Final Step - B | Chemistry

The Solid State

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which of the following is not a characteristic of a crystalline solid?
 - Definite and characteristic heat of fusion (A)
 - **(B)** Isotropic nature
 - A regular periodically repeated pattern of **(C)** arrangement of constituent particles in the entire crystal
 - **(D)** A true solid
- 2. Which of the following is an amorphous solid?
 - Graphite (C) (A)
 - **(B)** Quartz glass (SiO₂)
 - **(C)** Chrome alum
 - **(D)** Silicon carbide (SiC)
- 3. Which of the following arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances ?
 - 1(A)
 - **(B)**
 - $(\widehat{\uparrow}) (\widehat{\uparrow}) (\widehat{\downarrow}) (\widehat{\uparrow}) (\widehat{\uparrow}) (\widehat{\downarrow}) (\widehat{\uparrow}) (\widehat{\downarrow}) (\widehat{\downarrow})$
 - (C)
 - $(\widehat{\uparrow})(\widehat{\downarrow})(\widehat{\uparrow})(\widehat{\uparrow})(\widehat{\downarrow})(\widehat{\uparrow})(\widehat{\downarrow$ **(D)**
- 4. Which of the following is true about the value of refractive index of quartz glass ?
 - Same in all directions (A)
 - **(B)** Different in different directions
 - **(C)** Cannot be measured
 - **(D)** Always zero
- 5. Iodine molecules are held in the crystal lattice by
 - **(A)** London forces
 - **(B)** Dipole-dipole interactions
 - **(C)** Covalent bonds
 - Coulombic forces **(D)**

- *6. Which of the following is a network solid?
 - Graphite **(B)** (A) I_2
 - **(C)** Diamond **(D)** H₂O (Ice)
- 7. Which of the following oxide behaves as conductor or insulator depending upon temperature ?
 - (A) CaO **(B)** SiO₂
 - **(D)** MgO **(C)** Ti₂O₃

8. The lattice site in a pure crystal cannot be occupied by

- Molecule (A) **(B)** Ion
- Electron **(C) (D)** Atom
- 9. Schottky defect is observed in crystals when
 - Some cations move from their lattice site (A) to interstitial sites
 - Cations and anions are missing from the **(B)** lattice in stoichiometric ratio
 - **(C)** Some lattice sites are occupied by electrons
 - **(D)** Some impurity is present in the lattice
- 10. Which of the following is true about the charge acquired by p-type semiconductor ?
 - Positive (A)
 - **(B)** Neutral
 - **(C)** Negative
 - Depends on concentration of p impurity **(D)**
- 11. The total number of tetrahedral voids in the face centred cubic unit cell is
 - (A) 6 **(B)** 8
 - 10 12 **(C) (D)**

- *12. Which of the following point defects are shown by AgBr(s) crystals ?
 - (A) Schottky defect
 - (B) Frenkel defect
 - (C) Metal excess defect
 - (D) Metal deficiency defect
- 13. In which pair most efficient packing is present ?
 - (A) hep and bee (B) hep and eep
 - (C) bcc and ccp
 - (D) bcc and simple cubic cell
- 14. The percentage of empty space in a body centred cubic arrangement is _____.
 - **(A)** 74 **(B)** 68
 - (C) 32 (D) 26
- *15. Which of the following statement is(are) true about the hexagonal close packing ?
 - (A) The coordination number is 12
 - (B) It has 74% packing efficiency
 - (C) Tetrahedral voids of the second layer are covered by the sphere of the third layer
 - (D) In this arrangement spheres of the fourth layer are exactly aliened with those of the first layer
- *16. In which of the following structures coordination number for cations and anions in the packed structure will be same?
 - (A) Cl⁻ ion form fcc lattice and Na⁺ ions occupy all octahedral voids of the unit cell
 - (B) Ca²⁺ ions form fcc lattice and F⁻ ions occupy all the eight tetrahedral voids of the unit cell
 - (C) O²⁻ ions form fcc lattice and Na⁺ ions occupy all the eight tetrahedral voids of the unit cell
 - (D) S²⁻ ions form fcc lattice and Zn²⁺ ions go into alternate tetrahedral voids of the unit cell
- 17. What is the coordination number in a square close packed structure in two dimensions ?
 - (A) 2 (B) 3 (C) 4 (D) 6

- **18.** Which kind of defects are introduced by doping in semiconductor materials ?
 - (A) Dislocation defect
 - (B) Schottky defect
 - (C) Frenkel defects
 - (D) Electronic defects
- **19.** Silicon doped with electron-rich impurity forms
 - (A) p-type semiconductor
 - (B) n-type semiconductor
 - (C) Intrinsic semiconductor
 - (D) Insulator
- ***20.** Which of the following statement is(are) true ?
 - (A) Paramagnetic substances are weakly attracted by magnetic field.
 - (B) Ferromagnetic substances cannot be magnetised permanently.
 - (C) The domains in antiferromagnetic substances are oppositely oriented with respect to each other.
 - (D) Pairing of electrons cancels their magnetic moment in the diamagnetic substances.
- *21. Which of the following statement is(are) true about the ionic solids ?
 - (A) Bigger ions form the close packed structure
 - (B) Smaller ions occupy either the tetrahedral or the octahedral voids depending upon their size
 - (C) Occupation of all the voids is not necessary
 - (D) The fraction of octahedral or tetrahedral voids occupied depends upon the radii of the ions occupying the voids
- 22. A ferromagnetic substance becomes a permanent magnet when it is placed in a magnetic field because .
 - (A) All the domains get oriented in the direction of magnetic field
 - (B) All the domains get oriented in the direction opposite to the direction of magnetic field
 - (C) Domains get oriented randomly
 - (D) Domains are not affected by magnetic field

- **23.** Which of the following defects is also known as dislocation defect ?
 - (A) Frenkel defect
 - (B) Schottky defect
 - (C) Non-stoichimetric defect
 - (D) Simple interstitial defect
- 24. In the cubic close packing, the unit cell has
 - (A) 4 tetrahedral voids each of which is shared by four adjacent unit cells
 - (B) 4 tetrahedral voids within the unit cell
 - (C) 8 tetrahedral voids each of the which is shared by four adjacent unit cells
 - (D) 8 tetrahedral voids within the unit cells
- **25.** The edge lengths of the unit cells in terms of the radius of spheres constituting fcc, bcc and simple cubic unit cell respectively

(A)
$$2\sqrt{2}r, \frac{4r}{\sqrt{3}}, 2r$$
 (B) $\frac{4r}{\sqrt{3}}, 2\sqrt{2}r, 2r$

(C)
$$2r, 2\sqrt{2}r, \frac{4r}{\sqrt{3}}$$
 (D) $2r, \frac{4r}{\sqrt{3}}, 2\sqrt{2}r$

- **26.** CsCl crystallises in body centered cubic lattice. If 'a' its edge length, then which of the following expressions is correct?
 - (A) $r_{Cs^+} + r_{Cl^-} = 3a$
 - **(B)** $r_{Cs^+} + r_{Cl^-} = 3a/2$
 - (C) $r_{Cs^+} + r_{Cl^-} = \sqrt{3}a/2$
 - **(D)** $r_{Cs^+} + r_{Cl^-} = \sqrt{3a}$
- 27. Experimentally, it was found that a metal oxide has formula $M_{0.98}O$. Metal M, present as M^{2+} and M^{3+} in its oxide. Percentage of the metal which exists as M^{3+} would be :
 - (A) 7.01%
 (B) 4.08%
 (C) 6.05%
 (D) 5.08%
- 28. Lithium forms body-centred cubic structure. The length of the side of its unit cell is 351 pm. Atomic radius of the lithium will be :
 - (A) 75 pm (B) 300 pm
 - (C) 240 pm (D) 152 pm

- **29.** In a face-centred cubic lattice, atom A occupies the corner positions and atom B occupies the face centred positions. If one atom of B is missing from one of the face points, the formula of the compound is :
 - (A) A_2B (B) AB_2 (C) AB (D) A_2B_5
- 30. How many unit cells are present in a cube shaped ideal crystal of NaCl of mass 1.00 g? [Atomic mass : Na = 23, Cl = 35.5]

(A)	2.57×10^{21}	(B)	5.14×10^{21}
	01		21

- (C) 1.28×10^{21} (D) 1.71×10^{21}
- **31.** The edge length of a face centred cubic cell of an ionic substance is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is :
 - (A) 288 pm
 (B) 398 pm
 (C) 618 pm
 (D) 144 pm
- **32.** Percentage of free space in cubic close packed structure and in body centred packed structure are respectively :
 - (A) 30% and 26% (B) 26% and 32%
 (C) 32% and 48% (D) 48% and 26%

33. Number of atoms in the unit cell of Na (bcc type crystal) and Mg (fcc type crystal) are, respectively :

- (A)4,4(B)4,2(C)2,4(D)1,1
- **34.** In a compound, atoms of element Y form ccp lattice and those of element X occupy 2/3rd of tetrahedral voids. The formula of the compound will be :

(A)
$$X_4 Y_3$$
 (B) $X_2 Y_3$
(C) $X_2 Y$ (D) $X_3 Y_4$

- **35.** Total volume of atoms present in a face-centred cubic unit cell of a metal is (r is atomic radius) :
 - (A) $\frac{20}{3}\pi r^3$ (B) $\frac{24}{3}\pi r^3$ (C) $\frac{12}{3}\pi r^3$ (D) $\frac{16}{3}\pi r^3$
- **36.** An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be :
 - $(A) A_3B (B) AB_3$
 - $(C) A_2B \qquad (D) AB$

37 What type of crystal defect is indicated in the diagram shown below?

(D)

- (A) Frenkel defect
- (B) Schottky defect $\bigvee_{Na^+} CI^- Na^+$
- (C) Interstitial defect $(Na^+)(Cl^-)$
 - Frenkel and
- Schottky defects38. The vacant space in BCC lattice unit cell is :
 - **(A)** 48 % **(B)** 23 %
 - (C) 32 % (D) 26 %
- **39.** If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be :
 - (A) $\frac{2}{\sqrt{3}}a$ (B) $\frac{4}{\sqrt{3}}a$ (C) $\frac{\sqrt{3}}{4}a$ (D) $\frac{\sqrt{3}}{2}a$
- **40.** The number of carbon atoms per unit cell of diamond unit cell is :
 - (A) 6
 (B) 1
 (C) 4
 (D) 8
- **41.** The number of octahedral void(s) per atom present in a cubic close-packed structure is :

(A)	1	(B)	3
(C)	2	(D)	4

- **42.** Structure of mixed oxide is cubic closed packed (ccp). The cubic unit cell of mixed oxide is composed of oxide ions. One fourth of the tetrahedral voids are occupied by divalent metal A and the octahedral voids are occupied by a monovalent metal B. The formula of the oxide is :
 - $(A) ABO_2 (B) A_2BO_2$
 - (C) $A_2B_2O_4$ (D) AB_2O_2

43. Which of the following statement is not correct ?

- (A) The number of carbon atoms in unit cell of diamond is 8
- (B) The number of Bravais lattices in which a crystal can be categorized is 14
- (C) The fraction of the total volume occupied by the atoms in a primitive cell is 0.48

- (D) Molecular solids are generally volatile
- 44. If 'a' stands for the edge length of the cubic systems: simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively :
 - (A) $\frac{1}{2}a : \frac{\sqrt{3}}{2}a : \frac{\sqrt{2}}{2}a$
 - **(B)** 1a : $\sqrt{3}a : \sqrt{2}a$

(C)
$$\frac{1}{2}a : \frac{\sqrt{3}}{4}a : \frac{1}{2\sqrt{2}}a$$

(D) $\frac{1}{2}a : \sqrt{3}a : \frac{1}{\sqrt{2}}a$

- **45.** The appearance of colour in solid alkali metal halides is generally due to :
 - (A) interstitial positions
 - (B) F-centres
 - (C) Schottky defect
 - (D) Frenkel defect
- 46. If a solid $A^{\oplus}B^{\Theta}$ having ZnS structure is heated so that the ions along two of the axis passing through the face center particles are lost and bivalent ion (Z) enters here to maintain the electrical neutrality, so that the new formula unit becomes $A_x B_y Z_c$, Report the value of x + y + c.

Report the value of x + y + c.

- 47. Metal M of radius 50 nm is crystallized in FCC type and made cubical crystal such that face of unit cells aligned with face of cubical crystal. If the total number of metal atoms of M at all faces of cubical crystal is 6×10^{30} , then the area of one face of cubical crystal is $A \times 10^{16}$ m². Find the value of A.
- **48.** O^{2-} ions are arranged in ccp in a spinel structure. A^{2+} ions occupy 1/8 of TVs and B^{\oplus} ions occupy half of OV. The void volume of unit cell = 0.11 A. Find the value of A.

49. In the figure given below, four parallelogram are shown. How many parallelograms are unit cells?

- 50. Caesium atoms are the largest naturally occurring atoms. The radius of Cs atom is 2.6 Å. The number of moles of Cs atoms to be laid side by side to give a row of Cs atoms 2.50 cm long is $x \times 10^{-17}$. Find the value of x.
- 51. A solid has a structure in which X atoms are located at cubic corners of unit cell, O atom are at the edge centers and Y atoms at cube center. Then the formula of compound is $X_a Y_b O_c$. If two atoms of O are missing from any of two edge centers per unit cell, then the molecular formula is $X_x Y_y O_z$.

Then, find the value of (x + y + z) - (a + b + c).

52. A bcc lattice is made up of hollow spheres of B. Spheres of solids A are present in hollow spheres of B. The radius of A is half of the radius of B. The ratio of total volume of spheres of B unoccupied by A in a unit cell and volume of unit cell is

$$A \times \frac{\pi\sqrt{3}}{64}$$
. Find the value of A.

53. Give the total score of the correct statements of the following.

	Statements	Score
a.	In an antifluorite structure,	1
	cations are present in all TVs	
b.	If the radius of cation is 0.35	2
	pm and that of anion is 0.95	
	pm, then the CN of the crystal	
	is 4.	
c.	An atom or ion is transferred	3
	from a lattice site to an	
	interstitial position in Frenkel	
	defect.	
d.	The density of a crystal	4
	always decreases in point	
	defects.	

54. The following figure shows the unit cell of a compound, i.e., a mixed oxide of yttrium, barium, and copper. The formula of mixed oxide is $Y_a Ba_b cu_c O_d$.

Find the value of (a+b+c+d).

- **55.** The sum of number of hexagonal and triangular faces that are present in a truncated tetrahedron is:
- 56. How many next nearest neighbours are present of Zn^{+2} ions in FCC arrangement of ZnS.

Theory of Solutions

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1. The degree of dissociation ' α ', of a weak electrolyte is :

(A)
$$\frac{i-1}{N+1}$$
 (B) $\frac{i-1}{N-1}$

(C) $\frac{N-1}{i-1}$ (D) $\frac{N+1}{i-1}$

where N is the number of ions given by 1 mol of the electrolyte.

- 2. When an aqueous solution freezes,
 - (A) Usually it is the solute that solidifies first
 - (B) The solvent and the solute solidify at the same time
 - (C) It is the water that solidifies first
 - (D) The vapour pressure of the solvent becomes abnormally high
- 3. Given that ΔT_f is the depression in freezing point of the solvent in a solution of a non-volatile solute

of molality m, the quantity $\lim_{m \to 0} \left(\frac{\Delta T_f}{m} \right)$ is equal to:

- (A) L_f (latent heat of fusion)
- (**B**) K_b (ebullioscopic constant)
- (C) K_f (cryoscopic constant)
- **(D)** ΔH_{fus} (enthalpy of fusion)
- 4. The ratio of freezing-point depression values of 0.01 M solutions of urea, common salt and Na_2SO_4 are :
 - (A) 1:1:1
 (B) 1:2:1
 (C) 1:2:3
 (D) 2:2:3
- 5. CNS^- ions give red colour with Fe^{3+} ions in aqueous solution as :

$$Fe^{3+}_{(aq)} + 3CNS^{-}_{(aq)} \longrightarrow Fe(CNS)_{3(aq)}$$

If 0.1M KCNS solution is separated from 0.1M $FeCl_3$ solution by means of semipermeable membrane, red colour will appear on :

(A) FeCl₃ solution

- (B) KCNS solution side
- (C) Both sides
- (D) Neither side
- *6. Which pair(s) of liquids on mixing are expected to show no net volume change and no heat effect?
 - (A) Acetone and ethanol
 - (B) Chlorobenzene and bromobenzene
 - (C) Chloroform and benzene
 - (D) n-butyl chloride and n-butyl bromide
- 7. The osmotic pressure of a solution increases if the :
 - (A) Number of solute molecules is increased
 - (B) Temperature is decreased
 - (C) Volume is increased
 - (D) Number of solute molecules is decreased
- ***8.** Which of the following statements is correct ?
 - (A) The freezing point of water is depressed by the addition of glucose
 - (B) The degree of dissociation of a weak electrolyte decreases as its concentration decreases
 - (C) Energy is released when a substance dissolves in water provided that the hydration energy of the substance is more than its lattice energy
 - (D) If two liquids that form an ideal solution are mixed, the change in entropy is positive
- ***9.** The Maximum amount of a solid solute that can be dissolved in a specified amount of a given liquid solvent depend upon :
 - (A) Temperature (B) Nature of solute
 - (C) Pressure (D) Nature of solvent
- 10. Low concentration of oxygen in the blood and tissues of people living at high altitude is due to .
 - (A) Low temperature
 - (B) Low atmospheric pressure
 - (C) High atmospheric pressure
 - (D) Both low temperature and high atmospheric pressure

- 11. The unit of ebulioscopic constant is_
 - (A) K kg mol⁻¹ or K (molality)⁻¹
 - **(B)** molkg K^{-1} or K^{-1} (molality)
 - (C) kg mol⁻¹ K⁻¹ or K⁻¹ (molality)⁻¹
 - **(D)** K kg mol^{-1} or K (molality)
- *12. Which of the following statements is(are) correct?
 - (A) Two different solutions of sucrose of same molality prepared in different solvents will have the same depression in freezing point
 - (B) The osmotic pressure of a solution is given by the equation $\Pi = CRT$ (where C is the molarity of the solution)
 - (C) Decreasing order of osmotic pressure for 0.01 M aqueous solutions of barium chloride, potassium chloride, acetic acid and sucrose is $BaCl_2 > KCl >$ $CH_3COOH >$ sucrose.
 - (D) According to Raoult's law, the vapour pressure exerted by a volatile component of a solution is directly proportional to its mole fraction in the solution
- *13. Which of the following statements is(are) true?
 - (A) Units of atmospheric pressure and osmotic pressure are the same
 - (B) In reverse osmosis, solvent molecules move through a semipermeable membrance from a region of lower concentration of solute to a region of higher concentration
 - (C) The value of molal depression constant depends on nature of solvent
 - (D) Relative lowering of vapour pressure, is a dimensionless quantity
- 14. We have three aqueous solutions of NaCl labeled as 'A', 'B' and 'C' with concentrations 0.1 M, 0.01M and 0.001 M, respectively. The value of van't Hoff factor for these solutions will be in the order____.
 - (A) $i_A < i_B < i_C$ (B) $i_A > i_B > i_C$ (C) $i_A = i_B = i_C$ (D) $i_A < i_B > i_C$

15. Two beakers of capacity 500 mL were taken. One of these beakers, labeled as "A", was filled with 400 mL water whereas the beaker labeled "B" was filled with 400 mL of 2 M solution of NaCl. At the same temperature both the beakers were placed in closed containers of same material and same capacity as shown in figure :

At a given temperature, which of the following statement is correct about the vapour pressure of pure water and that of NaCl solution.

- (A) Vapour pressure in container (A) is more than that in container (B)
- (B) Vapour pressure in container (A) is less than that in container (B)
- (C) Vapour pressure is equal in both the containers
- (D) Vapour pressure in container (B) is twice the vapour pressure in container (A)
- 16. If two liquids A and B form maximum boiling azeotrope at some specific composition then .
 - (A) A B interactions are stronger than those between A - A or B - B
 - (B) vapour pressure of solution increases because more number of molecules of liquids A and B can escape from the solution
 - (C) vapour pressure of solution decreases because less number of molecules of only one of liquids escape from the solution
 - (D) A B interactions are weaker than those between A A or B B

17. On the basis of information given below mark the correct option.

Information: On adding acetone to methanol some of the hydrogen bonds between methanol molecules break.

- (A) At specific composition methanol-acetone mixture will form minimum boiling azeotrope and will show positive deviation from Raoult's law
- (B) At specific composition methanol-acetone mixture forms maximum boiling azeotrope and will show positive deviation from Raoult's law
- (C) At specific composition methanol-acetone mixture will form minimum boiling azeotrope and will show negative deviation from Raoult's law
- (D) At specific composition methanol-acetone mixture will form maximum boiling azeotrope and will show negative deviation from Raoult's law
- 18. K_H value for Ar(g), CO₂(g), HCHO (g) and CH₄(g) are 40.39, 1.67, 1.83×10^{-5} and 0.413 respectively. Arrange these gases in the order of their increasing solubility.
 - (A) $HCHO < CH_4 < CO_2 < Ar$
 - (B) $HCHO < CO_2 < CH_4 < Ar$
 - (C) $\operatorname{Ar} < \operatorname{CO}_2 < \operatorname{CH}_4 < \operatorname{HCHO}$
 - $(\mathbf{D}) \qquad \mathbf{Ar} < \mathbf{CH}_4 < \mathbf{CO}_2 < \mathbf{HCHO}$
- *19. Which of the following factor (s) affect the solubility of a gaseous solute in the fixed volume of liquid solvent?
 - I.Nature of soluteII.TemperatureIII.Pressure
 - The correct choice is :
 - (A) I and III at constant T
 - (B) I and II constant P
 - (C) II and III only
 - (D) III only
- *20. Intermolecular forces between two benzene molecules are nearly of same strength as those between two toluene molecules. For a mixture of benzene and toluene, which of the following are **not** true?

- (A) $\Delta_{\min} H = zero$
- (B) $\Delta_{\min} V = \text{zero}$
- (C) These will form minimum boiling azeotrope
- (D) These will not form ideal solution
- **21.** Relative lowering of vapour pressure is a colligative property because_____.
 - (A) It depends on the concentration of a non electrolyte solute in solution and does not depend on the nature of the solute molecules
 - (B) It depends on number of particles of electrolyte solute in solution and does not depend on the nature of the solute particles.
 - (C) It depends on the concentration of a non electrolyte solute in solution as well as on the nature of the solute molecules
 - (D) It depends on the concentration of an electrolyte or non-electrolyte solute in solution as well as on the nature of solute molecules
- *22. Isotonic aqueous solutions must have the same .
 - (A) Solute
 - (B) Density
 - (C) Elevation in boiling point
 - (D) Depression in freezing point
- ***23.** Which of the following binary mixtures will have same composition in liquid and vapour phase?
 - (A) Benzene-Toluene
 - (B) Water-Nitric acid
 - (C) Water-Ethanol
 - (D) n-Hexane-n-Heptane
- ***24.** Colligative properties are observed when
 - (A) A non volatile solid is dissolved in a volatile liquid
 - (B) A non volatile liquid is dissolved in another volatile liquid
 - (C) A gas is dissolved in non volatile liquid
 - (D) A volatile liquid is dissolved in another volatile liquid

- 25. Consider the separate solution of 0.500 M $C_2H_5OH_{(aq)}$, 0.100 M Mg₃(PO₄)₂ (aq), 0.250 M KBr (aq) and 0.125M Na₃PO₄(aq) at 25°C. Which statement is true about these solutions, assuming all salts to be strong electrolytes?
 - (A) They all have same osmotic pressure
 - (B) 0.100 M Mg₃(PO₄)₂ (aq) has the highest osmotic pressure
 - (C) 0.125 M Na₃PO₄ (aq) has the highest osmotic pressure
 - (D) 0.5000 M C₂H₅OH (aq) has the highest osmotic pressure
- 26. K_f for water is 1.86 K kg mol⁻¹. If your automobile radiator holds 1.0 kg of water, then how many grams of ethylene glycol (C₂H₆O₂) must you add to get the freezing point of the solution lowered to – 2.8°C?
 - (A) 72 g
 (B) 93 g
 (C) 39 g
 (D) 27 g
- 27. A 5.2 molal aqueous solution of methyl alcohol, CH₃OH, is supplied. What is the mole fraction of methyl alcohol in the solution?

