eyes

 (v) Cracking of rubber
 (vi) Extensive damage to plant life

 (vii) Corrision of metals, stones, building materials
- **32.** What is maximum prescribed concentration of metal in drinking water of Fe and Zn. (ppm) Multipy both the value and repost the answer.
- **33.** F^- ions make the enamel on teeth much harder by converting "A" into "B"? Calculate the difference in molecular weight of 'A' and 'B'. |A B|
- **34.** How many paramagnetic specie are present in the reaction of CFC's with normal atmospheric gases in stratosphere, by UV raidations.
- **35.** Dinitorgen and dioxygen gases do not react with each other at normal temperature. But in automobile engine, they combine when fossil fuel is burnt to form two oxides. Report sum of oxidation stataes of nitrogen in both oxides.