(A)	0.100	(B)	0.190
(C)	0.086	(D)	0.050

28. The degree of dissociation (α) of weak electrolyte, A_xB_y is related to van't Hoff factor (i) by the expression.

(A)
$$\alpha = \frac{i-1}{(x+y-1)}$$
 (B) $\alpha = \frac{i-1}{(x+y+1)}$

(C)
$$\alpha = \frac{x + y - 1}{i - 1}$$
 (D) $\alpha = \frac{x + y + 1}{i - 1}$

- **29.** A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the following statements is correct regarding the behaviour of the solution?
 - (A) The solution formed is an ideal solution
 - (B) The solution is non-ideal, showing positive deviation from Raoult's law
 - (C) The solution is non-ideal, showing negative deviation from Raoult's law
 - (D) n-heptane shows positive deviation while ethanol show negative deviation from Rault's law

- **30.** Equimolar solutions in the same solvent have
 - (A) Different boiling point and different freezing point
 - (B) Same boiling point and same freezing point
 - (C) Same freezing point but different boiling point
 - (D) Same boiling point but different freezing point
- **31.** Which of the following liquid pairs shows a positive deviation from Raoult's law?
 - (A) Water hydrochloric acid
 - (B) Benzene methanol
 - (C) Water nitric acid
 - (D) Acetone chloroform
- **32.** Which one of the following statements is false ?
 - (A) Raoult's law states that the vapour pressure of a component over a solution is proportional to its mole fraction
 - (B) The osmotic pressure (π) of a solution is given by the equation π =MRT, where M is molarity of the solution.
 - (C) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is $BaCl_2 > KCl > CH_3COOH$ > Sucrose
 - (D) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression
- **33.** The boiling point of 0.2 mol kg⁻¹ solution of X in water is greater than equimolal solution of Y in water. Which one of the following statement is true in this case ?
 - (A) Molecular mass of X is less than the molecular mass of Y
 - (B) Y is undergoing dissociation in water while X undergoes no change
 - (C) X is undergoing dissociation in water, while Y undergoing no change
 - (D) Molecular mass of X is greater than the molecular mass of Y
- **34.** Which of the following is incorrect for an ideal solution ?
 - (A) $\Delta V_{\text{mix}} = 0$ (B) $\frac{\Delta P}{P_0} = \chi_B$
 - (C) $\Delta H_{mix} = 0$ (D) $\Delta S_{mix} = 0$

- **35.** The van't Hoff factor *i* for a compound which undergoes dissociation in one solvent and association in other solvent is respectively.
 - (A) less than one and greater than one
 - (B) less than one and lesser than one
 - (C) greater than one and less than one
 - **(D)** greater than one and greater than one
- **36.** An aqueous solution is 1.00 molal in KI. Which change will cause the vapour pressure of the solution to increase ?
 - (A) Addition of NaCl
 - **(B)** Addition of Na_2SO_4
 - (C) Addition of 1.00 molal KI
 - (D) Addition of water
- 37. A 0.0020 m aqueous solution of an ionic compound $[Co(NH_3)_5 (NO_2)]Cl$ freezes at $-0.00732^{\circ}C$. The number of moles of ions which 1 mol of ionic compound produces on being dissolving in water will be : $(K_f = 1.86^{\circ}C/m)$
 - (A) 3 (B) 4
 - (C) 1 (D) 2
- **38.** During osmosis, flow of water through a semipermeable membrane is :
 - (A) from solution having lower concentration only
 - (B) from solution having higher concentration only
 - (C) from both sides of semipermeable membrane with equal flow rates
 - (D) from both sides of semipermeable membrane with unequal flow rates
- **39.** A solution of acetone in ethanol :
 - (A) obeys Raoult's law
 - (B) shows a negative deviation from Raoult's law
 - (C) shows a positive deviation from Raoult's law
 - (D) behaves like a near ideal solution

40. The relationship between osmotic pressures at 273 K, when 10 g glucose (p₁), 10 g urea (p₂), and 10 g sucrose (p₃) are dissolved in 250 mL of water is :

(A) $p_2 > p_1 > p_3$ (B) $p_2 > p_3 > p_1$ (C) $p_1 > p_2 > p_3$ (D) $p_3 > p_1 > p_2$

- **41.** An ideal solution was found to have a vapour pressure of 80 torr when the mole fraction of a non-volatile solute was 0.2. What would be the vapour pressure of the pure solvent at the same temperature?
- **42.** Calculate the mass of non-volatile solute having molecular mass 40, which should be dissolved in 57 gm octane to reduce its vapour pressure to 80%:
- 43. At 25° C, the vapour pressure of pure liquid A (mol. Mass = 40) is 100 torr, while that of pure liquid B is 40 torr, (mol. Mass = 80). The vapour pressure at 25°C of a solution containing 20 g of each A and B is:
- A solution of 0.640 g of azulene in 100.0 g of benzene boils at 80.23°C. The boiling point of benzene is 80.10°C; and K_b is 2.53°C/molal. What is the molecular mass of azulene?
- 45. One molal solution of a carboxylic acid in benzene shows the elevation of boiling point of 1.518 K. The degree of association for dimerization of the acid in benzene is $(K_b$ for benzene $= 2.53 \text{ K kg mol}^{-1})$: Multiply your answer with 10.
- 46. The boiling point elevation constant for toluene is 3.32 K kg mol⁻¹. The normal boiling point of toluene is 110.7°C. The enthalpy of vaporisation of toluene would be nearly:
- 47. Calculate the percentage degree of dissociation of an electrolyte XY_2 (Normal molar mass = 164) in water if the observed molar mass by measuring elevation in boiling point is 65.6:

- **48.** The freezing point of a 4% aqueous solution of `A' is equal to the freezing point of 10% aqueous solution of `B'. If the molecular mass of `A' is 60, then the molecular mass of `B' will be:
- **49.** Depression on freezing point of 0.01 molal aqueous HCOOH solution is 0.02046. 1 molal aqueous urea solution freezes at -1.86°C. Assuming molality equal to molarity, pH of HCOOH solution is:
- 50. A 1.0 g sample of $Co(NH_2CH_2CH_2NH_2)_3Cl_3$ is dissolved in 25.0 g of water and the freezing point of the solution is -0.87°C. How many ions are produced peer mole of compound? The K_f of water is 1.86°C/molal:
- 51. A 0.010 g sample of $Cr(NH_3)_4(SO_4)Cl$ is dissolved in 25.0 mL of water and the osmotic pressure of the solution is 59.1 torr at 25° C. How many moles of ions are produced per mole of compound?
- 52. At 48° C, the vapour pressure of pure CS₂ is 850 torr. A solution of 2.0 g of sulphur in 100 g of CS₂ has a vapour pressure 844.9 torr. Determine the atomicity of sulphur molecule:
- 53. The vapour pressure of two pure liquids A and B, that form an ideal solution are 100 and 900 torr respectively at temperature T. This liquid solution of A and B is composed of 1 mole of A and 1 mole of B. What will be the pressure, when 1 mole of mixture has been vaporized?

Electrochemistry

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which of the following statement is correct?
 - (A) E_{Cell} and $\Delta_r G$ of cell reaction both are extensive properties
 - (B) E_{Cell} and $\Delta_r G$ of cell reaction both are intensive properties
 - (C) E_{Cell} is an intensive property while $\Delta_r G$ of cell reaction is an extensive property
 - (D) E_{Cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property
- 2. The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called .
 - (A) Cell potential (B) Cell emf (C) Potential difference (D)
- 3. Which of the following statement is not correct about an inert electrode in a cell?
 - (A) It does not participate in the cell reaction
 - (B) It provides surface either for oxidation or for reduction reaction
 - (C) It provides surface for conduction of electrons
 - (D) It provides surface for redox reaction

4.

An electrochemical cell can behave like an electrolytic cell when_

(A) $E_{Cell} = 0$ (B) $E_{Cell} > E_{ext}$ (C) $E_{ext} > E_{Cell}$ (D) $E_{Cell} = E_{ext}$

- 5. Which of the statements about solutions of electrolytes is not correct?
 - (A) Conductivity of solution depends upon size of ions
 - (B) Conductivity depends upon viscosity of solution
 - (C) Conductivity does not depend upon solvation of ions present in solution
 - **(D)** Conductivity of solution increases with temperature

Cell voltage

6.	Using the data given below find out the strongest reducing agent.							
		$E^{o}_{Cr_2O_7^{2-}/Cr^{3+}} =$	=1.33V	$E_{Cl_2/Cl^-}^{o} = 1.36$	5V	$E_{MnO_4^-/Mn^2}$	$_{2+} = 1.51 \mathrm{V}$	$E^{o}_{Cr^{3+}/Cr} = -0.74 V$
	(A)	Cl ⁻	(B)	Cr	(C)	Cr ³⁺	(D)	Mn ²⁺
7.	Using	the data given Q.6	and find	out which of the f	following	g is the stronge	st oxidizing	agent.
	(A)	Cl ⁻	(B)	Mn ²⁺	(C)	MnO_4^-	(D)	Cr ³⁺
8.	Using	the data given in (Q.6 find o	out in which option	the orde	er of reducing p	ower is corr	ect.
	(A)	$Cr^{3+} < Cl^- < N$	\ln^{2+} < C	r	(B)	$\mathrm{Mn}^{2+} < \mathrm{Cl}^{-}$	$< Cr^{3+} < C$	r
	(C)	$\operatorname{Cr}^{3+} < \operatorname{Cl}^{-} < \operatorname{C}$	$Cr_2O_7^{2-} < 1$	MnO_4^-	(D)	$\mathrm{Mn}^{2+} < \mathrm{Cr}^{3-1}$	$^{3+}$ < Cl^- < C	r
9.	Use th	e data given in Q.	6 and find	l out the most stab	le ion in	its reduced for	m.	
	(A)	Cl ⁻	(B)	Cr ³⁺	(C)	Cr	(D)	Mn ²⁺
10.	Use th	e data of Q.6 and	find out tl	he most stable oxid	dized spe	ecies.		
	(A)	Cr ³⁺	(B)	MnO_4^-	(C)	$Cr_2O_7^{2-}$	(D)	Mn ²⁺
11.	The qu	antity of charge re	equired to	o obtain one mole	of alumi	nium from Al_2	O3 is	
	(A)	1 F	(B)	6F	(C)	3 F	(D)	2F
12.	The ce	ll constant of a co	nductivit	y cell	·			
	(A)	Changes with c	hange of	electrolyte	(B)	Changes wit	h change of	concentration of electrolyte
	(C)	Changes with te	emperatur	e of electrolyte	(D)	Remains cor	istant for a c	ell
13.	While (A)	charging the lead	storage b	attery to Ph	 (B)	PhSO ₄ catho	de is reduce	d to Ph
	(C)	PbSO ₄ cathode	is oxidize	ed to Pb	(D) (D)	PbSO ₄ anod	e is oxidized	to PbO ₂
14.	$\Lambda^0_{m(N)}$	$_{\rm H_4OH)}$ is equal to						
	(A)	$\Lambda^0_{m(NH_4OH)} + \Lambda^0_{m(NH_4OH)}$	$\Lambda^0_{m(NH_4Cl)}$	$-\Lambda^{0}_{(\mathrm{HCl})}$	(B)	$\Lambda^0_{m(NH_4Cl)}$ +	$+\Lambda^0_{m(NaOH)}$	$-\Lambda^0_{(m NaCl)}$
	(C)	$\Lambda^0_{m\left(NH_4Cl\right)}+\Lambda$	0 m(NaCl) —	$\Lambda^0_{ m (NaOH)}$	(D)	$\Lambda^0_{m(NaOH)}$ +	$\Lambda^0_{m \left(NaCl \right)} +$	$\Lambda^0_{ m (NH_4Cl)}$
15.	In the	electrolysis of aqu	eous sodi	um chloride solut	ion whic	h of the half ce	ll reaction w	ill occur at anode?
	(A)	$\mathrm{Na}^{+}(\mathrm{aq}) + \mathrm{e}^{-} -$	→Na(s	$E_{Cell}^{\Theta} = -2.71V$	(B)	2H ₂ O(ℓ)—	$\rightarrow O_2(g) + c$	$4\mathrm{H}^{+}(\mathrm{aq}) + 4\mathrm{e}^{-}; \ \mathrm{E}_{\mathrm{cell}}^{\mathrm{o}} = -1.23\mathrm{V}$
	(C)	$\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{e}^{-}$ —	→1/2H	$E_2(g); E_{Cell}^{\Theta} = 0.00$	V (D)	$Cl^- \longrightarrow 1/$	$2Cl_2(g) + e^{-2}$	$-; E_{cell}^{o} = -1.36 V$
*16.	The po	sitive value of the	e standard	electrode potentia	al of Cu ²	²⁺ / Cu indicate	es that	
	(A)	This redox coup	ple is a str	ronger reducing ag	gent than	the H^+/H_2 co	ouple	
	(B)	This redox coup	ple is a str	ronger oxidizing a	gent thar	$h H^+ / H_2$		
	(C)	Cu can displace	e H ⁺ from	acid				
	(D)	Cu cannot displ	lace H ⁺ fr	om acid				

*17. E_{Cell}^{Θ} for some half cell reactions are given below. On the basis of these mark the correct answer.

I.
$$H^+(aq) + e^- \longrightarrow 1/2H_2(g);$$
 $E_{Cell}^{\Theta} = 0.00V$

II.
$$2H_2O(\ell) \longrightarrow O_2(g) + 4H^+(aq) + 4e^-; E_{cell}^o = -1.23V$$

III.
$$2SO_4^{2-}(aq) \longrightarrow S_2O_8^{2-}(aq) + 2e^-; E_{cell}^0 = -1.96 V$$

The correct choice is :

(A) In dilute sulphuric acid solution, hydrogen will be reduced at cathode

(B) In concentrated sulphuric acid solution, water will be oxidized at anode

(C) In dilute sulphuric acid solution, water will be oxidized at anode

(D) In dilute sulphuric acid solution, SO_4^{2-} ion will be oxidized to tetrathionate ion at anode

*18. $E_{Cell}^{\Theta} = 1.1V$ for Daniel cell. Which of the following expressions are correct description of state of equilibrium in this cell? (Given n)

(A)
$$1.1 = K_C$$

(B) $\frac{2.303RT}{2F} \log K_c = 1.1$
(C) $\log K_c = \frac{2.2}{0.059}$
(D) $\log K_c = 1.1$
*19. Conductivity of an electrolytic solution depends on
(A) Nature of electrolytic solution depends on
(B) Concentration of electrolyte
(C) Power of AC source
(D) Distance between the electrodes
*20. $\Lambda_m^0 H_2O$ is equal to
(A) $\Lambda_m^0(HCI) + \Lambda_m^0(NaOH) - \Lambda_{(NaCI)}^0$
(B) $\Lambda_m^0(HNO_3) + \Lambda_m^0(NaOH) - \Lambda_{(NaNO_3)}^0$
(C) $\Lambda_m^0(HNO_3) + \Lambda_m^0(NaOH) - \Lambda_{(NaNO_3)}^0$
(D) $\Lambda_m^0(NH_4OH) + \Lambda_m^0(HCI) - \Lambda_{(NH_4CI)}^0$
*21. What will happen during the electrolysis of aqueous solution of CuSO₄ by using platinum electrodes?
(A) Copper will deposit at cathode
(B) Copper will deposit at anode
(C) Oxygen will be released at anode
(D) Copper will dissolve at anode
*22. What will happen during the electrolysis of aqueous solution of CuSO₄ by using platinum electrodes?
(A) Copper will deposit at cathode
(B) Copper will deposit at anode
*23. Conductivity κ , is equal to
...
(A) $\frac{1}{R} \frac{\ell}{A}$
(B) $\frac{G^*}{R}$
(C) Λ_m
(D) $\frac{\ell}{A}$
*24. Molar conductivity of ionic solution depends on
(A) Temperature
(B) Distance between electrodes
(C) Concentration of electrolytes in solution
(D) Surface area of electrodes
*25. For the given cell, $Mg \left| Mg^{2+} \right| |Cu^{2+} |Cu$
(A) Mg is cathode
(C) The cell reaction is $Mg + Cu^{2+} \longrightarrow Mg^{2+} + Cu$
(D) Cu is the oxidising agent

26. Resistance of 0.2 M solution of an electrolyte is 50Ω . The specific conductance of the solution is 1.4 Sm^{-1} . The resistance of 0.5 M solution of the same electrolyte is 280Ω . The molar conductivity of 0.5 M solution of the electrolyte is Smol^{-1} is :

(A)
$$5 \times 10^{-4}$$
 (B) 5×10^{-3} (C) 5×10^{3} (D) 5×10^{2}

27. The equivalent conductance of NaCl at concentration C and at infinite dilution are λ_c and λ_{∞} , respectively. The correct relationship between λ_c and λ_{∞} is given as :

Cr

(A)
$$\lambda_{c} = \lambda_{\infty} + (B)C$$
 (B) $\lambda_{c} = \lambda_{\infty} - (B)C$ (C) $\lambda_{c} = \lambda_{\infty} - (B)\sqrt{C}$ (D) $\lambda_{c} = \lambda_{\infty} + (B)\sqrt{C}$

- 28. The metal that cannot be obtained by the electrolysis of an aqueous solution of its salts is :
- (A) Ag (B) Ca (C) Cu (D) 29. Given below are half-cell reactions : $Mn^{2+} + 2e^{-} \longrightarrow Mn, E^{\circ} = 1.18V$ $2(Mn^{2+} + e^{-} \longrightarrow Mn^{2+}), E^{\circ} = +1.51V$

The E° for $3Mn^{2+} \longrightarrow Mn + 2Mn^{3+}$ will be :

(A)	-2.69V, the reaction will not occur	(B)	-2.69V, the reaction will occur
(C)	-0.33V, the reaction will not occur	(D)	-0.33V, the reaction will occur

30. Given,
$$E_{Cr^{3+}/Cr}^{\circ} = 0.74V$$
; $E_{MnO_{4}^{-}/Mn^{2+}}^{\circ} = 1.51V$; $E_{Cr_{2}O_{7}^{-}/Cr^{3+}}^{\circ} = 1.33V$; $E_{Cl/Cl}^{\circ} = 1.36V$
Based on the data given above, strongest oxidising agent will be :

(A) Cl (B)
$$Cr^{3+}$$
 (C) Mn^{2+} (D) MnO_4^-

31. The standard reduction potentials for Zn^{2+}/Zn , Ni^{2+}/Ni and Fe^{2+}/Fe are -0.76, -0.23 and -0.44 V, respectively. The reaction $X + Y^{2+} \longrightarrow X^{2+} + Y$ will be spontaneous when :

- (A) X = Ni, Y = Fe (B) X = Ni, Y = Zn
- (C) X = Fe, Y = Zn (D) X = Zn, Y = Ni
- **32.** The reduction potential of hydrogen half-cell will be negative if :
 - (A) $p(H_2) = 1 \text{ atm and } [H^+] = 2.0 \text{ M}$ (B) $p(H_2) = 1 \text{ atm and } [H^+] = 1.0 \text{ M}$
 - (C) $p(H_2) = 2 \text{ atm and } [H^+] = 1.0 \text{ M}$ (D) $p(H_2) = 2 \text{ atm and } [H^+] = 2.0 \text{ M}$

33. Consider the following cell reaction : $2Fe(s) + O_2(g) + 4H^+(aq) \longrightarrow 2Fe^{2+}(aq) + 2H_2O(\ell)$, $E^\circ = 1.67 V$ At $[Fe^{2+}] = 10^{-3} M$, $P(O_2) = 0.1 atm$ and pH = 3, then cell potential at 25°C is : (A) 1.47 V (B) 1.77 V (C) 1.87 V (D) 1.57 V

34. The Gibbs energy for the decomposition of Al_2O_3 at 500°C is as follows

$$\frac{2}{3}\operatorname{Al}_2\operatorname{O}_3 \longrightarrow \frac{4}{3}\operatorname{Al} + \operatorname{O}_2 \Delta_{\mathrm{r}}\mathrm{G} = +966\,\mathrm{kJ\,mol}^{-1}$$

The potential difference needed for electrolyte reduction of Al₂O₃ at 500°C is at least :

(A) 4.5V (B) 3.0V (C) 2.5V (D) 5.0V

35. Given,
$$F_{P_{C}^{2}+_{\Gamma_{E}}}^{P_{C}} = -0.036 V$$
, $F_{P_{C}^{2}+_{\Gamma_{E}}}^{P_{C}} = -0.439 V$
The value of standard electrode potential for the charge, $Fe^{3+}(aq) + e^{-1} \longrightarrow Fe^{2+}(aq)$ will be :
(A) $-0.072 V$ (B) $0.385 V$ (C) $0.770 V$ (D) $-0.270 V$
36. Given, $F_{C}^{2}a^{3+}_{C_{1}} = 0.72 V$, $F_{P_{C}^{2}+_{\Gamma_{E}}}^{3} = -0.42 V$
The potential for the cell : $Cr | Cr^{3+}(0.1 M) | Fe^{1+}(0.01 M) | Fe is$:
(A) $0.26 V$ (B) $0.399 V$ (C) $-0.399 V$ (D) $-0.26 V$
37. The equivalent conductances of two strong electrolytes at infinite dilution in H₂O (where ions move freely through a solution) at 25°C are given below : $\Lambda_{C1|SCOONa}^{c} = 91.0 \text{ Scm}^{2}/\text{cquiv}$; $\Lambda_{1C1}^{b} = 426.2 \text{ Scm}^{2}/\text{equiv}$
What additional information' quantity one need to calculate Λ^{c} of an aqueous solution of acetic acid ?
(A) Λ^{a} of NaCl (B) Λ^{a} of CH₃COONA
(C) The limiting equivalent conductance of H⁺($\lambda_{11^{+}}^{c}$) (D) Λ^{a} of chloroacetic acid (CICH₂COOH)
38. The cell, Zn | Zn^{2+} (1M) | Cu^{2+} (1M) | Cu (E_{Cell} = 1.10V), was allowed to be completely discharged at 298 K.
The relative concentration of Zn^{2+} to Cu^{2+} ([\frac{IZn^{2+}}{ICu^{2+}}]) is :
(A) antilog (24.08) (B) 37.3 (C) $10^{37.3}$ (D) 9.65 × 10⁴
39. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100 Ω.
The conductivity of this solution is 1.29 Sm⁻¹. Resistance of the same cell when filled with 0.2 M of the same solution
is 520 Ω. The molar conductivity of 0.2 M solution of the electrolyte will be :
(A) $124 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$ (B) $1240 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$
(C) $1.24 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$ (B) $1240 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$
(C) $1.24 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$ (D) $12.4 \times 10^{4} \text{ Sm}^{2} \text{ mol}^{-1}$
40. The molar conductivities Λ_{NOACe}^{b} and Λ_{NCI}^{b} (C) $-\Lambda_{NOII}^{b}$ (D) $-\Lambda_{NCI}^{b}$
41. Given the data t25°C,
 $Ag + I \longrightarrow Agl + e^{-}$; $F^{2} = 0.152V$, $Ag \longrightarrow$

Class XII | Chemistry

- 44. In the cell that utilises the reaction $Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$ addition of H_2SO_4 to cathode compartment will:
 - (A) Lower the E and shift equilibrium to the left
 - (B) Lower the E and shift the equilibrium to the right
 - (C) Increase the E and shift the equilibrium to the right
 - (D) Increase the E and shift the equilibrium to the left

45. For the following cell with hydrogen electrodes at two different pressure p_1 and p_2 : $Pt(H_2)|H^+(aq)|Pt(H_2)$ p_1 M p_2

emf is given by :

(A) $\frac{\mathrm{RT}}{\mathrm{F}}\log_{\mathrm{e}}\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$ (B) $\frac{\mathrm{RT}}{2\mathrm{F}}\log_{\mathrm{e}}\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$ (C) $\frac{\mathrm{RT}}{\mathrm{F}}\log_{\mathrm{e}}\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$ (D) $\frac{\mathrm{RT}}{2\mathrm{F}}\log_{\mathrm{e}}\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$ When 0.1 mol MnO_4^{2-} is oxidised, the quantity of electricity required to completely oxidise MnO_4^{2-} to MnO_4^{-} is : 46. 96500 C 2 × 96500 C 9650 C 96.50 C (A) **(B) (C) (D)** 47. The weight of silver (at wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O_2 at STP will be: **(D)** 108.0 g **(A)** 5.4 g **(B)** 10.8 g **(C)** 54.0 g At 25° C the molar conductance of 0.1 M aqueous solution of ammonium hydroxide is $9.45 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$. 48. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is : $(\Lambda_{\rm M}^{\infty})_{\rm NH_4OH} = 238 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ 4.008 % (A) **(B)** 40.800 % 2.080 % **(D)** 20.800 % **(C)** 49. A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wire at one atm pressure. The oxidation potential of electrodes would be : (A) 0.118 V **(B)** 1.18 V **(C)** 0.059 V **(D)** 0.59 V 50. Consider the half-cell reduction reaction : $Mn^{2+} + 2e^- \rightarrow Mn$; $E^{\circ} = -1.18V$ and $Mn^{2+} \rightarrow Mn^{3+} + e^-$; $E^{\circ} = -1.51V$ The E° for the reaction $3Mn^{2+} \rightarrow Mn^0 + 2Mn^{3+}$ and possibility of the forward reaction are respectively : (A) -4.18 V and yes **(B)** +0.33 V and yes +2.69 V and no -2.69 V and no **(C) (D)** 51. Standard reduction potentials of the half reaction are given below : $F_{2(g)} + 2e^- \rightarrow 2F_{(aq)}^-$; $E^\circ = + 2.85 V$ $Cl_{2(g)} + 2e^- \rightarrow 2Cl_{(aq)}^-$; $E^\circ = +1.36V$ $I_{2(s)} + 2e^- \rightarrow 2I_{(aq)}^-$; $E^\circ = +0.53V$ $Br_{2(l)} + 2e^- \rightarrow 2Br_{(aq)}^-$; $E^\circ = +1.06V$ The strongest oxidising and reducing agents respectively are : F₂ and I⁻ Br₂ and Cl⁻ **(A) (B) (C)** Cl₂ and Br⁻ **(D)** Cl_2 and I_2 Standard electrode potential of three metals X, Y and Z are -1.2 V, +0.5 V and -3.0 V respectively. The reducing 52. power of these metals will be :

(A) Z > Y > X (B) Y > X > Z (C) Z > X > Y (D) X > Y > Z

- **53.** A solution contains Fe^{2+} , Fe^{3+} and I^- ions. This solution was treated with iodine at $25^{\circ}C$. E° for Fe^{3+}/Fe^{2+} is + 0.77 V and E° for $I_2/I^- = 0.536$ V. The favorable redox reaction is :
 - (A) I_2 will be reduced to I^- (B) there will be no redox reaction
 - (C) I^- will be oxidised to I_2 (D) Fe^{2+} will be oxidised to Fe^{3+}
- 54. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to :
 - (A) increase in ionic mobility of ions
 - (B) 100% ionisation of electrolyte at normal dilution
 - (C) increase in both i.e., number of ions and ionic mobility of ions
 - (D) increase in number of ions
- 55. Which of the following expressions correctly represent the equivalent conductance at infinite dilution of Al₂(SO₄)₃. Given than $\Lambda^{\circ}_{Al^{3+}}$ and $\Lambda^{\circ}_{SO_4^{2-}}$ are the equivalent conductances at infinite dilution of the respective ions ?
 - (A) $2\Lambda_{Al^{3+}}^{\circ} + 3\Lambda_{SO_4^{2-}}^{\circ}$ (B) $\Lambda_{Al^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}$

(C)
$$6 \left(\Lambda^{\circ}_{Al^{3+}} + \Lambda^{\circ}_{SO_4^{2-}} \right)$$
 (D) $1/3\Lambda^{\circ}_{Al^{3+}} + 1/2\Lambda^{\circ}_{SO_4^{2-}}$

56. On the basis of the following E° values, the strongest oxidizing agent is :

$$[Fe(CN)_{6}]^{4-} \rightarrow [Fe(CN)_{6}]^{3-} + e^{-1} ; E^{\circ} = -0.35V$$

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-1} ; E^{\circ} = -0.77V$$
(A) Fe^{3+} (B) $[Fe(CN)_{6}]^{3-}$ (C) $[Fe(CN)_{6}]^{4-}$ (D) Fe^{2}

57. In electrolysis of NaCl when Pt electrode is taken then H₂ is liberated at cathode while with Hg cathode it forms sodium amalgam. Which of the following is true ?

- (A) Hg is more inert than Pt
- (B) More voltage is required to reduce H^+ at Hg than at Pt
- (C) Na is dissolved in Hg while it does not dissolve in Pt
- **(D)** Conc. of H^+ ions is larger when Pt electrode is taken
- 58. On heating one end of a piece of a metal, the other end becomes hot because of :
 - (A) energized electrons moving to the other end (B) minor perturbation in the energy of atoms
 - (C) resistance of the metal (D) mobility of atoms in the metal

59. Standard reduction potential at 25°C of Li⁺ | Li, Ba²⁺ | Ba, Na⁺ | Na and Mg²⁺ |Mg are -3.05, -2.90, -2.71 and -2.37 volt respectively. Which one of the following is the strongest oxidising agent ?

(A) Ba^{2+} (B) Mg^{2+} (C) Na^{+} (D) Li^{+}

60.Two Faraday of electricity is passed through solution of CuSO4. The mass of copper deposited at the cathode is :
(Atomic mass of Cu = 63.5 amu)
(A) 0 g (B) 63.5 g (C) 2 g (D) 127 g

- 61. Total charge required for the oxidation of two moles Mn_3O_4 into MnO_4^{2-} in presence of alkaline medium is :
- 62. A 250.0 mL sample of a 0.20 MCr^{3+} is electrolysed with a current of 96.5 A. If the remaining [Cr³⁺] is 0.1 M, duration of process is :

- 63. The element indium is to be obtained by electrolysis of a molten halide of the element. Passage of a current of 3.20 A for a period of 40.0 min results in formation of 3.05 g of In. What is the oxidation state of indium in the halide melt ? (Atomic mass of W = 114.8)
- 64. An electrolysis of a oxytungsten complex ion using 1.10 A for 40 min produces 0.838 g of tungsten. What is the charge on tungsten in the material ? (Atomic mass of In = 184)
- 65. $I_2(s)|I^-(0.1M)$ half cell is connected to a $H^+(aq)|H_2(1bar)|Pt$ half cell and e.m.f. is found to be 0.7717V. If $E_{I_2|I^-}^\circ = 0.535V$, find the pH of $H^+|H_2$ half-cell.
- **66.** Resistance of 0.1M KCl solution in a conductance cell is 300 ohm and conductivity is 0.013Scm⁻¹. The value of cell constant is : Multiply your answer with 10.
- 67. Molar conductivity of a solution of an electrolyte AB_3 is $150 \text{ Scm}^2 \text{mol}^{-1}$. If it ionises as $AB_3 \longrightarrow A^{3+} + 3B^-$, its equivalent conductivity will be :
- **68.** The limiting equivalent conductivity of NaCl, KCl and KBr are 126.5, 150.0 and $151.5 \text{ Scm}^2 \text{eq}^{-1}$, respectively. The limiting equivalent ionic conductivity for Br⁻ is 78 Scm^{-1} . The limiting equivalent ionic conductivity for Na⁺ ions would be :
- 69. The resistance of 0.1N solution of formic acid is 200 ohm and cell constant is 2.0 cm^{-1} . The equivalent conductivity (in $\text{Scm}^2\text{eq}^{-1}$) of 0.1N formic acid is :
- 70. The ionic conductivity of Ba^{2+} and Cl^- at infinite dilution are 127 and 76 ohm⁻¹cm²eq⁻¹ respectively. The equivalent conductivity of $BaCl_2$ at infinity dilution (in ohm⁻¹cm²eq⁻¹) would be :
- 71. The conductance of a salt solution (AB) measured by two parallel electrodes of area 100 cm^2 separated by 10 cm was found to be $0.0001\Omega^{-1}$. If volume enclosed between two electrode contain 0.1 mole of salt, what is the molar conductivity (Scm²mol⁻¹) of salt at same concentration : Multiply your answer with 10.
- 108 g fairly concentrated solution of AgNO₃ is electrolysed by using 0.1F charge. The mass of resulting solution is : Multiply your answer with 10.
- 73. The cell $Pt | H_2(g, 0.1bar) | H^+(aq)$, $pH = X || Cl^-(aq, 1M) | Hg_2Cl_2 | Hg | Pt$, has e.m.f. of 0.5755V at 25°C. The SOP of calomel electrode is -0.28V, then pH of solution will be : Multiply your answer with 10.
- 74. The standard reduction potential of normal calomel electrode and reduction potential of saturated calomel electrode are 0.27 and 0.33 volt respectively. What is the concentration of Cl^- in saturated solution of KCl ? Multiply your answer with 10.

Chemical Kinetics

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

6.

- 1. The rate constant of the reaction $A \longrightarrow B \text{ is } 0.6 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$. If the initial concentration of A is 5 M, then concentration of B after 20 minutes is :
 - (A) 3.60 M
 (B) 0.36 M
 (C) 0.72 M
 (D) 1.08 M
- 2. The activation energy of a reaction can be determined from the slope of which of the following graphs ?
 - (A) $\ln k \text{ vs } \frac{1}{T}$ (B) $\frac{T}{\ln k} \text{ vs } \frac{1}{T}$
 - (C) $\ln k \operatorname{vs} T$ (D) $\frac{\ln k}{T} \operatorname{vs} T$
- For a reaction between A and B the order with respect to A is 2 and the order with respect to B is 3. The concentrations of both A and B are doubled, the rate will increase by a factor of :

(A)	12	(B)	16
(C)	32	(D)	10

- 4. In a zero-order reaction, for every 10°C rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become :
 - (A) 256 times
 (B) 512 times
 (C) 64 times
 (D) 128 times
- 5. The rate of the reaction : $2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways.

$$\frac{-d[N_2O_5]}{dt} = k[N_2O_5] ;$$

$$\frac{d[NO_2]}{dt} = k'[N_2O_5]; \frac{d[O_2]}{dt} = k''[N_2O_5]$$

The relationship between k and k' and between k and k'' are :

- (A) k' = 2k : k'' = k (B) k' = 2k : k'' = k/2
- (C) k' = 2k; k'' = 2k (D) k' = k : k'' = k

In the reaction :

 $\mathrm{BrO}_{3(\mathrm{aq})}^{-} + 5\mathrm{Br}_{(\mathrm{aq})}^{-} + 6\mathrm{H}^{+} \rightarrow 3\mathrm{Br}_{2(l)} + 3\mathrm{H}_{2}\mathrm{O}_{(l)}$

The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions as :

(A) $\frac{d[Br_2]}{dt} = -\frac{5}{3} \frac{d[Br^-]}{dt}$ (B) $\frac{d[Br_2]}{dt} = \frac{5}{3} \frac{d[Br^-]}{dt}$ (C) $\frac{d[Br_2]}{dt} = \frac{3}{5} \frac{d[Br^-]}{dt}$

(D)
$$\frac{d[Br_2]}{dt} = -\frac{3}{5} \frac{d[Br^-]}{dt}$$

- 7. If the rate of the reaction is equal to the rate constant, the order of the reaction is :
 - (A) 0 (B) 1 (C) 2 (D) 3
 - Given : $2A \rightarrow B + C$. It would be zero order reaction when :
 - (A) the rate of reaction is proportional to square of concentration of A
 - (B) the rate of reaction remains same at any concentration of A
 - (C) the rate remains unchanged at any concentration of B and C
 - (D) the rate of reaction doubles if concentration of B is increased to double

9.

8.

When a bio-chemical reaction is carried out in laboratory, outside the human body in absence of enzyme, then rate of reaction obtained is 10^{-6} times, the activation energy of reaction in the presence of enzyme is :

- (A) 6/RT
- (B) P is required
- (C) different from E_a obtained in laboratory
- (D) can't say anything

10. How enzymes increases the rate of reactions ?

- (A) by lowering activation energy
- (B) by increasing activation energy
- (C) by changing equilibrium constant
- (D) by forming enzyme substrate complex

- *11. Which of the following is(are) correct for a first order reaction?
 - The extent of reaction is equal to $(1 e^{-kt})$ (A)
 - Concentration of the reactant decreases **(B)** exponentially with time
 - Concentration of the product increases (C) exponentially with time
 - A plot of logarithm of concentration of **(D)** reactant versus time is linear with negative slope
- 12. For the non-stoichiometric reaction.

 $2A + B \longrightarrow C + D$, data were obtained in three separate experiments, all at 298 K

Initial	Initial	Initial rate of
Conc. (A)	Conc. (B)	Formation of C
		(mol ⁻¹ s ⁻¹)
0.1 M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

The rate law of the formation of C is :

(A)
$$\frac{dc}{dt} = k[A][B]$$
 (B) $\frac{dc}{dt} = k[A^2][B]$
(C) $\frac{dc}{dt} = k[A][B]^2$ (D) $\frac{dc}{dt} = k[A]$

- 13. The rate of a reaction double when its temperature changes from 300 K to 310 K. Activation energy of such a reaction will be $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and}$ $\log 2 = 0.301$)
 - 53.6 kJ mol^{-1} **(B)** 48.6 kJ mol^{-1} (A) 58.5 kJ mol^{-1} 60.5 kJ mol^{-1} **(D)**
 - **(C)**
- 14. For a first order reaction, $(A) \longrightarrow$ products the concentration of A changes from 0.1 M to 0.025 M in the 40 min. The rate of reaction when the concentration of A is 0.01 M is:

1.73×10	$^{-5}$ M/min
1.73×10	$^{-5}$ M/min

- 3.47×10^{-4} M/min **(B)**
- 3.47×10^{-5} M/min **(C)**
- 1.73×10^{-4} M/min **(D)**

- 15. The rate of chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about :
 - (A) 10 times **(B)** 24 times
 - **(C)** 32 times **(D)** 64 times
- A reactant (A) forms two products : 16. $A \xrightarrow{k_1} B$, Activation energy E_{a_1} $A \xrightarrow{k_2} C$, Activation energy E_{a_2} and If $E_{a_2} = 2E_{a_1}$, then k_1 and k_2 are related as : $k_1 = 2k_2 e^{E_{a_2}/RT}$ (A) $k_1 = k_2 e^{E_{a_1}/RT}$ **(B)** $k_2 = k_1 e^{E_{a_2}/RT}$ **(C)** $k_1 = Ak_2 e^{E_{a_1}/RT}$ **(D)**
- 17. The time for half-life period of a certain reaction, $A \longrightarrow$ products is 1 h. When the initial concentration of the reactant 'A' is $2.0 \text{ mol } \text{L}^{-1}$, how much time does it take for its concentration to come from 0.501 to 0.25 mol L^{-1} , if it is a zero order reaction? (**R**) 0.5h(A) 1 h

(C)
$$0.25 h$$
 (D) $1 h$

18. Rate of a reaction can be expressed by Arrhenius equation as $k = Ae^{-E/RT}$:

In this equation, E represents

- The energy above which all the colliding (A) molecules will react
- The energy below which colliding **(B)** molecules will not react
- The total energy of the reacting molecules **(C)** at a temperature, T
- **(D)** The fraction of molecules with energy greater than the activation energy of the reaction
- 19. In the presence of a catalyst, the heat evolved or absorbed during the reaction .
 - Increases (A)
 - **(B)** Decreases
 - Remains unchanged **(C)**
 - May increases or decrease **(D)**

- **20.** Activation energy of a chemical reaction can be determined by .
 - (A) Determining the rate constant at standard temperature
 - (B) Determining the rate constants at two temperatures.
 - (C) Determining probability of collision
 - (D) Using catalyst.
- **21.** Consider Figure and mark the correct option.

- (A) Activation energy of forward reaction is $E_1 + E_2$ and product is less stable than reactant
- (B) Activation energy of forward reaction is $E_1 + E_2$ and product is more stable than reactant
- (C) Activation energy of both forward and backward reaction is $E_1 + E_2$ and reactant is more stable than product
- (D) Activation energy of backward reaction isE₁ and product is more stable than reactant
- 22. According to Arrhenius equation rate constant k is equal to $Ae^{-E_a/RT}$. Which of the following options represents the graph of ln k vs $\frac{1}{T}$?

- 23. Consider the Arrhenius equation given below and mark the correct option : $k = Ae^{-E_a/RT}$
 - (A) Rate constant increases exponentially with increasing activation energy and decreasing temperature.
 - (B) Rate constant decreases exponentially with increasing activation energy and decreasing temperature.
 - (C) Rate constant increases exponentially with decreasing activation energy and decreasing temperature.
 - (D) Rate constant increases exponentially with decreasing activation energy and increasing temperature.
- 24. A graph of volume of hydrogen released vs time for the reaction between zinc and dil. HCl is given in Figure. On the basis of this mark the correct option.

- **25.** Which of the following statements is not correct about order of a reaction.
 - (A) The order of a reaction can be a fractional number
 - (B) Order of a reaction is experimentally determined quantity
 - (C) The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction.
 - (D) The order of a reaction is the sum of the powers of molar concentration of the reactants in the rate law expression
- 26. Consider the graph in figure. given Which of the following options does not shown instantaneous rate of reaction at 40th second?

(A)
$$\frac{V_5 - V_2}{50 - 30}$$
 (B) $\frac{V_4 - V_2}{50 - 30}$
(C) $\frac{V_3 - V_2}{40 - 30}$ (D) $\frac{V_3 - V_1}{40 - 20}$

27. Which of the following graphs represents exothermic reaction?

- (A) (a) only
- **(B)** (b) only
- (C) (c) only
- **(D)** (a) and (b)
- **28.** Which of the following statements is incorrect about the collision theory of chemical reaction?
 - (A) It considers reacting molecules or atoms to be hard spheres and ignores their structural features.
 - (B) Number of effective collisions determines the rate of reaction.
 - (C) Collision of atoms or molecules possessing sufficient threshold energy results into the product formation.
 - (D) Molecules should collide with sufficient threshold energy and proper orientation for the collision to be effective
- **29.** Which of the following statement is not correct for the catalyst?
 - (A) It catalyses the forward and backward reaction to the same extent
 - **(B)** It alters ΔG of the reaction
 - (C) It is a substance that does not change the equilibrium constant of a reaction
 - (D) It provides an alternate mechanism by reducing activation energy between reactants and products
- **30.** The value of rate constant of a pseudo first order reaction _____.
 - (A) Depends on the concentration of reactants present in small amount
 - (B) Depends on the concentration of reactants presents in excess
 - (C) is independent of the concentration of reactants
 - (D) Depends only on temperature

31. Consider the reaction $A \rightarrow B$. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and product with time?

- ***32.** Rate law cannot be determined from balanced chemical equation if
 - (A) Reverse reaction is involved
 - (B) It is an elementary reaction
 - (C) It is sequence of elementary reactions
 - (D) Any of the reactants is in excess
- ***33.** Which of the following statements are applicable to a balanced chemical equation of an elementary reaction?
 - (A) Order is same as molecularity
 - (B) Order is less than the molecularity
 - (C) Order is greater than the molecularity
 - (D) Molecularity can never be zero
- *34. In any unimolecular reaction
 - (A) Only one reacting species is involved in the rate determining step

- (B) The order and the molecularity of slowest step are equal to one
- (C) The molecularity of the reaction is one and order is zero
- (D) Both molecularity and order of the reaction are one
- **35.** For a complex reaction
 - (A) Order of overall reaction is same as molecularity of the slowest step
 - (B) Order of overall reaction is less than the molecularity of the slowest step
 - (C) Order overall reaction is greater than molecularity of the slowest step
 - (D) Molecularity of the slowest step is never zero or non integer
- ***36.** At high pressure the following reaction is zero order.

$$2NH_3(g) \xrightarrow{1130 \text{ K}} N_2(g) + 3H_2(g)$$

Which of the following options are correct for this reaction?

- (A) Rate of reaction = Rate constant
- (B) Rate of the reaction depends on concentration of ammonia
- (C) Rate of decomposition of ammonia will remain constant until ammonia disappears completely
- (D) Further increase in pressure will change the rate of reaction
- ***37.** During decomposition of an activated complex.
 - (A) Energy is always released
 - (B) Energy is always absorbed
 - (C) Energy does not change
 - (D) Reactants may be formed
- *38. According to Maxwell Boltzmann distribution of energy ______.
 - (A) The fraction of molecules with most probable kinetic energy decreases at higher temperatures
 - (B) The fraction of molecules with most probable kinetic energy increases at higher temperature
 - (C) Most probable kinetic energy increases at higher temperatures
 - (D) Most probable kinetic energy decreases at higher temperatures

- ***39.** In the graph showing Maxwell Boltzman distribution of energy ______.
 - (A) Area under the curve must not change with increase in temperature
 - (B) Area under the curve increases with increase in temperature
 - (C) Area under the curve decreases with increase in temperature
 - (D) With increase in temperature curve broadens and shifts to the right hand side
- *40. Which of the following statements are in accordance with the Arrhenius equation?
 - (A) Rate of a reaction increases with increase in temperature
 - (B) Rate of a reaction increases with decrease in activation energy
 - (C) Rate constant decreases exponentially with increase in temperature
 - (D) Rate of reaction decreases with decrease in activation energy
- *41. Mark the incorrect statements.
 - (A) Catalyst provides an alternative pathway to reaction mechanism
 - (B) Catalyst raises the activation energy
 - (C) Catalyst lowers the activation energy
 - (D) Catalyst alters enthalpy change of the reaction
- *42. Which of the following graphs is correct for a zero order reaction?

*43. Which of the following graphs is correct for a first order reaction?

For Questions 44 - 45

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- 44. Statement: 1 The enthalpy of reaction remains constant in the presence of a catalyst.Statement: 2 A catalyst participating in the

reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.

45. Statement : 1 Rate constants determined from Arrhenius equation are fairly accurate for simple as well as complex molecules.

Statement : 2 Reactant molecules undergo chemical change irrespective of their orientation during collision.

- 46. For $A(s)+B(s) \longrightarrow C(s)$; rate = $k[A]^{1/2}[B]^2$, if initial concentration of A and B are increased by factors 4 and 2 respectively, then the initial rate is changed by the factor :
- 47. Reaction $A \rightarrow B$ follows second order kinetics Doubling the concentration of A will increase the rate of formation of B by a factor of :

- **48.** For an elementary reaction, $X(g) \rightarrow Y(g) + Z(g)$ the half life period is 10 min. In what period of time would the concentration of X be reduced to 10% of original concentration ?
- **49.** A first order reaction is 75% completed in 100 minutes. How long time will it take for its 87.5% completion ?
- **50.** 99% of a first order reaction was completed in 32 minutes when 99.9% of the reaction will complete :
- **51.** At 300 K the half-life of a sample of a gaseous compound initially at 1atm is 100 sec. When the pressure is 0.5 atm the half-life is 50 sec. The order of reaction is :
- 52. The activation energy of the reaction, $A+B \longrightarrow C+D+38$ kcal is 20 kcal. What would be the activation energy of the following reaction, $C+D \longrightarrow A+B$.
- **53.** A radioactive sample has initial activity of 28dpm 30 minutes. After 69.3 minutes, it was found to have an activity of 28dpm. Find the number of atoms in a sample having an activity of 100 dpm. Divide your answer with 100?
- 54. A radioactive element undergoing decay is left 20% of its initial weight after certain period of time t. How many periods should elapse from the start for the 50% of the element to be left over ? Multiply your answer with 100?
- **55.** The half-life of a radioactive element is 100 minutes. The time interval between the stages to 50% and 87.5% decay will be :

- **56.** A pure radio-chemical preparation was observed to disintegrate at the rate of 2140 counts/minutes at 12.35 P.M. At 3.55 P.M. of the same day, the disintegration rate of the sample was only 535 count/minutes. What is the half-life of the material ?
- 57. Reaction $A + B \longrightarrow C + D$ follows rate law, $r = k[A]^{1/2}[B]^{1/2}$. Starting with 1M of A and B each, what is the time taken for concentration of A two become 0.1M? [Given $k = 2.303 \times 10^{-2} \text{ sec}^{-1}$]
- **58.** For given hypothetical elementary parallel reaction,

$$A \underbrace{k_1 \\ k_2 \\ k_2 \\ 2C}^{2B} Where \frac{k_1}{k_2} = \frac{1}{2}$$

Initially only 2 moles of A are present. The total number of moles of A, B and C at the end of 75% reaction are :

Multiply your answer with 10?

- 59. For the first order reaction A \longrightarrow B+C, carried out at 27°C. If 3.8×10^{-16} % of the reactant molecules exists in the activated state, the E_a (activation energy) of the reaction is :
- 60. The ratio of activities of two ratio nuclides X and Y in a mixture at time t = 0 was found to be 4:1. After two hours, the ratio of activities become 1:1. If the $t_{1/2}$ of ratio nuclide X is 20 min then $t_{1/2}$ [in minutes] of ratio nuclide Y is :

Surface Chemistry

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

6.

- The coagulating power of electrolytes having ions Na⁺, Al³⁺, and Ba²⁺ for arsenic sulphide sol increases in the order :
 - (A) $Al^{3+} < Ba^{2+} < Na^+$
 - (B) $Na^+ < Ba^{2+} < Al^{3+}$
 - (C) $Ba^{2+} < Na^{2+} < Al^{3+}$
 - (**D**) $Al^{3+} < Na^+ < Ba^{2+}$
- 2. According to Freundlich adsorption isotherm which of the following is correct?
 - (A) $\frac{x}{m} \propto p^0$ (B) $\frac{x}{m} \propto p^1$

(C)
$$\frac{x}{m} \propto p^{1/1}$$

- (D) All of the above are correct for different range of pressure
- **3.** Gold numbers of protective colloids A, B, C and D are 0.50, 0.01, 0.10 and 0.005, respectively. The correct order of their protective powers is :
 - (A) D < A < C < B (B) C < B < D < A
 - $(C) \qquad A < C < B < D \qquad (D) \qquad B < D < A < C$
- 4. In Langmuir's model of adsorption of a gas on a solid surface :
 - (A) The rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
 - (B) The adsorption at a single site on the surface may involve multiple molecule at the same time
 - (C) The mass of gas striking a given area of surface is proportional to the pressure of the gas
 - (D) The mass of gas striking a given area of surface is independent of the pressure of the gas
- 5. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively charged, respectively. Which of the following statement is not correct?

- (A) Coagulation in both sols can be brought about by electrophoresis
- (B) Mixing the sols has no effect
- (C) Sodium sulphate solution causes coagulation in both sols
- (D) Magnesium chloride solution coagulates the gold sol more readily than the iron (III) hydroxide sol
- The volume of a colloidal particle, V_C as compared to the volume of a solute particle in a true solution V_s , could be :

(A)
$$\frac{V_{C}}{V_{S}} \approx 10^{3}$$
 (B) $\frac{V_{C}}{V_{S}} \approx 10^{-3}$
(C) $\frac{V_{C}}{V_{C}} \approx 10^{23}$ (D) $\frac{V_{C}}{V_{C}} \approx 10^{-3}$

(C)
$$\frac{v_{\rm C}}{V_{\rm S}} \approx 10^{23}$$
 (D) $\frac{v_{\rm C}}{V_{\rm s}} \approx 10^{23}$

- 7. H₂ gas is adsorbed on the metal surface like tungsten. This follows...order reaction.
 - (A) Third (B) Second
 - (C) Zero (D) First
- ***8.** Which of the following options are correct?
 - (A) Micelle formation by soap in aqueous solution is possible at all temperatures
 - (B) Micelle formation by soap in aqueous solution occurs above a particular concentration
 - (C) On dilution of soap solution micelles may revert to individual ions
 - (D) Soap solution behaves as a normal strong electrolyte at all concentrations
- ***9.** Which of the following statements are correct about solid catalyst?
 - (A) Same reactants may give different product by using different catalysts
 - (B) Catalyst does not change ΔH of reaction
 - (C) Catalyst is required in large quantities to catalyse reactions
 - (D) Catalytic activity of a solid catalyst does not depend upon the strength of chemisorption

- *10. Freundlich adsorption isotherm is given by the expression $\frac{x}{m} = k p^{1/n}$ which of the following conclusions can be drawn from this expression.
 - When $\frac{1}{n} = 0$, the adsorption (A) is independent of pressure
 - When $\frac{1}{n} = 0$, the adsorption is directly **(B)** proportional to pressure
 - When n = 0, $\frac{x}{m}$ vs p graph is a line **(C)** parallel to x-axis
 - When n = 0, plot of $\frac{x}{m}$ vs p is a curve (D)
- *11. H₂ gas is adsorbed on activated charcoal to a very little extent in comparison to easily liquefiable gases due to
 - Very strong van der Waal's interaction (A)
 - Very weak van der Waals forces **(B)**
 - **(C)** Very low critical temperature
 - **(D)** Very high critical temperature
- *12. Which of the following statements are correct?
 - Mixing two oppositely charged sols (A) neutralises their charges and stabilises the colloid
 - Presence of equal and similar charges on **(B)** colloidal particles provides stability to the colloids
 - Any amount of dispersed liquid can be **(C)** added to emulsion without destabilising it
 - **(D)** Brownian movement stabilises sols
- *13. An emulsion cannot be broken by _____ and ____.
 - (A) Heating
 - more amount of dispersion **(B)** Adding medium
 - **(C)** Freezing
 - **(D)** Adding emulsifying agent
- *14. Which of the following substances will precipitate the negatively charged emulsions?
 - (A) KCl **(B)** Glucose **(C)**
 - Urea **(D)** NaCl

- *15. Which of the following colloids CANNOT be coagulated easily?
 - Lyophobic colloids (A)
 - Irreversible colloids **(B)**
 - Reversible colloids **(C)**
 - **(D)** Lyophilic colloids
- *16. What happens when a lyophilic sol is added to a lyophobic sol?
 - Lyophobic sol is protected **(A)**
 - **(B)** Lyophilic sol is protected
 - Film of lyophilic sol is formed over **(C)** lvophobic sol
 - **(D)** Film of lyophobic sol is formed over lyophilic sol
- *17. Which phenomenon occurs when an electric field is applied to a colloidal solution and electrophoresis is prevented?
 - **(A)** Reverse osmosis takes place
 - Electroosmosis takes place **(B)**
 - Dispersion medium begins to move **(C)**
 - **(D)** Dispersion medium becomes stationary
- *18. In a reaction, catalyst changes
 - Qualitatively (A) Physically **(B) (D) Ouantitatively (C)** Chemically
- *19. Which of the following phenomenon occurs when a chalk stick is dipped in ink?
 - (A) Adsorption of coloured substance
 - **(B)** Adsorption of solvent
 - Absorption and adsorption both of solvent **(C)**
 - **(D)** Absorption of solvent
- 20. Water carrying impurities is purified by addition of potash alum. Al^{3+} of the potash alum causes:
 - Peptization of negatively charged turbidity (A)
 - Coagulation of negatively charged **(B)** turbidity
 - **(C)** Peptization of positively charged turbidity
 - Coagulation of positively charged turbidity **(D)**
- 21. Which property of colloids is not dependent on the charge on colloidal particles ?
 - (A) Electro-osmosis
 - **(B)** Tyndall effect
 - (C) Coagulation
 - **(D)** Electrophoresis

- **22.** Which one of the following statements is incorrect about enzyme catalysis ?
 - (A) Enzymes are mostly proteinous in nature
 - (B) Enzyme action is specific
 - (C) Enzymes are denatured by ultraviolet rays and at high temperature
 - (D) Enzymes are least reactive at optimum temperature
- **23.** If *x* is amount of adsorbate and m is amount of adsorbent, which of the following relations is not related to adsorption process ?
 - (A) x/m = f(p) at constant T
 - (B) x/m = f(T) at constant p
 - (C) p = f(T) at constant (x/m)
 - **(D)** $\frac{x}{m} = p \times T$
- **24.** The Langmuir adsorption isotherm is deduced using the assumption :
 - (A) the adsorption sites are equivalent in their ability to adsorb the particles
 - (B) the heat of adsorption varies with coverage
 - (C) the adsorbed molecules interact with each other
 - (D) the adsorption takes place in multilayers
- **25.** Which one of the following forms micelles in aqueous solution above certain concentration ?
 - (A) Dodecyl trimethyl ammonium chloride
 - (B) Glucose
 - (C) Urea
 - (D) Pyridinium chloride
- **26.** According to the adsorption theory of catalysis, the speed of the reaction increases because :
 - (A) the concentration of reactant molecules at the active centres of the catalyst becomes high due to adsorption
 - (B) in the process of adsorption, the activation energy of the molecules becomes large
 - (C) adsorption produces heat which increases the speed of the reaction
 - (D) adsorption lowers the activation energy of the reaction

- 27. Position of non polar and polar part in micelle :
 - (A) polar at outer surface but not polar at inner surface
 - (B) polar at inner surface non polar at outer surface
 - (C) distributed over all the surface
 - **(D)** are present in the surface only
- **28.** Which of the following is not correct regarding the adorption of a gas on surface of a solid ?
 - (A) On increasing temperature adsorption increases continuously
 - (B) Enthalpy and entropy change is negative
 - (C) Adsorption is more for some specific substance
 - (D) It is a reversible reaction
- **29.** At the critical micelle concentration (CMC) the surfactant molecules :
 - (A) associate (B) dissociate
 - (C) decompose
 - (D) become completely soluble
- **30.** The ability of anion, to bring about coagulation of a given colloid, depends upon :
 - (A) magnitude of the charge
 - (B) both magnitude and charge
 - (C) its charge only
 - (D) sign of the charge alone
- **31.** From the given following sol how many can coagulate the haemoglobin sol?

Fe(OH)₃, Ca(OH)₂, Al(OH)₃, starch, clay,

As₂S₃,CdS, basic dye.

- From the given following sol how many can coagulate silica acid sol?
 Fe(OH)₃, Ca(OH)₂, Al(OH)₃, Starch, Clay, As₂S₃, CdS, Basic dye.
- **33.** For the coagulation of 500 mL of arsenious sulphide sol, 2 mL of 1 M NaCl is required. What is the flocculation value of NaCl?
- 34. The coagulation of 100 mL of a colloidal sol of gold is completely prevented by addition of 0.03 g of Haemoglobin to it before adding 1 mL of 10% NaCl solution. Calculate the gold number of Haemoglobin.

- **35.** The gold number of gelatin is 0.01. Calculate the amount of gelatin (in mg) to be added to 1000 mL of a colloidal sol of gold to prevent its coagulation, before adding 1 mL of 10% NaCl solution.
- **36.** 526.3 mL of 0.5 m HCl is shaken with 0.5 g of activated charcoal and filtered. The concentration of the filtrate is reduced to 0.4 m. The amount of adsorption (x/m) is:
- In an experiment, addition of 5.0 mL, of 0.006 M BaCl₂ to 10.0 mL of arsenic sulphite sol just causes the complete coagulation in 34 h. The following value of the effective ion is:
- **38.** In an adsorption experiment, a graph between log (x/m) versus log *P* was found to be linear with a slope of 45°. The intercept on the *y* axis was found to be 0.301. Calculate the amount of the gas adsorbed per gram of charcoal under a pressure of 3.0 atm.

39. When 6×10^{-5} g of a protective colloid was added to 20 mL of a standard gold sol, the precipitation of latter was just prevented on addition of 2 mL of 10% NaCl solution.

The gold number of a protective colloid is $\frac{x}{100}$. What is the value of x:

- In an experiment, addition of 4.0 mL of 0.005 M BaCl₂ to 16.0 mL of arsenious sulphide sol just causes the complete coagulation in 2 h. The flocculating value of the effective ion is:
- 41. The diameter of colloidal particles range from 1 nm to 10^{x} nm. What is x ?

General Principles & Processes of Isolation of Elements

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1. Refining of impure copper with zinc impurity is to be done by electrolysis using electrodes as :

	Cathode	Anode		
(A)	Pure copper	Pure zine		
(B)	Pure zinc	Pure copper		
(C)	Pure copper	Impure copper		
(D)	Pure zinc	Impure zinc		

- *2. Which of the following options are correct?
 - (A) Cast iron is obtained by remelting pig iron with scrap iron and coke using hot air blast
 - (B) In extraction of silver, silver is extracted as cationic complex
 - (C) Nickel is purified by zone refining
 - (D) Zr and Ti are purified by van Arkel method

- *3. In the extraction of aluminium by Hall-Heroult process, purified Al₂O₃ is mixed with CaF₂ to :
 - (A) Lower the melting point of Al_2O_3
 - (B) Increases the conductivity of molten mixture
 - (C) Reduce Al^{3+} into Al(s)
 - (D) Acts as catalyst
- *4. Which of the following statements is correct about the role of substances added in the froth floation process?
 - (A) Collectors enhance the non-wettability of the mineral particles
 - (B) Collectors enhance the wettability of gangue particles
 - (C) By using depressants in the process two sulphide ores can be separated
 - (D) Froth stabilisers decrease wettability of gangue

- *5. In the Froth Floatation process, zinc sulphide and lead sulphide can be separated by_____.
 - (A) Using collectors
 - (B) Adjusting the proportion of oil of water
 - (C) Using depressant
 - **(D)** Using froth stabilisers
- *6. Common impurities present in bauxite are_
 - (A) CuO (B) ZnO

 $(C) Fe_2O_3 \qquad (D) SiO_2$

- *7. Which of the following reactions occur during calcination?
 - (A) $CaCO_3 \longrightarrow CaO + CO_2$
 - (B) $2\operatorname{FeS}_2 + \frac{11}{2}\operatorname{O}_2 \longrightarrow \operatorname{Fe}_2\operatorname{O}_3 + 4\operatorname{SO}_2$
 - (C) $Al_2O_3.xH_2O \longrightarrow Al_2O_3 + xH_2O$
 - **(D)** $ZnS + \frac{3}{2}O_2 \longrightarrow ZnO + SO_2$
- ***8.** For the metallurgical process of which of the ores calcined ore can be reduced by carbon?
 - (A) Haematite (B) Calamine
 - (C) Iron pyrites (D) Sphalerite
- ***9.** The main reaction occurring in blast furnace during extraction of iron from haematite are
 - (A) $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$
 - **(B)** FeO + SiO₂ \longrightarrow FeSiO₃
 - (C) $Fe_2O_3 + 3C \longrightarrow 2Fe + 3CO$
 - **(D)** $CaO + SiO_2 \longrightarrow CaSiO_3$
- *10. In which of the following method of purification, metal is converted to its volatile compound which is decomposed to give pure metal?
 - (A) Heating with stream of carbon monoxide
 - (B) Heating with iodine
 - (C) Liquation
 - (D) Distillation
- *11. Which of the following statements are correct?
 - (A) A depressant prevents certain type of particle to come to the froth
 - (B) Copper matte contains Cu₂S and ZnS

- (C) The solidified copper obtained from reverberatory furnace has blistered appearance due to evolution of SO₂ during the extraction
- (D) Zinc can be extracted by self-reduction
- *12. In the extraction of chlorine from brine_____.
 - (A) ΔG^{Θ} for the overall reaction is negative
 - **(B)** ΔG^{Θ} for the overall reaction is positive
 - (C) E^{Θ} for overall reaction has negative value
 - (**D**) $\stackrel{\Theta}{E}$ for overall reaction has positive value
- **13.** Which method of purification is represented by the following equation?

$$\begin{array}{c} \text{Ti}(s) + 2 \text{ I}_2(g) \xrightarrow{870\text{K}} \text{TiI}_4(g) \\ \text{(Impure)} \end{array}$$

		2000k	\xrightarrow{K} Ti(s)+2 I ₂ (g)
			(Pure)
(A)	Zone Refining	(B)	Cupellation
(C)	Polling	(D)	Van-Arkel

- 14. During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode mud'. These are :
 - (A) Fe and Ni(B) Ag and Au(C) Pb and Zn(D) Se and Ag
- **15.** Which one of the following ores is best concentrated by forth- floatation method?
 - (A) Magnetite (B) Cassiterite
 - (C) Galena (D) Malachite
- 16. Aluminium is extracted by the electrolysis of :
 - (A) Alumina (B) Bauxite
 - (C) Molten Cryolite
 - (D) Alumina Mixed with Molten Cryolite
- 17. Cyanide process is used for the extraction of :
 - (A) Barium (B) Silver
 - (C) Boron (D) Zink
- **18.** In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with
 - (A) carbon monoxide
 - (B) copper (I) sulphide
 - (C) sulphur dioxide
 - (D) iron (II) sulphide

- 19. Roasting of sulphides gives the gas X as a byproduct. This is a colourless gas with choking smell of burnt sulphur and causes great damage to respiratory organs as a result of acid rain. Its aqueous solution is acidic, acts as a reducing agent and its acid has never been isolated. The gas X is : (A) CO_2 **(B)** SO_3 H₂S **(D) (C)** SO₂ 20. Which one of the following is a mineral of iron? Malachite (A) **(B)** Cassiterite (C) Pyrolusite **(D)** Magnetite 26. 21. Which of the following elements is present as the 27. impurity to the maximum extent in the pig iron? Carbon (A) Manganese **(B) (C)** Silicon **(D)** Phosphorus 28. 22. Sulphide ores of metals are usually concentrated by froth floatation process. Which one of the following 29. sulphide ores offer an exception and is concentrated by chemical leaching ? (A) Galena **(B)** Copper pyrite Sphalerite **(D)** Argentite **(C)** 23. Which of the following statements, about the advantage of roasting of sulphide ore before reduction is NOT true ? The ΔG_f° of the sulphide is greater than (A) 30. those for CS2 and H2S **(B)** The ΔG_{f}° is negative for roasting of sulphide ore to oxide Roasting of the sulphide to the oxide is **(C)** thermodynamically feasible **(D)** Carbon and hydrogen are suitable reducing agents for metal sulphides 24. Calcium is obtained by : reduction of calcium chloride with carbon (A) electrolysis of molten anhydrous calcium **(B)** 31. chloride **(C)** roasting of limestone electrolysis of solution of calcium chloride **(D)** 32. in H₂O
- **25.** In the context of the Hall-Heroult process for the extraction of Al, which for the following statements is false?
 - (A) CO and CO_2 are produced in this process
 - (B) Al₂O₃ is mixed with CaF₂ which lowers the melting point of the mixture and brings conductivity
 - (C) Al^{3+} is reduced at the cathode to form Al
 - **(D)** Na₃A/ F₆ serves as the electrolyte
 - 26. How many ores are sulphide ores from the given ores?

Azurite, Chalcocite, Iron pyrites, Limonite

- How many metals are commercially purified by Van Arkel method from the given metals? Ti, B, Zr, Pb, Hg
- **28.** How many metals are commercially purified by electrolysis method from the given metals?
- **29.** Find the number of following reactions which are involved in roasting process:

(i)
$$S_8 + 8O_2 \xrightarrow{\Delta} 8SO_2 \uparrow$$

(ii) $P_4 + 5O_2 \xrightarrow{\Delta} P_4O_{10} \uparrow$

(iii)
$$4As + 3O_2 \xrightarrow{\Delta} 2As_2O_3 \uparrow$$

(iv) $2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2 \uparrow$
(v) $ZnCO_2 \xrightarrow{\Delta} ZnO + CO_2 \uparrow$

30. Find the number of reaction from the given reactions which can show calcination process:(i)

$$CaCO_3 \cdot MgCO_3 \xrightarrow{\Delta} CaO + MgO + CO_2$$
 (ii)

CuCO₃.Cu(OH)₂
$$\xrightarrow{\Delta}$$
 2CuO + H₂O + CO₂
(iii) Al₂O₂ · 2H₂O $\xrightarrow{\Delta}$ Al₂O₃ + 2H₂O
(iv) 2CuS + 3O₂ $\xrightarrow{\Delta}$ 2Cu₂O + 2SO₂

- Find the number of basic flux from the given compounds:
 SiO₂, MgO, CaO, FeO, B₂O₃, CaCO₃ · MgCO₃
- Find the number of metal oxides which are decomposed on normal heating from the given oxides.Na₂O, Al₂O₃, PbO, Ag₂O, HgO

- **33.** How many metallic ores are concentrated by magnetic separation method from the given ores? Cassiterite, Pyrolusite, Rutile, Magnetite, Galena, Cinnabar
- 34. Find the number of metals from the given metals which can be commercially purified by zone refining methods: Si, Ge, Ga, Al, Ti, Zr
- **35.** How many metals are commercially extracted by pyrometallurgy from the given metals? Cu, Fe, Sn, Au, K, Na
- Find the number of acidic flux from the given compounds: CaCO₃, Na₂B₄O₇, MgSiO₃, FeSiO₃, P₂O₅
- 37. How many metals are commercially reduced by *Gold-schmidt* alumino *thermite process* from the given metals?Na, Pb, Al, Mn, Cr, Sn
- **38.** Find the number of metals which are commercially reduced by self-reduction from the given metals: Fe, Al, Zn, Sn, Pb, Hg, Cu

- **39.** Find the number of metals which are commercially reduced by carbon reduction method from the given metals: Ag, Cr, Mn, Sn, Zn, Fe
- **40.** How many metals are commercially extracted by hydro metallurgy from the given metals? Ag, Mn, In, Cr, Pb, Au
- 41. How many metals are commercially extracted by electrometallurgy from the given metals? Al, Mg, Na, K, Ag, Hg, Ti, Th, Zr, B
- **42.** How many reactions can show slag formation process from the given reactions?
 - (i) $\operatorname{SiO}_2 + \operatorname{CaO} \rightarrow \operatorname{CaSiO}_3$

(ii)
$$FeO + SiO_2 \rightarrow FeSiO_3$$

(iii) $\operatorname{CaO} + \operatorname{P_2O_5} \rightarrow \operatorname{Ca_3}(\operatorname{PO_4})_2$

(iv)
$$\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \to \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$$

(v) $MgCO_3 + SiO_2 \rightarrow MgSiO_3 + CO_2$

The p-Block Elements

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. On addition of conc. H₂SO₄ to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because :
 - (A) H_2SO_4 reduces HI to I_2 (B) HI is of violet colour
 - (C) HI gets oxidised to I_2 (D) HI changes to HIO₃
- 2. In qualitative analysis when H₂S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO₃, it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives
 - (A) Deep blue precipitate of $Cu(OH)_2$ (B) Deep blue solution of $[Cu(NH_3)_4]^{2+1}$
 - (C) Deep blue solution of $Cu(NO_3)_2$ (D) Deep blue solution of $Cu(OH)_2 \cdot Cu(NO_3)_2$
- 3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present?
 - (A) 3 double bonds; 9 single bonds (B) 6 double bonds; 6 single bonds
 - (C) 3 double bonds; 12 single bonds (D) Zero double bonds; 12 single bonds
- 4. Which of the following elements can be involved in $p\pi d\pi$ bonding?
 - (A) Carbon (B) Nitrogen (C) Phosphorus (D) Boron

5. Which of the following pairs of ions are iso-electronic and iso-structural?

- (A) CO_3^{2-}, NO_3^{-} (B) CIO_3^{-}, CO_3^{2-}
- (C) SO_3^{2-}, NO_3^{--} (D) CIO_3^{--}, SO_3^{---}

6.	Affinit bond d	y for hydrogen de issociation enthalp	creases in by?	n the group from	fluorine t	o iodine.	Which o	of the ha	logen acids should have highest
	(A)	HF	(B)	HC1	(C)	HBr		(D)	HI
7.	Bond stronge	dissociation entha est reducing agent?	lpy of E	E - H (E = elemen)	nt) bonds	is given	below.	Which	of the compounds will acts as
	Comp	ound		NH ₃	PH ₃		AsH3		SbH ₃
	$\Delta_{\rm diss}$ ($\rm E - H)/kJ mol^{-1}$		389	322		297		255
	(A)	NH ₃	(B)	PH ₃	(C)	AsH_3		(D)	SbH ₃
8.	On hea the foll (A) (B) (C) (D)	ating with concent lowing statement is It is highly poiso It's solution in v It is more basic It is less basic th	rated National States incorrection on the second states of the second st	OH solution in an et about the gas? I has smell like rot omposes in presen	inert atm tten fish ce of ligh	nosphere o nt	of CO ₂ . V	White pl	hosphorus gives a gas. Which of
9.	Which (A)	of the following a H ₃ PO ₂	cids form (B)	ns three series of sa H ₃ BO ₃	alts? (C)	H ₃ PO ₄		(D)	H ₃ PO ₃
10.	 Strong reducing behaviour of H₃PO₂ is due to : (A) Low oxidation state of phosphorus (B) Presence of two —OH groups and one P—H bond (C) Presence of one —OH group and two P—H bonds (D) High electron gain enthalpy of phosphorus 								
11.	On hea	ting lead nitrate fo	orms oxid	les of nitrogen and	lead. Th	e oxides fo	ormed ar	e	
	(A)	N ₂ O, PbO		-	(B)	NO_2, Pl	bO		
	(C)	NO, PbO			(D)	NO, Pbo	02		
12.	Which	of the following e	lements d	loes not show allo	tropy?				
	(A)	Nitrogen			(B)	Bismuth	-		
	(C)	Antimony			(D)	Arsenic			
13.	Maxim	num covalency of r	nitrogen i	s					
	(A)	3	(B)	5	(C)	4		(D)	6
14.	Which (A) (B) (C) (D)	of the following st Single N—N b PH ₃ can act as a NO ₂ is paramage Covalency of nit	tatements ond is str ligand in netic in n trogen in	s is wrong? ronger than the sin the formation of ature N ₂ O ₅ is four	ge P—P coordinat	bond ion compo	ound wit	h transit	ion elements
15.	A brow	vn ring is formed i	n the ring	test for NO_3^- ion	. It is due	to formati	ion of :		
	(A)	$[Fe(H_2O)_5(NO)]$)] ²⁺		(B)	FeSO ₄ .1	NO ₂		
	(C)	$[Fe(H_2O)_4(NO)]$	$)_2]^{2+}$		(D)	$FeSO_4 \cdot$	HNO ₃		
16.	Elemen compo	nts of group-15 fo und in +5 oxidatio	orm compon state.	pounds in +5 ox The compound is :	idation st	ate. Howe	ever, bis	smuth fo	orm only one well characterised
	(A)	$B_{12}O_5$	(B)	$B_{1}F_{5}$	(C)	B1Cl5		(D)	$B_{12}S_5$

	(A)	0 to +5	(B)	0 to + 3		(C)	0 to −1	(D)	0 to +1	
*27.	It chlorine gas is passed through hot NaOH solution, two changes are observed in the oxida during the reaction. These are and							he oxidation number of chlorine		
	(C)	ClO ₂ , BrF				(D)	CN ⁻ , O ₃			
	(A)	ICl_2, ClO_2				(B)	$\operatorname{BrO}_2^-, \operatorname{BrF}_2^+$			
26.	Which	of the following i	s iso-elec	etronic pair						
	(C)	$\operatorname{BrO}_4^- > \operatorname{IO}_4^- > \operatorname{O}_4^-$	ClO_4^-			(D)	$BrO_4^- > ClO_2^-$	$\overline{4} > IO_4^-$		
	(A)	$ClO_4^- > IO_4^- > I$	BrO_4^-			(B)	$IO_4^- > BrO_4^-$	$> ClO_4^-$		
		Reduction Potential E [⊖] ⁄/ V	$E^{\Theta} = 1.$	19 V	$E^{\Theta} = 1.6$	55 V	$E^{\Theta} = 1.74 V$			
		Ion	ClO₄	0 -	IO_{A}^{-}	0	BrO_{4}^{-}	0	01	
25.	Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.									
	(C) (D)	D Ionic solid with $[PC]_{,1}^+$ tetrahedral and $[PC]_{,1}^-$ octahedral								
	(D) (C)	$ \begin{array}{c} \text{Obtained and Since the formula} \\ \text{Ionic solid with [PC]_1^+ octahedral and [PC]_1^- tetrahedral \\ \end{array} $								
	(A) (B)	Covalent solid								
24.	In soli	In solid state PCl ₅ is a								
	(A) (B) (C) (D)	Both O ₂ and Xe have same size Both O ₂ and Xe have same electron gain enthalpy Both O ₂ and Xe have almost same ionisation enthalpy Both Xe and O ₂ are gases								
23.	In the preparation of compounds of Xe, Bartlett had taken O_2^+ Pt F_6^- as a base compound. This is because :									
	(A)	-3 to $+3$	(B)	-3 to 0	this proc	(C)	-3 to $+5$	(D)	0 to -3	
22.	A blac	A black compound of manganese react with a halogen acid to give greenish yellow gas. When excess of this gas reacts								
	(A)	Cu	(B)	S		(C)	С	(D)	Zn	
21.	Hot conc. H_2SO_4 acts as moderately strong oxidising agent. It oxidises both metals and non-metals. Which of the following element is oxidised by conc. H_2SO_4 into two gaseous products?									
20.	Which (A) (C)	n of the following are peroxoacids of sulphur? H ₂ SO ₅ and H ₂ S ₂ O ₈ H ₂ S ₂ O ₃ and H ₂ S ₂ O ₇			ulphur?	(B) (D)	H_2SO_5 and $H_2S_2O_7$ $H_2S_2O_6$ and $H_2S_2O_7$			
	(A)	NH_4^+	(B)	SiCl ₄		(C)	SF ₄	(D)	SO_4^{2-}	
19.	Which	of the following i	s not tetra	ahedral in s	shape?					
18.	The ox (A)	idation state of ce +3	ntral ator (B)	n in the an +5	ion of co	ompound (C)	d NaH ₂ PO ₂ will +1	be	 3	
	(A) (B) (C) (D)	 (A) N₂ in both cases (B) N₂ with ammonium dichromate and NO with barium azide (C) N₂O with ammonium dichromate and N₂ with barium azide (D) N₂O with ammonium dichromate and NO₂ with barium azide 								
17.	On heating ammonium dichromate and barium azide separately we get :									

*28.	Which of the following options are not in accordance with the property mentioned against them?									
	(A)	$F_2 > Cl_2 > Br_2 > I_2$	Oxidising power							
	(B)	MI > MBr > MCI > MF	Ionic	character of metal halide						
	(C)	$F_2 > Cl_2 > Br_2 > I_2$	Bond	dissociation enthalpy						
	(D)	HI < HBr < HCl < HF	Hydrogen-halogen bond strength							
*29.	Which of the following is correct for P ₄ molecule of white phosphorus?									
	(A)	A) It has 6 lone pairs of electrons (B) It has six P – P single bonds								
	(C)	It has three $P - P$ single bonds	(D)	It has four lone pairs of electrons						
*30.	Which of the following statements are correct?									
	(A)	Among halogens, radius ratio between iodine and fluorine is maximum								
	(B)	Leaving $F-F$ bond, all halogens have weaker $X-X$ bond than $X-X'$ bond in inter-halogens								
	(C) (D)	Among inter-halogens compounds maximum number of atoms are present in iodine fluoride								
401	(D)	(D) Inter-nalogen compounds are more reactive than halogen compounds								
*31.	Which	The following statements are correct for SO_2 gas?								
	(A) (B)	It acts as oleaching agent in moist conditions It's molecule has linear geometry								
	(C)	It's dilute solution is used as disinfectant								
	(D)	It can be prepared by the reaction of dilute H_2SO_4 with metal sulphide								
*32.	Whicl	Which of the following statements are correct?								
	(A)	All the three $N - O$ bond lengths in HNO ₃ are equal								
	(B)	All P-Cl bond lengths in PCl ₅ molecule in gaseous state are equal								
	(C)	P4 molecule in white phohsphorus have angular strain therefore white phosphorus is very reactive								
	(D)) PCl ₅ is ionic in solid state in which cation is tetrahedral and anion is octahedral								
*33.	Whiel	Which of the following orders are correct as per the properties mentioned against each?								
	(A)	$As_2O_3 < SiO_2 < P_2O_3 < SO_2$	Acid strength							
	(B)	$AsH_3 < PH_3 < NH_3$	Entha	lpy of vapourisation						
	(C)	S < O < Cl < F	More	negative electron gain enthalpy						
	(D)	H ₂ O > H ₂ S > H ₂ Se > H ₂ Te Thermal stability								
*34.	Which of the following statements are correct?									
	(A)	S-S bond is present in $H_2S_2O_6$								
	(B)	In peroxosulphuric acid (H_2SO_5) sulphur is in +6 oxidation state								
	(C)	Iron powder along with Al_2O_3 and K_2O is used as a catalyst in the preparation of NH_3 by Uabar's presses								
	(D)	Change in enthalpy is positive for the preparation of SO_3 by catalytic oxidation of SO_2								
*35.	In which of the following reactions conc. H_2SO_4 is used as an oxidising reagent?									
	(A)	$CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$	(B)	$2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$						
	(C)	$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2$	O (D)	$NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$						
*36.	Whicl	Which of the following statements are true?								
	(A)	Only type of interaction between particles	of noble	gases are due to weak dispersion forces						
	(B)	Ionisation enthalpy of molecular oxygen i	s very clo	ose to that of xenon						
	(\mathbf{C})	$\mathbf{H} = \mathbf{I} + $	(D)	Van an flan ai dan and mat was time						

(C) Hydrolysis of XeF_6 is a redox reaction (D) Xenon fluorides are not reactive

37.	Which of the statements given below is incorrect?									
	(A)	O ₃ molecule is bent	(B)	ONF is isoelectronic with $O_2 N^-$						
	(C)	OF ₂ is an oxide of fluorin	ne	(D)	Cl ₂ O ₇ is an an	perchloric acid				
38.	Nitrog compo (A)	gen dioxide and sulphur di- bunds, but not by the other ? Is soluble in water Forms 'acid-rain'	propertie (B)	in common. Which property is shown by one of these Is used as a food preservative						
20	(C)	r of dimentio poids in parson	(D)	andan i	agent					
39.	(A) (C)	$\begin{array}{l} \text{H}_2\text{S} < \text{H}_2\text{Se} < \text{H}_2\text{Te} \\ \text{H}_2\text{Te} < \text{H}_2\text{Se} < \text{H}_2\text{Se} \end{array}$	us solutions increa	(B) (D)	$H_2Se < H_2S < H_2Te$ $H_2Se < H_2Te < H_2Se$					
40.	Which of the following does not give oxygen on heating?									
	(A)	$K_2Cr_2O_7$ (B)	$(NH_4)_2Cr_2O_7$	(Č)	KClO ₃	(D)	$Zn(ClO_3)_2$			
41.	Which (A) (B) (C) (D)	 n of the following statements is not valid for oxoacids of phosphorus ? Orthophosphoric acid is used in the manufacture of triple superphosphate Hypophosphorous acid is a diprotic acid All oxoacids contain tetrahedral four coordinated phosphorus All oxoacids contain atleast one P = O unit and one P – OH group 								
42.	Sulph	Sulphur trioxide can be obtained by which of the following reaction ?								
	(A)	$CaSO_4 + C \xrightarrow{\Delta}$		(B)	$Fe_2(SO_4)_3 +$	$C \xrightarrow{\Delta}$				
	(C)	$S + H_2SO_4 \xrightarrow{\Delta}$		(D)	$H_2SO_4 + PC$	$Cl_5 \xrightarrow{\Delta}$				
43.	In whi (A) (B) (C) (D)	ich of the following arrangements the given sequence is not strictly according to the property indicated against it? HF < HCl < HBr < HI: increasing acidic strength $H_2O < H_2S < H_2Se < H_2Te$: increasing pK _a values $NH_3 < PH_3 < AsH_3 < SbH_3$: increasing acidic character $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing oxidising power								
44.	How r	nany bridging oxygen atom	s are present in P ₄	O_{10} ?						
45.	 (A) Which (A) (B) (C) (D) 	$\begin{array}{c} 6 \\ \text{(B)} \\ \text{for one of the following order} \\ F_2 > Cl_2 > Br_2 > I_2 \\ F_2 > Cl_2 > Br_2 > I_2 \\ HI > HBr > HCl > HF \\ F_2 > Cl_2 > Br_2 > I_2 \end{array}$	4 s is not in accordin Bond dissociation Oxidising power Acidic property Electronegativit	(C) ng with th on energy or in water ty	2 ne property stated	(D) d against it	5?			
46.	Whicł	Which of the following statement is true ?								
	(A) (B) (C) (D)	Silicon exhibits 4 coordination number in its compound Bond energy of F_2 is less than Cl_2 Mn(III) oxidation state is more stable than Mn(II) in aqueous state Elements of 15^{th} gp shows only + 3 and + 5 oxidation states								
47.	Whick	Which of the following phosphorus is the most reactive ?								
	(A)	Scarlet phosphorus		(B)	White phosphorus					
	(C)	Red phosphorus		(D)	Violet phosph	orus				
48.	Which (A)	of the following is used in the preparation of Both MnO_2 and $KMnO_4$			chlorine (B)	? Only KMnO ₂	VM: O			
-----	----------------------------	---	--	---	--------------------------	--	----------------------------	------------------------------------		
	(C)	Only MnO_2			(D)	Either MnO_2 or J	KivinO ₄			
49.	Repeate (A) (C)	ed use of which on Ammonium sulp Urea	e of the f bhate	following fertilizer	rs would : (B) (D)	increase the acidit Superphosphate Potassium nitrate	y of the s of lime e	oil ?		
50.	Which (A)	of the following be S-S	onds has (B)	the highest energy O-O	/ ? (C)	Se-Se	(D)	Te-Te		
51.	Which	of the following d	isplaces I	Br_2 from an aqueo	us solutio	n containing brom	nide ions	?		
	(A)	I_2	(B)	I_3^-	(C)	Cl ₂	(D)	Cl ⁻		
52.	Which	of the following se	ets has sti	rongest tendency o	of form ar	nions ?				
	(A)	Ga, Ni, Ti	(B)	Na, Mg, Al	(C)	N, O, F	(D)	V, Cr, Mn		
53	Which	of the following a	lomonta i	avtracted comm	maially by	with a alastrolygia	for agu	ous solution of its compound?		
55.	(A)	Cl	(B)	Br	(C)	Al	(D)	Na		
54.	Sugarca	ane on reaction wi	th nitric a	cid gives :						
	(A) (C)	CO ₂ and SO ₂ 2HCOOH (two r	noles)		(B) (D)	(COOH) ₂ no reaction				
55.	When c (A)	chlorine is passed of Ca(ClO ₂) ₂	over dry s (B)	slaked lime at roor CaCl ₂	n temper (C)	ature, the main rea CaOCl ₂	action pro (D)	oduct is : Ca(OCl) ₂		
56.	In the n (A)	nanufacture of bro carbon dioxide	mine for (B)	m sea water, the m chlorine	nother liqu (C)	uor containing bro iodine	mides is (D)	treated with : sulphur dioxide		
57.	PH ₄ I + (A)	NaOH forms PH ₃	(B)	NH ₃	(C)	P_4O_6	(D)	P ₄ O ₁₀		
58.	Pure ni	trogen is prepared	in the lat	poratory by heating	g a mixtu	re of :				
	(A)	NH ₄ OH + NaCl	(B)	$NH_4NO_3 + NaC_2$	l (C)	NH ₄ Cl + NaOH	(D)	$NH_4Cl + NaNO_2$		
59.	The bea (A)	aching action of ch reduction	nlorine is (B)	due to : hydrogenation	(C)	chlorination	(D)	oxidation		
60.	Each of (A) (C)	f the following is t are both soluble consist of the sau	rue for w in CS ₂ me kind o	hite and red phosp of atoms	ohorus ex (B) (D)	cept that they : can be oxidised l can be converted	by heating l into one	g in air another		
61.	When c	orthophosporic aci	d is heate	ed to 600° C, the p	product fo	ormed is :				
	(A)	PH ₃	(B)	P_2O_5	(C)	H ₃ PO ₃	(D)	HPO ₃		
62.	Oxyger (A)	n will directly reac P	t with ead (B)	ch of the following Cl	g element (C)	s except : Na	(D)	S		
63.	The gas (A)	ses respectively ab O ₃ , CH ₄	sorbed by (B)	y alkaline pyrogal O ₂ , O ₃	lol and oi (C)	l of cinnamon are SO ₂ , CH ₄	: (D)	N ₂ O, O ₃		
64.	Which (A)	among the followi Cl2	ng is the (B)	most reactive? Br ₂	(C)	I2	(D)	ICl		
	. /	2	. /	2		4	. /			

65.	Which	one has the highes	t boiling	point?		17		V
	(A)	He	(B)	Ne	(C)	Kr	(D)	Xe
66.	The pai (A) (C)	r in which phosph Pyrophosphorou Pyrophosphorou	orous ato s and hy s and py	oms have a formal pophosphoric acids rophosphoric acids	oxidatior s (B) s (D)	n state of +3 is : Orthophosphorou Orthophosphorou	is and hy is and py	rpophosphoric acids rophosphorous acids
67.	The rea	ction of zinc with	dilute an	d concentrated nit	ric acid, 1	espectively, produ	ces:	
	(A)	NO_2 and NO	(B)	NO and N ₂ O	(C)	NO_2 and N_2O	(D)	N_2O and NO_2
68.	Number	r of P - H bonds	in H ₄ P ₂ O	D ₅ are				
69.	Number	r of S–S linkage	in H_2S_4	0 ₆ are				
70.	Total nu	umber of moles of	paramag	gnetic gases obtain	ed by hea	ating 1 mole of Ag	NO ₃ are	e
71.	Number of compounds which can undergo complete hydrolysis NCl ₃ , NF ₃ , SbCl ₃ , PCl ₃ , BiCl ₃ , SF ₄ are							
72.	Number of $d\pi - p\pi$ bond in SO ₃ are							
73.	Number	r of peroxy linkag	e in H ₂ S	₂ O ₇ is				
74.	Oxidati	on state of S in H	₂ SO ₅ is					
75.	Number	r of unpaired elect	rons in b	rown ring complex	x are	·		
76.	Among	$\rm NH_4NO_3, \rm NH_4NO_3$	NO ₂ , (N	$(H_4)_2 CO_3, NH_4 Cl$	O_4 , (NH	$({}^{4})_{2}SO_{4}, ({\rm NH}_{4})_{2}O_{4}$	Cr ₂ O ₇ , P	$b(NO_3)_2$.
	Number	r of compounds w	hich give	es NH ₃ are	·			
77.	$I_2 + con$	nc. $HNO_3 \longrightarrow H$	Product					
	Oxidati	on state of I in pro	oduct is _	·				
78.	In the p	preparation of HN	NO ₃ , we	get NO gas by c	atalytic c	oxidation of ammo	nia. The	moles of NO produced by the
	oxidatio	on of two moles of	f NH ₃ w	vill be				
79.	Number	r of σ bonds in P	40 ₆ is _					

The d & f-Block Elements

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. The electronic configuration of Cu(II) is $3d^9$ whereas that of Cu(I) is $3d^{10}$. Which of the following is correct?
 - (A) Cu(II) is more stable
 - Cu(II) is less stable **(B)**
 - Cu(I) and Cu(II) are equally **(C)**
 - Stability of Cu(II) depends on nature of (D) copper salts
- 2. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?
 - Cr^{3+} and $Cr_2O_7^{2-}$ are formed (A)
 - $Cr_2O_7^{2-}$ and H_2O are formed **(B)**
 - CrO_4^{2-} is reduced to +3 state of Cr **(C)**
 - None of the above **(D)**
- 3. Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state?
 - **(A) (B)** CuF_2 Ag₂SO₄ **(C)** ZnF₂ (D) Cu₂Cl₂
- 4. On addition of small amount of KMnO₄ to cold concentrated H₂SO₄, a green compound is obtained which is highly explosive in nature. Identify the compound from the following.

(A)	Mn_2O_7	(B)	MnO_2
(C)	MnSO ₄	(D)	Mn ₂ SO ₃

5. The magnetic nature of elements depends on the presence of unpaired electrons. Identify the configuration of transition element, which shows highest magnetic moment.

(A)	3d ⁷	(B)	3d ⁵
(C)	3d ⁸	(D)	3d ²

6. Which of the following reactions are disproportionation reactions?

$$I. \qquad Cu^+ \longrightarrow Cu^{2+} + Cu$$

 $3MnO_4^- + 4H^+ \longrightarrow 2MnO_4^{2-}$ II.

III.
$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$

IV. $2MnO_4^- + 3Mn^{2+} + 2H_2O$

IV.
$$2MnO_4^- + 3Mn^{2+} + 2H_2O_4^-$$

 \longrightarrow 5MnO₂ + 4H⁺

 $+MnO_2 + 2H_2O$

The correct choice is :									
(A)	Ι	(B)	I, II, III						
(C)	II, III, IV	(D)	I, IV						

- 7. When KMnO₄ solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after some time because :
 - **(A)** CO_2 is formed as the product
 - **(B)** Reaction is exothermic
 - MnO_4^- catalyses the reaction **(C)**
 - Mn^{2+} acts as autocatalyst **(D)**
- KMnO₄ acts as an oxidising agent in acidic 8. medium. The number of moles of KMnO₄ that will be needed to react with one mole of sulphide ions in acidic solution is :
 - (A) 2/5**(B)** 3/5 4/5**(C) (D)** 1/5
- Gadolinium belongs to 4f series. It's atomic 9. number is 64. Which of the following is the correct electronic configuration of gadolinium?
 - $[Xe] 4f^7 5d^1 6s^2$ (B) $[Xe] 4f^6 5d^1 6s^2$ (A)
 - **(D)** [Xe] $4f^9 5s^1$ $[Xe] 4f^8 6d^2$ **(C)**
- 10. Interstitial compounds are formed when small atoms are trapped inside the crystal lattice of metals. Which of the following is not the characteristic property of interstitial compounds?
 - They have high melting points in (A) comparison to pure metals
 - They are very hard **(B)**
 - **(C)** They retain metallic conductivity
 - They are chemically very reactive **(D)**

- **11.** KMnO₄ acts as an oxidising agent in alkaline medium. When alkaline KMnO₄ is treated with KI, iodide ion is oxidised to
 - (A) I_2 (B) IO^-

(C)
$$IO_3^-$$
 (D) IO_4^-

- 12. Which of the following statements is not correct?
 - (A) Copper liberates hydrogen form acids
 - (B) In its higher oxidation states, manganese forms stable compound with oxygen and fluorine
 - (C) Mn^{3+} and Co^{3+} are oxidising agents in aqueous solution
 - (D) Ti^{2+} and Cr^{2+} are reducing agents in aqueous solution
- 13. When acidified $K_2Cr_2O_7$ solution is added to Sn^{2+} salts then Sn^{2+} charges to :
 - (A) Sn (B) Sn^{3+}
 - (C) Sn^{4+} (D) Sn^{+}
- 14. Highest oxidation state of manganese in fluoride is $+4 (MnF_4)$ but highest oxidation state in oxides is $+7 (Mn_2O_7)$ because
 - (A) Fluorine is more electronegative than oxygen
 - (B) Fluorine does not posses d-orbitals
 - (C) Fluorine stabilises lower oxidation state
 - (D) In covalent compounds fluorine can form single bond only while oxygen forms double bond
- **15.** Although Zirconium belongs to 4d transition series and Hafnium to 5d transition series even then they show similar physical and chemical properties because
 - (A) Both belongs to d-block
 - (B) Both have similar ionization energy
 - (C) Both have similar atomic radius
 - (D) Both belong to the same group of the periodic table
- **16.** Why is HCl not used to make the medium acidic in oxidation reaction of KMnO₄ in acidic medium?
 - (A) Both HCl and KMnO₄ act as oxidising agents
 - (B) KMnO₄ oxidises HCl into Cl₂ which is also an oxidising agent
 - (C) KMnO₄ is a weaker oxidising agent than HCl

- (D) KMnO₄ acts as a reducing agent in the presence of HCl
- *17. Generally transition elements and their salts are coloured due to the presence of unpaired electrons in metal ions. Which of the following compounds are coloured?
 - (A) $KMnO_4$ (B) $Ce(SO_4)_2$ (C) $TiCl_4$ (D) Cu_2Cl_2
- ***18.** Transition elements show magnetic moment due to spin and orbital motion of electrons. Which of the following metallic ions have almost same spin only magnetic moment?
 - (A) Co^{2+} (B) Cr^{2+} (C) Mn^{2+} (D) Cr^{3+}
- 19. In the form of dichromate, Cr (VI) is a strong oxidising agent in acidic medium but Mo (VI) in MoO₃ and W (VI) in WO₃ are not because
 - (A) Cr (VI) is more stable than Mo (VI) and W (VI)
 - (B) Mo (VI) and W (VI) are more stable than Cr (VI)
 - (C) Higher oxidation states of heavier members of group-6 of transition series are more stable
 - (D) Lower oxidation states of heavier members of group-6 of transition series are more stable
- ***20.** Which of the following actinoids show oxidation states upto +7?
 - (A)
 Am
 (B)
 Pu

 (C)
 U
 (D)
 Np
- *21. General electronic configuration of actionoids is $(n-2)f^{1-14}(n-1)d^{0-2}ns^2$. Which of the following actinoids have one electrons in 6d orbital?
 - (A) U (Atomic number 92)
 - **(B)** Np (Atomic number 93)
 - (C) Pu (Atomic number 94)
 - (D) Am (Atomic number 95)
- *22. Which of the following lanthanoids show +2 oxidation state besides the characteristic oxidation state +3 of lanthanoids?
 - (A)
 Ce
 (B)
 Eu

 (C)
 Yb
 (D)
 Ho

- *23. Which of the following ions show highest spin only magnetic moment value?
 - Ti³⁺ Mn²⁺ **(A) (B)** Fe²⁺ Co^{3+} **(C) (D)**
- *24. Transition elements form binary compounds with halogens. Which of the following elements will form MF₃ type compounds?
 - (A) Cr Co **(B) (D) (C)** Cu Ni
- *25. Which of the following will not act as oxidising agents?
 - **(A)** CrO₃ **(B)** MoO₃ CrO_4^{2-} **(D) (C)** WO₃
- *26. Although +3 is the characteristic oxidation state for lanthanoids but cerium also show +4 oxidation state because
 - It has variable ionisation enthalpy (A)
 - **(B)** It has a tendency to attain noble gas configuration
 - It has a tendency to attain f^0 configuration (C)
 - It resembles Pb⁴⁺ **(D)**
- The equation which is balanced and represents the 27. correct product(s) is :
 - $Li_2O + 2KCl \longrightarrow 2LiCl + K_2O$ (A)
 - $[CoCl(NH_3)_5]^+ + 5H^+ \longrightarrow$ **(B)** $Co^{2+} + 5NH_4^+ + Cl^-$
 - $[Mg(H_2O)_6]^{2+} + (EDTA)^{4-}$ (C) $\xrightarrow{\text{excess NaOH}} [Mg(EDTA)^{2+} + 6H_2O]$

(D)
$$CuSO_4 + 4KCN -$$

$$K_2[Cu(CN)_4] + K_2SO_4$$

- 28. Which of the following arrangements does not represent the correct order of the property stated against it?
 - $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: (A) paramagnetic behaviour
 - $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size **(B)**

- $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in **(C)** aqueous solution
- Sc < Ti < Cr < Mn: number of oxidation **(D)** states
- 29. Four successive members of the first row transition element listed below with atomic numbers. Which one of them is expected to have the highest n°

$$E_{M^{3+}/M^{2+}}$$
 value?

(A)
$$Cr(Z = 24)$$
 (B) $Mn(Z = 25)$

(C) Fe
$$(Z = 26)$$
 (D) Co $(Z = 27)$

- 30. Iron exhibits +2 and +3 oxidation states. Which of the following statements about iron is incorrect?
 - Ferrous oxide is more basic in nature than (A) the ferric oxide
 - **(B)** Ferrous compounds are relatively more ionic than the corresponding ferric compounds
 - **(C)** Ferrous compounds are less volatile than the corresponding ferric compounds
 - Ferrous compounds are more easily **(D)** hydrolysed than the corresponding ferric compounds
- 31. Which of the following facts about the complex [Cr(NH₃)₆]Cl₃ is wrong?
 - The complex involves d²sp³ hybridization (A) and is octahedral in shape
 - The complex is paramagnetic **(B)**
 - The complex is an outer orbital complex **(C)**
 - **(D)** The complex gives white precipitate with silver nitrate solution
- 32. The outer electron configuration of Gd (At. no. 64) is : $Af^{3} 5 J^{5} 6 a^{2}$ (**D**) $Af^{8} 5 J^{0} 6 a^{2}$

(A)
$$41^{\circ}$$
, $5d^{\circ}$, $6s^{\circ}$ (B) 41° , $5d^{\circ}$, $6s^{\circ}$
(C) $4f^{4}$ $5d^{4}$ $6s^{\circ}$ (D) $4f^{7}$ $5d^{1}$ $6s^{\circ}$

- (C) $4f^4$, $5d^4$, $6s^2$ (D) $4f^7$, $5d^1$, $6s^2$ The correct order of $E_{M^{2+}/M}^{\circ}$ value with negative 33. sign for the four successive elements Cr, Mn, Fe and Co is :
 - **(A)** Mn > Cr > Fe > Co
 - **(B)** Cr > Fe > Mn > Co
 - Fe > Mn > Cr > Co**(C)**
 - Cr > Mn > Fe > Co**(D)**

- 34. Knowing that the chemistry of lanthanoids (Ln) dominated by its +3 oxidation state, which of the following statements is incorrect?
 - Because of the large size of the Ln (III) (A) ions the bonding in its compounds is predominantly ionic in character
 - **(B)** The ionic sizes of Ln (III) decrease in general with increasing atomic number
 - Ln (III) compounds are generally **(C)** colourless
 - **(D)** Ln (III) hydroxide are mainly basic in character
- 35. In context with the transition elements, which of the following statements is incorrect?
 - In addition to the normal oxidation state, (A) the zero oxidation state is also shown by these elements in complexes
 - In the highest oxidation states, the **(B)** transition metal shows basic character form cationic complexes
 - In the highest oxidation states of the first **(C)** five transition elements (Sc to Mn), all the 4s and 3d electrons are used for bonding
 - Once d⁵ configuration is exceeded, the **(D)** tendency to involve all the 3d electrons in bonding decreases
- 36. Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being :
 - **(A)** 4f orbitals are more diffused than the 5f orbitals
 - **(B)** Lesser energy difference between 5f and 6d than between 4f and 5d orbitals
 - More energy difference between 5f and 6d **(C)** than between 4f and 5d orbitals
 - **(D)** More reactive nature of the actinoids than the lathanoids
- 37. Identify the incorrect statement among the following.
 - d-block elements shown irregular and (A) erratic chemical properties among themselves
 - La and Lu have partially filled d-orbitals **(B)** and no other partially filled orbitals
 - The chemistry of various lanthanoids is **(C)** verv similar
 - 4f and 5f orbitals are equally shielded **(D)**

- 38. Most common oxidation states of Ce (Cerium) are : +2, +3
 - +3, +4(A) **(B)**
 - **(C)** +2, +1**(D)** +3, +5
- 39. Lanthanoid contraction is due to :
 - (A) The appreciable shielding on outer electrons by 4f electrons from the nuclear charge
 - The appreciable shielding on outer **(B)** electrons by 5d electrons from the nuclear charge
 - The same effective nuclear charge from Ce **(C)** to Lu
 - The imperfect shielding on outer electrons **(D)** by 4f electrons from the nuclear charge
- 40. On heating, mixture of Cu₂O and Cu₂S will give :
 - (A) Cu_2SO_3 **(B)** CuO + CuS
 - **(C)** $Cu + SO_3$ **(D)** $Cu + SO_2$
- 41. Calomel (Hg₂Cl₂) on reaction with ammonium hydroxide gives :
 - HgO (A) **(B)** Hg₂O
 - $NH_2 Hg Hg Cl$ **(C)**
 - **(D)** HgNH₂Cl
- 42. Which of the following ions has the maximum magnetic moment?
 - Mn^{2+} Fe²⁺ **(B)** (A)
 - Ti²⁺ Cr^{2+} **(D) (C)**
- 43. The lanthanide contraction responsible for the fact that :
 - Zr and Zn have the same oxidation state (A)
 - Zr and Hf have about the same radius **(B)**
 - Zr and Nb have similar oxidation state **(C)**
 - **(D)** Zr and Y have about the same radius
- 44. Cerium (Z = 58) is an important member of the lanthanides. Which of the following statements about cerium is incorrect?
 - (A) The common oxidation states of cerium are +3 and +4
 - The +3 oxidation state of cerium is more **(B)** stable than the +4 oxidation state
 - The +4 oxidation state of cerium is not **(C)** known in solutions
 - Cerium (IV) acts as an oxidising agent **(D)**

- **45.** Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them?
 - (A) $(n-1)d^8ns^2$ (B) $(n-1)d^5ns^1$ (C) $(n-1)d^3ns^2$ (D) $(n-1)d^5ns^2$
- **46.** Which of the following groups of transition metals is called coinage metals?
 - (A) Cu, Ag, Au (B) Ru, Rh, Pd
 - (C) Fe, Co, Ni (D) Os, Ir, Pt
- **47.** Which one of the following nitrates will leave behind a metal on strong heating?
 - (A) Ferric nitrate
 - (B) Copper nitrate
 - (C) Manganese nitrate
 - (D) Silver nitrate
- **48.** For making good quality mirrors, plates of float glass are used. These are obtained by floating molten glass over a liquid metal which does not solidify before glass. The metal used can be :

(A)	Mercury	(B)	Tin
(C)	Sodium	(D)	Magnesium

49. Which one of the following statement is correct?

- (A) Manganese salts give a violet borax bead test in the reducing flame
- (B) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl
- (C) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution
- (D) On boiling a solution having K⁺, Ca²⁺ and HCO₃⁻ ions, we get a precipitate of K₂Ca(CO₃)₂
- **50.** A red solid is insoluble in water. However, it becomes, soluble if some KI is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler parts of the test tube. The red solid is :
 - (A) $(NH_4)_2Cr_2O_7$ (B) HgI_2 (C) HgO (D) Pb_3O_4
- 51. Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in the alkaline solutions but not in acidic solutions. What is the reason for it?

- (A) In acidic solutions, hydration protects copper ions
- (B) In acidic solutions, protons coordinate with ammonia molecules forming NH⁺₄ ions and NH₃ molecules are not available
- (C) In alkaline solutions, insoluble Cu(OH)₂ is precipitated which is soluble in excess of any alkali
- (D) Copper hydroxide is an amphoteric substance
- **52.** Gadolinium belongs to 4 f series. Its atomic number is 64. Which of the following is the correct electronic configuration of gadolinium ?
 - (A) $[Xe] 4f^9 5s^1$ (B) $[Xe] 4f^7 5d^1 6s^2$
 - (C) [Xe] $4f^6 5d^2 6s^2$ (D) [Xe] $4f^8 6d^2$
- **53.** Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii ? (Numbers in the parenthesis are atomic numbers)
 - (A) Zr(40) & Hf(72)
 (B) Zr(40) & Ta(73)
 (C) Ti(22) & Zr(40)
 (D) Zr(40) & Nb(41)

54. The reaction of aqueous $KMnO_4$ with H_2O_2 in acidic conditions gives :

- (A) Mn^{4+} and O_2 (B) Mn^{2+} and O_2
- (C) Mn^{2+} and O_3 (D) Mn^{4+} and MnP_2
- **55.** Reason of lanthanoid contraction is :
 - (A) negligible screening effect of 'f '-orbitals
 - (B) increasing nuclear charge
 - (C) decreasing nuclear charge
 - (D) increasing screening effect
- 56 Which of the following statements about the interstitial compounds is incorrect ?
 - (A) They are much harder than the pure metal
 - (B) They have higher melting points than the pure metal
 - (C) They retain metallic conductivity
 - (D) They are chemically reactive
- 57. Which of the following lanthanoid ions is diamagnetic ? (At nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70) (A) Eu^{2+} (B) Yb^{2+}
 - (A) Eu^{2+} (B) Yb^{2+} (C) Ce^{2+} (D) Sm^{2+}
- **58.** Identify the alloy containing a non-metal as a constituent in it.
 - (A) Invar (B) Steel
 - (C) Bell metal (D) Bronze

- **59.** Which of the statements is not true ?
 - (A) On passing H₂S through acidified K₂Cr₂O₇ solution, a milky colour is observed
 - (B) Na₂Cr₂O₇ is preferred over K₂Cr₂O₇ in volumetric analysis
 - (C) K₂Cr₂O₇ solution in acidic medium is orange
 - (D) K₂Cr₂O₇ solution becomes yellow on increasing the pH beyond 7
- **60.** Which of the following exhibits only + 3 oxidation state ?
 - (A) U
 (B) Th
 (C) Ac
 (D) Pa
 - $(C) \quad AC \qquad (D) \quad Ia$
- **61.** Which one of the following does not correctly represent the correct order of the property indicated against it ?
 - (A) Ti < V < Cr < Mn ; increasing number of oxidation states
 - $(B) \qquad Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+} \ ; \ increasing \\ magnetic \ moment$
 - (C) Ti < V < Cr < Mn; increasing melting points
 - (D) Ti < V < Mn < Cr ; increasing 2^{nd} ionization enthalpy
- 62. Four successive members of the first series of the transition metals are listed below. For which one of them the standard potential $\left(E_{M^{2+}/M}^{\circ}\right)$ value has a

positive sign?

(A)	Co(Z = 27)	(B)	Ni (Z = 28)
(C)	Cu (Z = 29)	(D)	Fe ($Z = 26$)

- **63.** For the four successive transition elements (Cr, Mn, Fe and Co), the stability of + 2 oxidation state will be there in which of the following order ?
 - $(A) \qquad Mn > Fe > Cr > Co$
 - (B) Fe > Mn > Co > Cr
 - (C) Co > Mn > Fe > Cr
 - (D) Cr > Mn > Co > Fe
- **64.** Which of the following ions will exhibit colour in aqueous solutions ?
 - (A) $La^{3+}(Z = 57)$ (B) $Ti^{3+}(Z = 22)$ (C) $Lu^{3+}(Z = 71)$ (D) $Sc^{3+}(Z = 21)$
- **65.** Match Column-I (substances) with Column-II (processes) employed in the manufacture of the substances and select the correct option.

	Column-I		Column-II				
((Substances)		(Processes)				
(A)	Sulphuric acid	(i)	Haber's process				
(B)	Steel	(ii)	Bessemer's				
			process				
(C)	Sodium	(iii)	Leblanc process				
	hydroxide						
(D)	Ammonia	(iv)	Contact process				
(A)	A - (i), B - (iv)), C – (i	i), D – (iii)				
(B)	A - (i), B - (ii)	, C – (ii	ii), D – (iv)				

- (C) A (iv), B (iii), C (ii), D (i)
- (D) A (iv), B (ii), C (iii), D (i)
- **66.** More number of oxidation states are exhibited by the actionoids than by the lanthanoids. The main reason for this is :
 - (A) more active nature of the actionoids
 - (B) more energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals
 - (C) lesser energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals
 - (D) greater metallic character of the lanthanoids than that of the corresponding actionoids
- 67. The basic character of the transition metal monoxides follows the order

(Atomic no's. Ti = 22, V = 23, Cr = 24, Fe = 26)

- $(A) \qquad VO > CrO > TiO > FeO$
- $(B) \qquad CrO > VO > FeO > TiO$
- (C) TiO > FeO > VO > CrO
- (D) TiO > VO > CrO > FeO
- **68.** Which of the following elements is responsible for oxidation of water to O_2 in biological processes ?
 - (A)
 Cu
 (B)
 Mo

 (C)
 Fe
 (D)
 Mn
- **69.** $K_2Cr_2O_7$ on heating with aqueous NaOH gives :
 - (A) CrO_7^{2-} (B) $Cr(OH)_2$
 - (C) CrO_4^{2-} (D) $Cr(OH)_3$
- 70. When calomel reacts with NH₄OH, we get :
 - (A) Hg₂O (B) HgO
 - (C) $HgNH_2Cl$
 - **(D)** $NH_2 Hg Hg Cl$

71. Photographic films and plates have an essential ingredient of (A) **(B)** silver bromide silver nitrate 78. sodium chloride **(D)** oleic acid **(C)** 72. A blue colouration is not obtained when 79. ammonium hydroxide dissolves in copper (A) sulphate copper sulphate solution reacts **(B)** with 80. $K_4[Fe(CN)_6]$ chloride **(C)** ferric reacts with sod. ferrocyanide anhydrous CuSO₄ is dissolved in water 81. **(D)** 73. Number of water molecules directly attached to are _____. $CuSO_4 \cdot 5H_2O$ are _____. 82. $Cu^{2+} + KCN \longrightarrow K_x [Cu(CN)_4]$. x is 74. Total number of equivalent Cr-O bond in 75. $Cr_2O_7^{2-}$ are . 83. $I^- + MnO_4^- \xrightarrow{OH^-} Product.$ 76. 84. Oxidation state of 'I' in product is . 77. The magnetic moment is associated with its spin angular momentum and orbital angular momentum.

Spin only magnetic moment value of Cr³⁺ ion is

- **18.** The most common oxidation on state among the lanthanoids is ______.
- **79.** The number of moles of KMnO₄ reduced by one mole of KI in alkaline medium is :
- 80. Electronic configuration of a transition element X in +3 oxidation state is [Ar]3d⁵.
 What is its atomic number is _____.
- **31.** Total number of amphoteric oxides among Mn₂O₇, Cr₂O, CrO, Cr₂O₃, ZnO, V₂O₅, V₂O₃ are
- 82. Total number of coloured compounds among $[KMnO_4, Cu_2Cl_2, CuSO_4(anhydrous),$ $ZnSO_4 \cdot 7H_2O, TiCl_2, K_2Cr_2O_7, Ce(SO_4)_2,$ $K_4[Fe(CN)_6]$ are _____.
- **83.** Maximum oxidation state of Osmium is
- 84. Highest oxidation state of manganese in fluoride is

Coordination Compounds

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

*1. Atomic number of Mn, Fe and Co are 25, 26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic?

(A)
$$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$$
 (B) $\left[\operatorname{Mn}(\operatorname{CN})_6\right]^{3-}$ (C) $\left[\operatorname{Fe}(\operatorname{CN})_6\right]^{4-}$ (D) $\left[\operatorname{Fe}(\operatorname{CN})_6\right]^{3-}$

*2. Atomic number of Mn Fe, Co and Ni are 25, 26, 27 and 28 respectively. Which of the following outer orbital octahedral complexes have same number of unpaired electrons?

(A)
$$[MnCl_6]^{3-}$$
 (B) $[FeF_6]^{3-}$ (C) $[CoF_6]^{3-}$ (D) $[Ni(NH_3)_6]^{2+}$

*3. Which of the following options are correct for $\left\lceil Fe(CN)_{6} \right\rceil^{3-}$ complex?

- (A) $d^2 sp^3$ hybridisation (B) $sp^3 d^2$ hybridisation
- (C) Paramagnetic (D) Diamagnetic

*4.	An aqueous pink solution of cobalt (II) chloride changes to deep blue on addition of excess of HCl. This is because									
	(A)	$\left[Co(H_2O_6) \right]^{2+}$ is transformed into $\left[CoCl_6 \right]^{4-}$								
	(B)	$\left[Co(H_2O)_6 \right]^{2+}$ is transformed into $\left[CoCl_4 \right]^{2-}$								
	(C)	 Tetrahedral complexes have smaller crystal field splitting than octahedral complexes 								
*5	(D) Which	Tetrahedral complexes h	nave larger crystal fi	ield split	ting than oc	tahedra	al comple	ex		
5.	(A)	$\left[C_0(NH_2) \right]^{3+}$ (B)	$\int C_0(NH_2) C_2$	\int^+ (C)	[Ni(CN)	$]^{2-}$	(D)	$\left[N_{1}(NH_{2}) C_{12} \right]$		
*6.	Which	$\begin{bmatrix} 0 & (1113)_6 \end{bmatrix}$ (D) of the following complexe	es are heteroleptic?] (0)		/4]	(2)			
	(A)	$\left[\operatorname{Cr}(\operatorname{NH}_3)_{\mathcal{C}}\right]^{3+}$ (B)	$\left[Fe(NH_3) \right]_{4} Cl_{2}$	⁺ (C)	[Mn(CN	$()_{-4}^{-1}$	(D)	$\left[Co(NH_3)_4 Cl_2 \right]$		
*7.	Identif	fy the optically active comp	pounds from the foll	lowing :	L	/6]				
	(A)	$\left[\operatorname{Co}(\operatorname{en})_{3}\right]^{3+}$		(B)	trans-[C	$o(en)_2$	$\operatorname{Cl}_2 \right]^+$			
	(C)	cis - $\left[Co(en)_2 Cl_2\right]^+$		(D)	Cr(NH	$_{3})_{5}$ Cl				
*8.	Identif	fy the correct statements fo	r the behaviour of e	thane-1,	2-diamine	as a lig	and.			
	(A) (C)	It is a neutral ligand It is a chelating ligand		(B) (B)	It is a bid	entate I dentate	ligand			
*9.	Which	n of the following complexe	es show linkage isor	nerism?			ingenite			
	(A)	$\left[\text{Co}(\text{NH}_3)_5(\text{NO}_2) \right]^{2+}$		(B)	$\left[\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}(\operatorname{Co}(\operatorname{H}_{2}\operatorname{Co}($	D) ₅ CO] ³⁺			
	(C)	$\left[Cr(NH_3)_5 SCN \right]^{2+}$		(D)	$\left\lceil \operatorname{Fe}(\operatorname{en})_{2}\right\rceil$	Cl_2^+				
10.	Given	the following data about th	ne absorption maxim	na of sev	eral comple	ex ions	, what is t	the order of Δ_0 for these id	ons ?	
		Compound	λ_{max}					-		
		$[CrCl_6]^{3-}$	758							
		$[Cr(NH_3)_6]^{3+}$	465							
		$[Cr(H_2O)_6]^{3+}$	694							
	(A)	$\Delta_0 \left[\text{CrCl}_6 \right]^{3-} < \Delta_0 \left[\text{Cr}^{-1} \right]^{3-}$	$\left(\mathrm{NH}_3\right)_6^{3+} < \Delta_0$	$\left[Cr(H_2 G) \right]$	$\left[O \right]_{6} \right]^{3+}$					
	(B)	$\Delta_0 \left[\operatorname{Cr}(\mathrm{NH}_3)_{\epsilon} \right]^{3+} < \Delta$	$\int Cr(H_2O) \int^{3+} dr$	- < Δ₀ [Cı	Cl_6 ³⁺					
					, ¬3+					
	(C)	$\Delta_0 \left[\mathrm{CrCl}_6 \right]^{3-} < \Delta_0 \left[\mathrm{Cr} \left(\mathrm{H}_2 \mathrm{O} \right)_6 \right]^{3+} < \Delta_0 \left[\mathrm{Cr} \left(\mathrm{NH}_3 \right)_6 \right]^{3+}$								
	(D)	$\Delta_0 \left[\mathrm{Cr} \left(\mathrm{H}_2 \mathrm{O} \right)_6 \right]^{3+} < \Delta$	$L_0 \left[\operatorname{Cr} \left(\operatorname{NH}_3 \right)_6 \right]^{3+} <$	$\Delta_0 [Crooked]$	$[2l_6]^{3-}$					
11.	Predic	t the order of Δ_0 for the following the	llowing compounds	:						
	I.	$[Fe(H_2O)_6]^{2+}$ II.	$[Fe(CN)_2(H_2O)]$	4]	III.	[Fe(CN	J) ₄ (H ₂ O)	$[2^{2}]^{2-}$		
	(A)	Δ_{0} (I) $\leq \Delta_{0}$ (II) $\leq \Delta_{0}$ (II)	I)	(B)	Δ_0 (II) <	$\Delta_{0}(I)$	$<\Delta_{0}$ (III)			

12. From the information given in the passage, what is the most likely configuration of the cobalt d-electrons for the species ?

(A)
$$\operatorname{CoCl}_{6}^{3-}$$
: low spin ; $\operatorname{Co}(\operatorname{NO}_{2})_{6}^{3-}$: low spin (B)

(C)
$$\operatorname{CoCl}_{6}^{3-}$$
: low spin; $\operatorname{Co(NO_{2})}_{6}^{3-}$: high spin (D)

- **13.** Which of the following has five donor (coordinating) sites ?
 - (A) Triethylene tetramine (B) Ethylenediamine tetracetate ion
 - (C) Ethylenediamine triacetate ion (D) Diethylene triamine
- 14. Which one of the following coordination compounds exhibits ionization isomerism?

(A)
$$[Cr(NH_3)_6]Cl_3$$
 (B) $[Cr(en)_3]Cl_3$

- (C) $[Cr(en)_3]Cl_3$ (D) $[Co(NH_3)_5Br]SO_4$
- 15. Consider the following spatial arrangements of the octahedral complex ion $Co[(NH_3)_4Cl_2]^+$.

Which of the following statements is incorrect regarding these structures ?

- (A) I and II are enantiomers
- (B) II and III are cis and trans isomers respectively
- (C) III and IV are trans and cis isomers respectively
- (D) II and IV have identical structures

16. Which of the following pairs of structures represent facial and meridional isomers (geometrical isomers) respectively?

 $\operatorname{CoCl}_{6}^{3-}$: high spin ; $\operatorname{Co}(\operatorname{NO}_{2})_{6}^{3-}$: low spin $\operatorname{CoCl}_{6}^{3-}$: high spin ; $\operatorname{Co}(\operatorname{NO}_{2})_{6}^{3-}$: high spin

- 17. Which of the following statements is correct with regard to a complex ion ?
 - A complex ion consists of a central ion bonded to two or more donor ions or molecules, usually does not (A) dissociate into simple ions or molecules even in a solution, and exhibits properties different from its constituent ions or molecules
 - The donor ions and molecules which coordinate with the central atom or ion in a complex are called ligands **(B)**
 - **(C)** The sum of the number of electrons present in the central metal ion or atom and those donated by the ligands is called the effective atomic number of the central metal atom and this number is usually the same as the atomic number of the next higher noble gas
 - (D) All of these

(C)

Which of the following statements is not true for the reaction given below ? 18.

 $\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4\right]^{2+} + 4\operatorname{NH}_3 \Longrightarrow \left[\operatorname{Cu}(\operatorname{NH}_3)_4\right]^{2+} + 4\operatorname{H}_2\operatorname{O}$

- It is a ligand-substitution reaction (A)
- **(B)** NH₃ is a relatively strong-field ligand while H₂O is a weak-field ligand
- During the reaction, there is a change in colour from light blue to dark blue **(C)**
- $[Cu(NH_3)_4]^{2+}$ has a tetrahedral structure, and is paramagnetic **(D)**
- The IUPAC name for the coordination compound $Na_3[Ag(S_2O_3)_2]$ is : 19.
 - (A) Sodium silverthiosulphate(I) **(B)** Sodium silverhyposulphate(I)
 - **(C)** Sodium bis[argentothiosulphate(I)] **(D)** Sodium di(thiosulphato)argentite(I)
- 20. The IUPAC name for the coordination compound [CuCl₂(CH₃NH₂)₂] is :
 - (A) dimethylamine copper(II) chloride **(B)** dichlorobis(methylamine) copper(II)
 - bis(dimethylamine)copper(II) chloride dichlorobis(dimethylamine)copper(II) **(D)**
- 21. The IUPAC name for [Pt(Br)(Cl)(NH₃)₃(NO₂)]Cl is :
 - (A) triamminechlorobromonitroplatinum(IV) chloride
 - **(B)** triamminebromochloronitroplatinum(IV) chloride
 - triammineitrochlorobromoplatinum(IV) chloride **(C)**
 - triamminechloronitrobromoplatinum(IV) chloride **(D)**
- 22. The ionization isomer of $[Cr(H_2O)_4Cl(NO_2)]Cl$ is:
 - $[Cr(H_2O)_4(O_2N)]Cl_2$ **(B)** $[Cr(H_2O)_4Cl_2](NO_2)$ (A)
 - **(C)** [Cr(H₂O)₄Cl(ONO)]Cl **(D)** $[Cr(H_2O)_4Cl_2(NO_2)].H_2O$
- Amongst Ni(CO)₄, $[Ni(CN)_4]^{2-}$ and $NiCl_4^{2-}$ 23.
 - $\rm Ni(\rm CO)_4$ and $\rm NiCl_4^{2-}$ are diamagnetic and $\rm [Ni(\rm CN)_4]^{2-}$ is paramatinetic (A)
 - $NiCl_4^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $Ni(CO)_4$ is paramagnetic **(B)**
 - Ni(CO)₄ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $NiCl_4^{2-}$ is paramagnetic **(C)**
 - Ni(CO)₄ is diamagnetic and NiCl₄²⁻ and $[Ni(CN)_4]^{2-}$ are paramagnetic (D)
- The complex ion which has no 'd' electron in the central metal atom is : 24.
 - $[Co(NH_{2})_{6}]^{3+}$ (A) [MnO₄] **(B)**
 - $[Fe(CN)_{6}]^{3-}$ $[Cr(H_2O)_6]^{3+}$ **(C)** (D)

25.

by:

In nitroprusside ion, the iron and NO exist as Fe^{II} and NO⁺ rather than Fe^{III} and NO. These forms can be differentiated

	(A)	Estimating the co	oncentrati	on of iron	(B)	Measuring the co	oncentrati	ion of CN-	
	(C)	Measuring the so	olid state r	nagnetic moment	(D)	Thermally decom	posing t	he compound	
26.	In [Fe(C	$(CN)_6]^{3-}$, the d-elect	rons occu	apy the :					
	(A)	$d_{xy} d_{yz}$, d_{zx} and	l d _z ² orbita	als	(B)	$d_{_{\rm X}_{\rm Y}}$, $d_{_{\rm Y}_{\rm Z}}$ and $d_{_{\rm X}_{\rm Z}}$	orbitals		
	(C)	$d_x^2 d_x^2$ and d_z^2 or	rbitals		(D)	$d_{xy}, d_{yz}, d_{zx}, d_{x}$	2 2 2 and 3	d_z^2 orbitals	
*27.	Amongs	st the following co	mplexes,	the chelates are :					
	(A)	bis (ethylenedian	nine) cop	per (II) ion	(B)	ammoniumdiami	netetrath	iocyanto-S-chromate (l	III)
	(C)	bis (dimethyl gly	oximato)	iron (II)	(D)	cis-diglycinato p	latinum (II)	
Paragra	aph for (Questions 28 - 30	<u>o</u>						
The coo	ordination	number of Ni ²⁺ is	s 4.						
	NiCl ₂ +	KCN (excess) —	$\rightarrow A (cy$	vano complex)					
	NiCl ₂ +	Conc. HCl (exces	$s) \longrightarrow$	B (chloro comple	ex)				
28.	The IUI	PAC name of A an	d B are :						
	(A)	Potassium tetracy	yanonicke	elate(II), Potassiu	m tetracł	nloronickelate(II)			
	(B)	Tetracyanopotass	siumnicke	elate(II), tetrachlo	oropotass	iumnickelate(II)			
	(C) (D)	Potassium tetracy	i(II), tetra vanonicke	el(II) potassium te	etrachlor	onickel(II)			
20		1	, uno mone	1D					
29.	(A)	Both are diamage	re of A an netic	Id B :					
	(B)	A is diamagnetic	and B is	paramagnetic wit	h one un	paired electron			
	(C)	A is diamagnetic	and B is	paramagnetic wit	h two un	paired electrons			
	(D)	Both are paramag	gnetic						
30.	The hyb	oridization of A an	d B are :						
	(A)	dsp ² , sp ³	(B)	sp ³ , sp ³	(C) (dsp^2 , dsp^2	(D)	sp^3d^2 , d^2sp^3	
31.	The octa	ahedral complex o	f a metal	ion M^{3+} with for	ur monoc	lentate ligands L ₁ ,	L ₂ , L ₃ an	nd L ₄ absorb wavelengt	hs in the
	region o	of red, green, yello	w and blu	ie, respectively. T	he increa	sing order of ligar	nd streng	th of the four ligands is	;:
	(A)	$L_4 < L_3 < L_2 < L_2$	L ₁		(B)	$L_1 < L_3 < L_2 < I$	-4 -		
	(C)	$L_3 < L_2 < L_4 < L_4$	L ₁		(D)	$L_1 < L_2 < L_4 < I_4$	-3		
32.	Which o	of the following co	omplex sp	ecies is not expec	ted to ex	hibit optical isome	erism?		
	(A)	$\left[\operatorname{Co}(\operatorname{en})_3\right]^{3+}$	(B)	$\left[\operatorname{Co}(\operatorname{en})_2\operatorname{Cl}_2\right]^+$	(C)	$[\mathrm{Co}(\mathrm{NH}_3)_3\mathrm{Cl}_3]$	(D)	$[Co(en)(NH_3)Cl_2]^+$	
33.	Which a	mong the following	ng will be	e named as dibrom	nidobis(e	thylenediamine) cl	nromium	(III) bromide?	
	(A)	$[Cr(en)_3]Br_3$	(B)	$[Cr(en)_2Br_2]Br$	(C)	$[Cr(en)Br_4]^-$	(D)	[Cr(en)Br ₂]Br	
34.	The for	nula of dichlorobi	s (urea) c	opper (II) is :					
	(A)	$Cu \{O = C(NH_2)\}$	2} Cl]Cl	/	(B)	$[CuCl_2 \{ O = C(N) \}$	$(H_2)_2\}_2]$		
	(C)	$[Cu \{O = C(NH_2)]$) ₂ Cl_2		(D)	$[Cu \{O = C(NH_2)]$	$)_{2}_{2}$ Cl ₂		

35.	The ma	gnetic moment (s	pin only)	of $[NiCl_4]^{2-}$ is :						
	(A)	1.82 M	(B)	5.46 BM	(C)	2.82 BM	(D)	1.41 BM		
36.	Among	the ligands NH ₃ ,	en, CN ⁻	and CO, the corre	ect order	of their increasing field strength is :				
	(A)	$CO < NH_3 < en$	$< CN^{-}$		(B)	$NH_3 < en < CN$	- < CO			
	(C)	$CN^- < NH_3 < 0$	CO < en		(D)	$en < CN^- < NH$	3 < CO			
37.	Which o	one of the followi	ng compl	ex ions has geom	etrical iso	omers?				
	(A)	$\left[\operatorname{Co}(\operatorname{en})_{3}\right]^{3+}$	(B)	$[Ni(NH_3)_5Br]^+$	(C)	$[Co(NH_3)_2(en)]$	$[2^{3^{+}}(\mathbf{D})$	$\left[\mathrm{Cr}(\mathrm{NH}_3)_4(\mathrm{en})\right]^{3+}$		
38.	Which one of the following has an optical isomer? (en = ethylenediamine)									
	(A)	$[Zn(en)(NH_3)_2$] ²⁺		(B)	$\left[\operatorname{Co}(\operatorname{en})_3\right]^{3+}$				
	(C)	$[Co(H_2O)_4(en)]$] ³⁺		(D)	$\left[\operatorname{Zn}(\operatorname{en})_{2}\right]^{2+}$				
39.	Which o	of the following h	as an opt	ical isomer?						
	(A)	$[Co(NH_3)_3Cl]^+$			(B)	$[Co(en)(NH_3)_2]$	$ ^{2+}$			
	(C)	$[Co(H_2O)_4(en)]$	$]^{3+}$		(D)	$[Co(en)_2(NH_3)_2]$	$[2]^{3+}$			
40.	 Which 6 (A) (B) (C) (D) 	of the following p $[Cu(NH_3)_4][Pt$ $[Pd(PPh_3)_2(NC_2)][Co(NH_3)_5NO_2][PtCl_2(NH_3)_4]$	airs repre Cl_4 and $CS)_2$ and $_3$ SO_4 and Br_2 and [esents linkage isom $[Pt(NH_3)_4][CuCl_3]$ $[Pt(PPh_3)_2(SCN)]$ $d [Co(NH_3)_5SO_4]$ $PtBr_2(NH_3)_4]Cl_2$	ners? 4] 0 ₂]]NO ₃					
41.	The coordination number and the oxidation state of the element 'E' in the complex $[E(en)_2 (C_2O_4)] NO_2$ (where (en)									
	is ethyle (A)	ene diamine) are 1 6 and 2	espective (B)	ely : 4 and 2	(C)	4 and 3	(D)	6 and 3		
42.	In whic	h of the following	g octahed	ral complexes of C	o (Atomi	c number 27), wi	ll the mag	gnitude of Δ_0 be the highest?		
	(A)	$[Co(CN)_{6}]^{3-}$	(B)	$[Co(C_2O_4)_3]^{3-}$	(C)	$[Co(H_2O)_6]^{3+}$	(D)	$[Co(NH_3)_6]^{3+}$		
43.	Which o	one of the followi	ng has a	square planar geon	netry?	(Atomic number	: Co =27,	Ni = 28, Fe = 26, Pt = 78)		
	(A)	$[\text{CoCl}_4]^{2-}$	(B)	$[\text{FeCl}_4]^{2-}$	(C)	$[NiCl_4]^{2-}$	(D)	$[PtCl_4]^{2-}$		
44.	In Fe (C	CO ₅), the Fe—C	bond pos	sesses :						
	(A) (C)	π -character onl ionic character	у		(B) (D)	(B) both σ and π - character (D) σ - character only				
45.	The IUI (A) (C)	PAC name for the nitrito-N pentam pentammine niti	complex nminecob rito-N-col	E [Co(NO ₂) (NH ₃)5 alt (III) chloride balt (II) chloride] Cl ₂ is : (B) (D)	nitrite-N-pentam pentammine nitr	minecob ito-N-col	alt (II) chloride balt (III) chloride		
46.	Nickel ((Z = 28) combine	s with a u	ninegative monod	entate lig	and X^- to form a	ı paramaş	gnetic complex $[NiX_4]^{2-}$.		
	The nur (A)	nber of unpaired One, tetrahedral	electron(s (B)	s) in the nickel and Two, tetrahedral	geometr	y of this complex One, square plar	ion are, r nar (D)	espectively : Two, square planar		

The value of the 'spin only' magnetic moment for one of the following is 2.84BM. The correct one is :

47.

d⁵ (in strong liagnd field) d³ (in weak as well as in strong fields) (A) **(B)** d⁴ (in weak ligand field) d⁴ (in strong ligand field) **(C)** (D) 48. The IUPAC name of the coordination compound K₃ [Fe(CN)₆] is : (A) tripotassium hexacyanoiron (II) **(B)** potassium hexacyanoiron (II) **(C)** potassium hexacyanoferrate (III) **(D)** potassium hexacyanoferrate (II) 49. Which one of the following cyano complexes would exhibit the lowest value of magnetic moment? (At. no of Cr = 24, Mn = 25, Fe = 26, Co = 27) $[Co(CN)_{6}]^{3-}$ (B) $[Fe(CN)_{6}]^{3-}$ (C) $[Mn(CN)_6]^{3-}$ (D) $[Cr(CN)_6]^{3-}$ (A) 50. Which of the following compounds shown optical isomerism? **(D)** $[Cu(NH_3)_4]^{2+}$ $[Co(CN)_{\epsilon}]^{3-}$ **(B)** $[Cr(C_2O_4)_2]^{3-}$ **(C)** $[ZnCl_4]^{2-}$ (A) The coordination number of a central metal atom in a complex is determined by : 51. The number of ligands around a metal ion bonded by sigma bonds (A) **(B)** The number of ligands around a metal ion bonded by pi bonds **(C)** The number of ligands around a metal ion bounded by sigma and pi bonds both **(D)** The number of only anionic ligands bonded to the metal ion Which one of the following has largest number of isomers? (R = alkyl group, en = ethylenediamine) 52. $[Ru(NH_3)_4Cl_2]^+$ (B) $[Co(NH_3)_5Cl_2]^{2+}$ (C) $[Ir(PR_3)_2H(CO)]^{2+}$ (D) $[Co(en)_2Cl_2]^+$ (A) The correct order of magnetic moments (spin only value in BM) among the following is: 53. (At. no of Mn = 25, Fe = 26, Co = 27) $[MnCl_4]^2 > [CoCl_4]^2 > [Fe(CN)_6]^{4-}$ $[MnCl_{4}]^{2-} > [Fe(CN)_{6}]^{4-} > [CoCl_{4}]^{4-}$ **(B)** (A) $[Fe(CN)]_{6}]^{4-} > [MnCl_{4}]^{2-} > [CoCl_{4}]^{2-}$ **(D)** $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ **(C)** 54. Which one of the following complexes is an outer orbital complex? (Atomic number of Mn = 25, Fe = 26, Co = 27, Ni = 28) $[Fe(CN)_6]^{4-}$ (B) $[Mn(CN)_6]^{4-}$ (C) $[Co(NH_3)_6]^{3+}$ (D) $[Ni(NH_3)_6]^{2+}$ (A) One mole of the complex compound Co(NH₃)₅Cl₃, gives 3 moles of ions on dissolution in water. One mole of the same 55. complex reacts with two moles of AgNO₃ solution of yield two moles of AgCl(s). The structure of the complex is : (A) [Co(NH₃)₅Cl]Cl₂ **(B)** $[Co(NH_3)_3Cl_3] \cdot 2NH_3$ $[Co(NH_3)_4Cl]Cl_2 \cdot NH_3$ **(C)** $[Co(NH_3)_4Cl_2]Cl \cdot NH_3$ **(D)** 56. In the coordination compound, K4[Ni(CN)4] the oxidation state of nickel is : (A) -1**(B)** 0 **(C)** +1**(D)** +2Type of isomerism shown by $[Cr(NH_3)_5 NO_2]Cl_2$ is : 57. **(B)** (A) optical ionisation **(C)** geometrical **(D)** linkage 58. A square planar complex is formed by the hybridisation of the following atomic orbitals : (A) s, p_x, p_y, p_z **(B)** s, p_x, p_y, p_z, d **(C)** d, s, p_x , p_y **(D)** s, p_x, p_y, p_z, d, d 59. The most stable ion is : $[FeCl_6]^{3-}$ $[Fe(OH)_{5}]^{3-}$ **(B) (C)** $[Fe(CN)_{6}]^{3-}$ **(D)** $[Fe(H_2O)_6]^{3+}$ (A) The hybridization involved in complex $[Ni(CN)_4]^{2-}$ is (At. No. Ni = 28) 60. d^2sp^2 d^2sp^3 **(A)** sp³ **(B) (C) (D)** dsp²

61.	The sur ethylen	m of coordination rediamine)	number a	and oxidation num	ber of the	e metal M in the c	omplex []	M(en) ₂ (C ₂ O ₄)]Cl (where en is
	(A)	6	(B)	7	(C)	8	(D)	9
62.	Cobalt chlorid	(III) chloride form e ions with silver r	is several	octahedral comple 25°C?	exes with	ammonia. Which	n of the fo	bllowing will not give test for
	(A)	CoCl ₃ .5NH ₃	(B)	CoCl ₃ .6NH ₃	(C)	CoCl ₃ .3NH ₃	(D)	CoCl ₃ .4NH ₃
63.	Which	of these statement	s about [($Co(CN)_6]^{3-}$ is true	?			
	(A)	$[Co(CN)_6]^{3-}$ has	s four un	paired electrons ar	nd will be	e in a high – spin o	configura	tion.
	(B)	$[Co(CN)_6]^{3-}$ ha	as no unp	aired electrons and	d will be	in a high spin con	figuration	n.
	(C)	$[Co(CN)_6]^{3-}$ has	as no unp	aired electrons and	d will be	in a low – spin co	onfiguration	on.
	(D)	$[Co(CN)_6]^{3-}$ h	as four u	npaired electrons a	and will l	be in a low – spin	configura	ation.
64.	Among	the following con	nplexes t	he one which show	vs zero c	rystal filed stabiliz	zation end	ergy (CFSE) is :
	(A)	$[Mn(H_2O)_6]^{3+}$	(B)	$[Fe(H_2O)_6]^{3+}$	(C)	$[Co(H_2O)_6]^{2-}$	(D)	$[Co(H_2O)_6]^{3+}$
65.	Which	of the following co	omplexes	s is used to be as an	n antican	cer agent?		
	(A)	$mer - [Co(NH_3)]$) ₃ Cl ₃]		(B)	$cis - [PtCl_2(NH)]$	$[I_3)_2]$	
	(C)	$cis - K_2[PtCl_2B]$	[r ₂]		(D)	Na ₂ CoCl ₄		
66.	Crystal	field splitting ener	rgy for h	igh spin d^4 octahed	iral com	plex is :		
	(A)	$1.2\Delta_{\rm o}$	(B)	$-0.6\Delta_{0}$	(C)	$-0.8\Delta_0$	(D)	$-1.6\Delta_{o}$
67.	In a pai	rticular isomer of [Co(NH ₃)	$_4\text{Cl}_2]^0$, the $\text{Cl} - \text{Cc}_2$	o – Cl ang	gle is 90°, the isor	ner is kno	own as
	(A)	Optical isomer	(B)	cis-isomer	(C)	Position isomer	(D)	linkage isomer
68.	The ani	ion of acetylaceton	ne (acac)	forms Co(acac) ₃ c	helate wi	th Co ³⁺ . The rings	s of the cl	nelate are
	(A)	five membered	(B)	four membered	(C)	six membered	(D)	three membered
69.	The con	rrect IUPAC name	for [CrF	$[2(en)_2]$ Cl is		1 1.		
	(A) (B)	difluoridobis (etl	belnylene hvlene di	amine) chromium	n (III) ch (III) chlo	oride		
	(C)	difluorobis – (etl	hylene di	amine) chromium	(III) chlo	oride		
	(D)	chloro difluorido	obis (ethy	vlene diamine) chro	omium (I	III)		
70.	Which	among the followi	ng is a pa	aramagnetic comp	lex ?			
	(A)	$[Co(NH_3)_6]^{3+}$	(B)	[Pt(en)Cl ₂]	(C)	$[\text{CoBr}_4]^{2-}$	(D)	Mo(CO) ₆
71.	Red pro followi	ecipitate is obtaine ng statements is no	d when e ot true?	thanol solution of	dimethy	lglyoxime is adde	d to amm	oniacal Ni(II). Which of the
	(A)	Red complex has	s a square	e planar geometry.	(B)	Complex has sy	mmetrica	ll H-bonding.
	(C)	Red complex has	s a tetrah	edral geometry.	(D)	Dimethylglyoxi	me functi	ons as bridenate ligand.
72.	Which	of the following ca	arbonyls	will have the stron	ngest C –	O bond?		
	(A)	$Mn(CO)_6^+$	(B)	$Cr(CO)_6$	(C)	$V(CO)_{6}^{-}$	(D)	Fe(CO) ₅
73.	Which	of the following co	omplexes	s exhibits the highe	est param	agnetic behaviou	r?	
	(A)	$[Co(ox)_2(OH)_2]^-$			(B)	$[Ti(NH_3)_6]^{3-}$		
	(C)	$[V(gly)_2(OH)_2(N$	$[H_3)_2]^+$		(D)	[Fe(en)(bpy)(N]	$[H_3]^{2+}$	

74.	$[Cr(H_2O)_6]Cl_3(Atomic number of Cr = 24)$ has a main the chromium of the complex is :					nagnetic moment of 3.83 B.M. The correct distribution of 3d electrons				
	(A)	$3d_{xy}^{l}, 3d_{yz}^{l}, 3d_{z}^{l}$	2		(B)	$3d^{1}_{(x^{2}-y^{2})}, 3d^{1}_{z^{2}}$, $3d_{xz}^1$			
	(C)	$3d_{xy}^{1}, 3d_{(x^{2} - y^{2})}^{1}$	$_{2}, 3_{yz}^{1}$		(D)	$3d_{xy}^{1}, 3d_{yz}^{1}, 3_{xz}^{1}$				
75.	Which (A)	n of the following d Al(OC ₂ H ₅) ₃	loes not l (B)	have a metal-car C ₂ H ₅ MgBr	bon bond? (C)	K[Pt(C ₂ H ₄)Cl ₃]	(D)	Ni(CO) ₄		
76.	Amon	g the following wh	ich is no	t the π -bonded	organometa	allic compound				
	(A)	$K[PtCl)_3(\eta^2 -$	$C_2H_4)]$		(B)	$Fe(\eta^5 - C_5H_5)_2$	2			
	(C)	$Cr(\eta^6 - C_6H_6)$	2		(D)	$(CH_3)_4$ Sn				
77.	In the (A) (C) (D)	silver plating of co A thin layer of A Ag ⁺ ions are con Less availability	opper, K[Ag is for npletely v of Ag ⁺	Ag(CN) ₂] is use med on Cu removed from s ions, as Cu and	ed instead of (B) solution not displace	f AgNO3. The reaso More voltage is r Ag from [Ag(CN)	on is : required			
78.	Which (A)	n of the following v [Co(NH ₃) ₄ Cl ₂]	vill give (B)	maximum numb [Ni(en)(NH3)	per of isome 4] ²⁺ (C)	ers ? [Ni(C ₂ O ₄)(en) ₂] ²⁻	- (D)	$[Cr(SCN)_2(NH_3)_4]^+$		
79.	The to (A)	otal number of poss 5	ible struc (B)	ctural isomers fo 6	or the comp (C)	lex compound [Cu ^I 3	^I (NH ₃) ₄ (D)][Pt ^{II} Cl ₄)] are: 4		
80.	The or	xidation state of irc	on in Na	4 [Fe(CN)5(NO	S)] is	·				
81.	If a co	omplex [Fe(CO),]	follows	EAN rule, value	e of x is					
82.	On ad was of	lding excess of Ag btained value of x i	NO ₃ sol s	ution into 0.01	mole compl	ex compound MB	r ₄ · x NH	H_4 , 0.03 mole yellow p	recipitate	
83.	Secon	dary valency of con	mplex [0	$Co(C_2O_4)_2(NH)$	3)2] is					
84.	Totalı	number of stereoise	omers of	complex [M (er	n) ₂ (SCN)(1	NO ₂)]Cl are				
85.	CFSE	of complex [Fe(C	N) ₆] ³⁻ i	s						
86.	Total 1	number of geometr	ical ison	ners of complex	[Mab(AB)	2] are				
87.	Spin o	only magnetic mom	ent of co	omplex [Co(H ₂ 0	$(D)_{6}]^{3+}$ is _	·				
88.	Total 1	number of non-axia	al 'd' orl	bitals used in hy	bridisation	in complex Ni(CO) ₄ is _	·		
89.	The d is	lifference in numb	per of u	npaired electron	ns of Fe ²⁺	ion in its high s	spin an	d low spin octahedral	complex	
90.	Numb	er of coloured com	plexes d	ue to $d-d$ tran	sition are _	·				
	[Mn(l	$(H_2O)_6]^{2+}, CoCl_4^{2-}$, [Fe(H2	$_{2}O)_{6}]^{3+}$, CuSO	4, KMnO4,	AgBr, Ni(dmg) ₂ ,	brown	ring complex.		

- 91. Total number of EDTA required to form 1 octahedral complex is _____.
- **92.** The number of rings in complex $[M(dien)(en)Cl_2]$ are _____.
- **93.** Total number of Bridging CO in $Mn_2(CO)_{10}$ are _____.
- 94. Number of M-M bonds in $Ir_4(CO)_{16}$ are _____.

Organic Halides & Organic Concepts

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

 $CH = CHCH_{2}$

- 1. In an S_N l reaction when nucleophile approaches the substrate with chiral centre, there is :
 - (A) inversion more than retention leading to partial racemisation
 - **(B)** 100 % retention **(C)** 100 % inversion **(D)** 100 % racemisation
- 2. The reaction of $C_6H_5CH = CHCH_3$ with HBr produces :
 - (A) $C_{6}H_{5}CH_{2}CH_{2}CH_{2}Br$ (B) Br (C) $C_{6}H_{5}CHCH_{2}CH_{3}$ (D) $C_{6}H_{5}CH_{2}CHCH_{3}$ Br (D) Br
- 3. Which of the following compounds can undergo racemisation when react with aq. KOH :

4. Given :

I and II are :

(A)	identical	(B)	a pair of conformers
(C)	a pair of geometrical isomers	(D)	a pair of optical isomers

5. In the given substitution reaction : $R - I + M - F \longrightarrow R - F + M - I$

The reaction will be most favourable if M happens to be :

(A)	Na	(B)	Κ

(C) Rb (D) Li

6. Consider the reactions :

$$I. \qquad (CH_3)_2 CH - CH_2 Br \xrightarrow{C_2 H_5 OH} (CH_3)_2 CH - CH_2 OC_2 H_5 + HBr$$

II.
$$(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5O^-} (CH_3)_2CH-CH_2OC_2H_5 + Br^-$$

The mechanisms of reactions (i) and (ii) are respectively :

(A) $S_N 1$ and $S_N 2$ (B) $S_N 1$ and $S_N 1$ (C) $S_N 2$ and $S_N 2$ (D) $S_N 2$ and $S_N 1$

- 7. Which one is most reactive towards S_N 1 reaction ?
 - (A) $C_6H_5CH(C_6H_5)Br$ (B) $C_6H_5CH(CH_3)Br$
 - (C) $C_6H_5C(CH_3)(C_6H_5)Br$ (D) $C_6H_5CH_2Br$

8. The correct order of increasing reactivity of compounds given below (C-X bond cleavage) towards nucelophile is :

9. In the given reaction :
$$C_6H_5CH_2Br \xrightarrow{1. Mg/Ether} X$$
, the product 'X' is :
2. H_3O^+

(A)	$C_6H_5CH_2OCH_2C_6H_5$	(B)	C ₆ H ₅ CH ₂ OH
(C)	C ₆ H ₅ CH ₃	(D)	$C_6H_5CH_2CH_2C_6H_5$

10. Which of the following reactions is an example of nucleophilic substitution reaction?

- (A) $2RX + 2Na \rightarrow R R + 2NaX$
- $(B) \qquad RX + H_2 \rightarrow RH + HX$
- (C) $RX + Mg \rightarrow RMgX$
- **(D)** $RX + KOH \rightarrow ROH + KX$

11. How many stereoisomers does the given molecule have? $CH_3CH = CHCH_2CHBrCH_3$

12. If there is no rotation of plane polarized light by a compound in a specific solvent, though having chiral centre(s), it may means that :

(B)

55

- (A) the compound is certainly meso
- (B) there is no compound in the solvent
- (C) the compound may be a racemic mixture
- (D) the compound is certainly achiral
- *13. Which of the following is(are) chiral ?
 - (A) 2-Hydroxypropanoic acid
 - (C) 2, 3-Dibromopentane (D) 3-Bromopentane

2-Butanol

Н

H₅C₂

CH₂

Which of the following structures is enantiomeric with the molecule (A) given ?

25. Which is the correct IUPAC name for $CH_3 - CH - CH_2 - Br$?

(A) 1-Bromo-2-ethylpropane
(B) 1-Bromo-2-ethyl-2-methylethane
(C) 1-Bromo-2-methylbutane
(D) 2-Methyl-1-bromobutane

26. What should be the correct IUPAC name for diethylbromomethane?

(A) 1-Bromo-1, 2-diethylmethane
(B) 3-Bromopentane
(C) 1-Bromo-1-ethylpropane
(D) 1-Bromopentane

1

- 27. Chloromethane on treatment with excess of ammonia yields mainly

(A) N, N-Dimethylmethanamine
$$CH_3 - N < CH_3 - CH_3$$

- **(B)** N-methylmethanamine $(CH_3 NH CH_3)$
- (C) Methanamine (CH₃NH₂)
- **(D)** Mixture containing all these in equal proportion

28.	Reacti	on of C ₆ H ₅ CH ₂ Br with aque	ous sodium hydroxide fol	lows		
	(A)	S _N 1 mechanism			(B)	S _N 2 mechanism
	(C)	Any of the above two dep	ending upon the temperat	ture of reaction	(D)	Saytzeff rule
29.	Which	of the carbon atoms present	in the molecule given be	low are asymmetrie	c?	OH H
	(A)	a, b, c, d	(B)	b, c		$C^{a} - C^{b} - C^{c} - C^{c}$
	(C)	<i>a</i> , <i>d</i>	(D)	a, b, c		0 ≈ `H H OH
30.	Which	of the following compound	s will give racemic mixtu	re on nucleophilic	substitu	ition by OH ⁻ ion?

For Questions 31 - 33

Arrange the following in increasing order of ease of nucleophilic substitutions :

34. Which is the correct increasing order of boiling points of the following compounds ?

1-Iodobutane, 1-Bromobutane, 1-Chlorobutane, Butane

(A) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane

- (B) 1-Iodobutane < 1-Bromobutane < 1-Butane < 1-Chlorobutane
- (C) Butane < 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane
- (D) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bromobutane

35. Which is the correct increasing order of boiling points of the following compounds ?									
	(A)	Bromobenzene	< 1-Bromo	butane < 1-Bro	mopropa	ne < 1-Bromoeth	nane		
	(B) Bromobenzene < 1-Bromoethane < 1-Bromopropane < 1-Bromobutane								
	(C)	1-Bromopropan	e < 1-Broi	nobutane < 1-B	Bromoetha	ne < Bromobenz	zene		
	(D) 1-Bromoethane < 1-Bromopropane < 1-Bromobutane < Bromobenzene								
36.	Consid	er the following :		λ	10		Ма		
	(I) M	e~~B	r (II)		(III) Me			
				 Br			 Br		
	The con	rrect order of reac	tivity by S	_N l mechanism f	or given s	substrates is:	DI		
	(A)	I < III > III > I	(B)	II > I > III	(C)	III > II > I	(D)	I > II > III	
37	The or	anic chloro com	ound whi	ch shows maxi	num reac	tivity for Sy2 me	echanism is		
57.	(A)	(C2H5)2CHCl	(B)	(CH ₃) ₃ CCl	(C)	(CH ₃) ₂ CHCl	(D)	CH3Cl	
• •		(-23)2	(-)	((-)	((-)		
38.	Trans-2	2-phenyl-1-bromo	cyclopenta	ane on reaction	with alco	holic KOH produ	lces		
	(A) (C)	1-phenylcyclope	entene		(Б) (Д)	2-phenylcyclo	opentene		
	(C)	1-phenyleyelop	entene		(D)	5-phenyleyek	spentene		
39.	CH ₃ Bı	$r + Nu^{-} \longrightarrow Cl$	$H_3 - Nu +$	Br ⁻					
	The de	creasing order of t	he rate of	the above react	ion with g	given nucleophile	es (Nu ⁻) i	s :	
	I.	PhO ⁻	II.	AcO^{-}	III.	HO^-	IV.	CH ₃ O ⁻	
	(A)	IV > III > I > II	(B)	$\mathrm{IV} > \mathrm{III} > \mathrm{II} >$	I (C)	I > II > III > I	IV (D)	$\mathrm{II} > \mathrm{IV} > \mathrm{III} > \mathrm{I}$	
40.	The str	ucture of the majo	r product	formed in the fo	ollowing 1	reaction is :			
		$\wedge \wedge$							
			Cl NaC	N F					
			Din						
		İ							
	Ĺ	CN	ſ		21		CI	CN	
	Į								
		Ý	NC ²	Ý		\checkmark		\mathbf{Y}	
		CN (A)		I (D)		CN (C)			
		(A)		(B)		(C)		(D)	
41.	Acetyl	bromide reacts with	th excess	of CH ₃ MgI foll	owed by t	reatment with a	saturated so	olution of NH4Cl gives	
	(A)	acetone	1		(B)	acetamide			
	(C) 	2-metnyi-2-prop	banoi		(D)				
42.	The con (A)	mpound formed of gammexane	n heating o (B)	chlorobenzene v DDT	with chlor (C)	al in the presenc Freon	e of concer (D)	ntrated sulphuric acid is : hexachloroethane	
43.	The rea	action of chlorofor	m with alo	coholic KOH ar	nd p-tolui	dine form :			
			/			$\langle \frown \rangle$			
	H ₃ C →		H ₃ C-	\bigcup \sim N ₂ C	1 H ₃ C-	$\langle \bigcup angle$ NE	ICHCl ₂	$H_3C - \bigvee NC$	
		(A)		(B)		(C)		(D)	

44.	An organic compound A (C_4H_9Cl) on reaction with Na/diethyl ether gives a hydrocarbon which on monochlorination gives only one chloro derivative the compound A is :									
	(A)	t-butyl chloride	(B)	s-butyl chloride	(C)	iso butyl chloride	e (D)	n-butyl chlor	ride	
45.	A com (A) (C)	pound of molecula 2, 3-dimethylper 2-methylhexane	r formul ntane	a C ₇ H ₁₆ shows opti	ical ison (B) (D)	merism, compound w 2, 2-dimethylpen None of these	vill be : tane			
*46.	Which (A)	of the following c CH ₃ CHDCH ₂ Cl	ompound (B)	ds is(are) chiral ? CH ₃ CH ₂ CHDCl	(C)	DCH ₂ CH ₂ CH ₂ CH ₂ Cl	(D)	CH₃CHClCH	H ₂ D	
47.	Substi 2, 4-di	tution of Cl-ator nitrochlorobenzene	n of o is readi	chlorobenzene to ly replaced :	give	phenol requires	drastic	conditions. I	But chlorine c	٥f
	(A)	NO ₂ donates e ⁻	at meta	position	(B)	NO ₂ withdraw e	from c	ortho/para posit	tions	
	(C)	NO ₂ make ring e	electron	rich at ortho and pa	ara (D)	NO ₂ withdraws e	e ⁻ from	meta position		
48.	Industr (A) (C)	rial preparation of o phosgene chlorine gas	chlorofo	m employs aceton	e and (B) (D)	calcium hypochlo sodium chloride	oride			
49.	Chloro (A)	bbenzene reacts wit phenol	h Mg in (B)	dry ether to give a benzene	compo (C)	und (A) which furthe ethyl benzene	er reacts (D)	with ethanol to phenyl ether	o yield :	
50.	Which hydrox O ₂ N	chloro derivative side to furnish the c NO_2 - $ClNO_2$	of benze correspon O ₂ N	ne among the follo nding hydroxyl der	owing v ivative M	vould undergo hydro? $e_2N - Cl$	olysis mo	O ₂ N-	n aqueous sodiur	n
		(A)		(B)		(C)		(D))	
51.	Phosgo (A) (C)	ene is a common na Phosphoryl chlo carbon dioxide a	ame for : ride ind phos	phine	(B) (D)	thionyl chloride carbonyl chloride	e			
52.	Which (A) (C)	one is formed whe Phenetole (ethyl Phenol	en sodiur phenyl o	n phenoxide is hea ether)	ted with (B) (D)	h ethyl iodide ? Ethyl phenyl alcc None of these	ohol			
53.	2-chloro-2-methylpentane on reaction with sodium methoxide in methanol can from: CH_3									
	(a)	$C_2H_5CH_2\overset{ }{C}-C$ CH_3	CH ₃	(b) C ₂ H ₅ C	CH ₂ C =	^c CH ₂ (c)	C ₂ H ₅ C	$CH = C - CH_3$ $ CH_3$		
	(A) (C)	(a) and (c) (a) and (b)			(B) (D)	(c) only All of these				

64. Find out numbers of possible E_1 products from following reaction.

65. Identify number of substrate those can give $S_N 1$ and S_N^{-2} reaction both.

Examine the ten structures shown below and select those that satisfy each of the following condition.

(iii) How many compounds do not react under either of the previous reaction conditions?

67. Examine the ten structures shown below and select those that satisfy each of the following condition.

68.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 **Alcohols, Phenols & Ethers** CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION. 1. How many alcohols with molecular formula C₄H₁₀O are chiral in nature? 2 3 (A) 1 **(B) (C) (D)** 4 Which of the following species can act as the strongest base ? 2. ∩OC₆H₅ (A) ∩OH **(B)** $\cap OR$ (C) (D) 3. Phenol is less acidic than o-nitrophenol (A) ethanol **(B) (C)** o-methylphenol (D) o-methoxyphenol 4. Which of the following is most acidic? Benzyl alcohol Phenol **(D)** m-Chlorophenol **(A) (B)** Cyclohexanol **(C)** 5. Mark the correct order of decreasing acid strength of the following compounds. OH OH OH OH OH OCH₃ NO_2 ŇΟ, ĊCH₂ **(b)** (c) (d) (a) (e) (A) e > d > b > a > c (B) b > d > a > c > e (C) d > e > c > b > a (D) b > d > c > a > e6. CH₂OH CH₂OH CH₂OH Mark the correct increasing order of reactivity of the following compounds with HBr/HCl. (Visualise S_N1 reaction) a < b < c(A) **(B)** b < a < c**(C)** b < c < aŃΟ₂ **(D)** c < b < a(a) **(b)** (c) 7. Arrange the following compounds in increasing order of boiling point. Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol. Propan-1-ol, butan-2-ol, butan-1-ol, pentan-1-ol (A) **(B)** Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol **(C)** Pentan-1-ol, butan-2-ol, butan-1-ol, propan-1-ol **(D)** Pentan-1-ol, butan-1-ol, butan-2-ol, propan-1-ol *8. Which of the following are used to convert RCHO into RCH₂OH? (A) H_2/Pd

- (B) LiAlH₄
- (C) NaBH₄
- (D) Reaction with RMgX followed by hydrolysis

***9.** Which of the following reactions will yield phenol?

19.

Sodium phenoxide when heated with
$$CO_2$$
 under pressure at 125°C yields a product which on acetylation produces C

$$+ CO_2 \xrightarrow{125^{\circ}C} B \xrightarrow{H^+} Ac_2O C$$

The major product C would be :

20. The most suitable reagent for the conversion of $RCH_2OH \longrightarrow R - CHO$ is :

- (A) $KMnO_4$ (B) $K_2Cr_2O_7$
- (C) CrO₃/H₂SO₄/acetone (D) PCC [Pyridium chlorochromate]

21. Arrange the following compounds in the order of decreasing acidity

(A)
$$II > IV > I > III$$
 (B) $I > II > III > IV$ (C) $III > I > II > IV$ (D) $IV > III > I > II$

22. An unknown alcohol is treated with the "Lucas reagent' to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism?

- (A) Secondary alcohol by $S_N 1$ (B) Tertiary alcohol by $S_N 1$
- (C) Secondary alcohol by $S_N 2$ (D) Tertiary alcohol by $S_N 2$
- **23.** Aspirin is known as :
 - (A) Acetyl salicylic acid (B) Phenyl salicylate
 - (C)Acetyl salicylate(D)Methyl salicylic acid
- 24. Ortho-nitrophenol is less soluble in water than p-and m-nitrophenols because :
 - (A) o-nitrophenol is more volatile steam than those of m-and p-isomers
 - (B) o-nitrophenol shows intramolecular H-bonding
 - (C) o-nitrophenol shows intermolecular H-bonding
 - (D) Melting point of o-nitrophenol is lower than those m-and p-isomers

25. In the given transformation, which the following is the most appropriate reagent?

(A)
$$NH_2NH_2, \ddot{O}H$$
 (B) $Zn - Hg / HCl$ (C) $Na, Liq. NH_3$ (D) $NaBH_4$

26. Phenol is heated with a mixture of KBr and KBrO₃ in HCl. The major product obtained in the above reaction is :

- (A) 2-bromophenol
- (C) 4-bromophenol (D) 2, 4, 6-tribromophenol

(B)

3-bromophenol

27. The correct order acid strength of the following compounds is :

- Phenol П. p-cresol III. m-nitrophenol IV. p-nitrophenol I. The correct choice is : (A) III>II>IV**(B)** $\mathrm{IV} > \mathrm{III} > \mathrm{I} > \mathrm{II}$ II > IV > I > III(D) I > II > IV > III**(C)**
- 28. The structure of the compound that gives tribromo derivative on treatment with bromine water is :

(A)
$$(B)$$
 (C) (C) (D) (D) (D) (H) (H)

The electrophile involved in the above reaction is :

- (A) Dichloromethyl cation (CHCl₂) **(B)** Dichlorocarbene (CCl₂)
- **(C)** Trichloromethyl canion ($\overline{C}Cl_3$) **(D)** Formyl cation (CHO)
- 30. The product of the reaction given below is :

31. Which of the following reaction(s) can be used for the preparation of alkyl halides ?

I.
$$CH_3CH_2OH + HCl \xrightarrow{anh. ZnCl_2}$$

- II. $CH_3CH_2OH + HCl \longrightarrow$
- $(CH_3)_3COH + HCl \longrightarrow$ III.
- $(CH_3)_2$ CHOH + HCl $\xrightarrow{anh. ZnCl_2}$ IV.
- I and II only IV only **(A) (B)**
- III and IV only I, III and IV only **(C)** (D)
- *32. Which of the following will be soluble in sodium hydrogen carbonate ?
 - 2, 4, 6-Trinitrophenol **(B)** Benzoic acid (A)
 - (C) o-Nitrophenol **(D)** Benzenesulphonic acid

29.

*33. Among the following ethers, which will produce methyl alcohol on treatment with hot concentrated HI? CH₃ CH₃-CH-CH₂-O-CH₃ | CH₃ $CH_3 - C - O - CH_3$ **(B) (A)** CH₃-CH₂-CH-O-CH₃ | CH₃ $CH_3 - O - CH_3$ (D) **(C)** Number of isomeric alcohols of molecular formula C6H14O which give positive iodoform test is (only structural 34. isomers). (A) three **(B)** four **(C)** five **(D)** two 35. Which of the following compounds can be used as antifreeze in automobile radiators ? (A) Methyl alcohol **(B)** Glycol **(C)** Nitrophenol **(D)** Ethyl alcohol 36. In the following reactions, CH₃ $\begin{array}{c} CH_3 - CH - CH - CH_3 \xrightarrow{H^+ / heat} A \\ \downarrow \\ OH \end{array} \xrightarrow{H^+ / heat} A \\ \downarrow \\ product \end{bmatrix} +$ B ∫Minor (i) product $A \xrightarrow{HBr, dark} C + D$ $\begin{bmatrix} Major \\ Product \end{bmatrix}$ **(ii)** the major product (A) and (C) are respectively : CH₃ CH₃ $CH_2 = C - CH_2 - CH_3$ and $CH_2 - CH - CH_2 - CH_3$ (A) Βr CH₃ CH₃ $CH_3 - C = CH - CH_3$ and $CH_3 - C = CH_2 - CH_3$ **(B)** CH₃ CH₂ $CH_{2} - CH_{3} = CH - CH_{3}$ and $CH_{3} - CH - CH - CH_{3}$ **(C)** Β'r CH₃ CH₃ $CH_3 - C = CH - CH_3$ and $CH_3 - CH - CH_2 - CH_2 - Br$ **(D)** 37. Given are cyclohexanol (I), acetic acid (II), 2, 4, 6-trinitrophenol (III) and phenol (IV). In these the order of decreasing acidic character will be : III > II > IV > I (B) II > III > I > IV (C) II > III > IV > I (D) III > IV > II > I(A) 38. Among the following four compounds : (i) Phenol Ortho Methyl phenol (ii) (iii) Meta-nitrophenol (iv) Para-nitrophenol The acidity order is : (iii) > (iv) > (i) > (ii)(A) (iv) > (iii) > (i) > (ii)**(B) (C)** (i) > (iv) > (iii) > (iii)**(D)** (ii) > (i) > (iii) > (iv)

39.	When	glycerol is treated	with exe	cess of HI, it prod	uces :			1 1, "	1' 1		
	(A)	2-10dopropane	(B)	allyl iodide	(C)	propene	(D)	glycerol triio	dide		
40.	Match	the compounds gi	ven in L ist I	ist I with their ch	aracteristi	c given in List	II. Select th	e correct option	:		
	(a)	CH ₃ (CH ₂) ₃ NH ₂	151-1		(i) Alkaline hydrolysis						
	(b)	CH ₃ C≡CH			(ii)	With KOH smell	(alcohol) ar	nd CHCl3 produ	ces bad		
	(c)	CH ₃ CH ₂ COOCH	3		(iii)	Give white	ppt. with an	nmoniacal AgN0	D ₃		
	(d)	CH ₃ CH(OH)CH ₃			(iv)	(iv) With Lucas reagent cloudiness appears after 5					
	(A)	a – (ii), b – (i), c	c−(iv),	d – (iii)	(B)	a – (iii), b –	(ii), c – (i),	d – (iv)			
	(C)	a – (ii), b (iii), c	- (i), d	- (iv)	(D)	a – (iv), b –	(ii), v – (iii)	, d – (i)			
41.	Consi	der the following re	eaction :	Phenol <u>Zn dust</u>	$\xrightarrow{t} X \frac{C}{anhy}$	$\xrightarrow{\text{H}_3\text{Cl}} \text{Y} \xrightarrow{1.} 2.$	alkaline KMn H ⁺	$\xrightarrow{O_4}$ Z the proc	luct Z is :		
	(A)	benzaldehyde	(B)	benzoic acid	(C)	benzene	(D)	toluene			
42.	In the Which	reaction : $CH_3 - 0$	CH ₃ CH–CH	$H_2 - O - CH_2 - O$	CH ₃ + HI	heated >					
	vv mer	$CH_3 - CH - CH$	H ₃ CH ₂ OH		CH ₃ – CH-	-CH ₂ OH +	CH ₃ CH ₂ OH				
	(A)	CH ₃	2	5 2	(B)	CH ₃	2	5 2			
	(C)	$CH_3 - CH - CH$ CH_3	I ₂ OH +	CH ₃ CH ₂ I	(D)	CH ₃ -CH - CH ₃	- CH ₂ - I +	CH ₃ CH ₂ I			
43.	Ethyle	ene oxide when trea	ated with	n Grignard reagen	t yields :						
	(A)	primary alcohol			(B)	secondary a	lcohol				
	(C)	tertiary alcohol			(D)	cyclopropyl	alcohol				
44.	The m	najor organic produ	ct in the	reaction : CH_3 –	O-CH(C	$(\mathrm{H}_3)_2 + \mathrm{HI} \rightarrow$	products :				
	(A)	$CH_3I + (CH_3)_2C$	HOH		(B)	$CH_3OH + (CH_3)_2CHI$					
	(C)	$CH_3OH + (CH_3)$) ₂ CHO	Н	(D)	$CH_3I + (CH_3)$	(3) ₂ CHI				
45.	Which (A)	n one of the followi Cl - CH ₂ - CH	ng comj 2 – OH	pounds is most ac	idic ? (B)	O °	Η				
	(C)	OH NO ₂			(D)		H H ₃				
46.	Which	n one of the followi	ng comj	oounds is resistan	t to nucleo	ophilic attack b	y hydroxyl	ions ?			
	(A)	Diethyl ether	(B)	Acetonitrile	(C)	Acetamide	(D)	Methyl aceta	te		
47.	Ethan dimet	ol and dimethyl e hyl ether, due to the	ther for e presen	m a pair of func ce of :	tional iso	mers. The boi	ling point o	of ethanol is hi	gher than that of		
	(A)	H-bonding in et	hanol		(B)	H-bonding i	n dimethyl	ether			
	(C)	CH ₃ group in et	hanol		(D)	CH ₃ group i	n dimethyl	ether			

- 48. Increasing order of acid strength among p-methoxyphenol, p-methylphenol and p-nitrophenol is :
 - (A) p-nitrophenol, p-methoxyphenol, p-methylphenol
 - (B) p-methylphenol, p-methoxyphenol, p-nitrophenol
 - (C) p-methylphenol, p-methylphenol, p-methoxyphenol
 - (D) p-methoxyphenol, p-methylphenol, p-nitrophenol
- **49.** What is formed when a primary alcohol undergoes catalytic dehydrogenation ?
 - (A) Aldehyde (B) Ketone (C) Alkene (D) Acid
- **50.** Methanol is industrially prepared by :
 - (A) oxidation of CH_4 by steam at 900 °C (B) reduction of HCHO using LiAIH₄
 - (C) reaction HCHO with a solution of NaOH (D) reduction of CO using H_2 and $ZnO-Cr_2O_3$
- 51. How many primary alcohols (including stereoisomers) are possible with formula $C_5H_{12}O$?
- 52. 0.092g of a compound with the molecular formula $C_3H_8O_3$ on reaction with an excess of CH_3MgI gives 67.2 mL of methane at STP. The number of active hydrogen atoms present in molecule of the compound is _____.
- **53.** An unknown compound (A) (molar mass = 180) on acylation gives a product (molar mass = 390) than find the number of hydroxyl group present in compound (A) is _____.
- 54. How many compounds from A to G are enol tautomers of 2-Butanone?

55. Consider the pairs of ethers from A to F shown below. To the right of each pairs is a description of reaction conditions to be applied to each. One compound of the pair will react more rapidly than the other. Find out number of reactions in which first ether more rapidly cleaved than second.

56. Find out number of moles of HIO_4 that will react with following compound.

CHO | CHOH | CHOH | CHOH | CHOH | CH₂OH

58.
$$CH_{2} - OH$$

$$CH - OH$$

59. $R - CH_2 - OH \xrightarrow{?} R - CH_2 - Cl$ Find out number of reagents that can be

Find out number of reagents that can be used for above conversion, from following HCl | ZnCl₂, PCl₃, PCl₅, SOCl₂, NaCl, TsCl

60. Identify numbers of alcohol those will show rearrangement during dehydration with concentrated H_2SO_4 .

63. How many moles of HI reacts with glycerol to give 2-iodopropane?

x = number of alcohol including stereo isomers.

Find x :

65. How many set of carbonyl compound and RMg X can produce 3° alcohol.

Aldehydes, Ketones & Carboxylic Acids

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1. Which of the following compounds is most reactive towards nucleophilic addition reactions?

- (A) Addition of HCN (B) Fehling Solutions
- (C) Polymerisation (D) None of these

(A) Acetaldehyde (B) Acetylene (C) Ethylene (D) Acetylchloride 18. Which of the following reagents may be used to distinguish between phenol and benzoic acid ? (A) Aqueous NaOH (B) Tollen's reagent (C) Molisch reagent (D) Neutral FeCl ₃ *19. Trichloroacetaldehyde was subject to Cannizzaro's reaction by using NaOH. The mixture of the products consodium trichloroacetate ion and another compound. The other compound is : (A) 2, 2, 2-trichlorethanol (B) Trichloromethanol (C) 2, 2, 2-trichloropropanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHO $\xrightarrow{OH^{\odot}}$ CH ₃ OH + HCO ^O / ₂ the slowest step is : (A) The attack of OH ^{\appha} at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH ₂ OH 21. When CH ₂ = CH - COOH is reduced with LiAlH ₄ , the compound obtained will be : (A) CH ₃ - CH ₂ - COOH (B) CH ₂ = CH - CH ₂ OH (C) CH ₃ - CH ₂ - CH ₂ OH (D) CH ₃ - CH ₂ - CHO 22. The oxidation of benzene by V ₂ O ₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? H ₃ CO (C) (A) (B) (C) (C) (C) (D) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O O O O O O O O O O O O O O O O O O	ontains
 18. Which of the following reagents may be used to distinguish between phenol and benzoic acid ? (A) Aqueous NaOH (B) Tollen's reagent (C) Molisch reagent (D) Neutral FeCl₃ *19. Trichloroacetaldehyde was subject to Cannizzaro's reaction by using NaOH. The mixture of the products consodium trichloroacetate ion and another compound. The other compound is: (A) 2, 2, 2-trichlorethanol (B) Trichloromethanol (C) 2, 2, 2, 2-trichloroppanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHO — OH^O → CH₃OH + HCO^O/₂ the slowest step is: (A) The attack of OH^O at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be: (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic acid (C) benzaldehyde (D) cH₃ - CH₂ - COCH₃ (A) (B) COCCH₃ (B) COCCH₃ (C) (C) (D) 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (B) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O OH O OH O OH O 	ontains
 (A) Aqueous NaOH (B) Tollen's reagent (C) Molisch reagent (D) Neutral FeCl₃ *19. Trichloroacetaldehyde was subject to Cannizzaro's reaction by using NaOH. The mixture of the products consodium trichloroacetate ion and another compound. The other compound is : (A) 2, 2, 2-trichlorethanol (B) Trichloromethanol (C) 2, 2, 2-trichloropropanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHO — OH^O → CH₃OH + HCO^O/₂ the slowest step is : (A) The attack of OH^O at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₃ = CH - CH₂OH 22. The oxidation of benzene by V₂O₃ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (A) (B) (C) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O O O O O O O O 	ontains
 *19. Trichloroacetaldehyde was subject to Cannizzaro's reaction by using NaOH. The mixture of the products consodium trichloroacetate ion and another compound. The other compound is : (A) 2, 2, 2-trichlorethanol (B) Trichloromethanol (C) 2, 2, 2-trichloropropanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHOOH^O → CH₃OH + HCO₂^O the slowest step is : (A) The attack of OH^O at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (A) (B) (C) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O O O O O O O O O 	ontains
sodium trichloroacetate ion and another compound. The other compound is : (A) 2, 2, 2-trichlorethanol (B) Trichloromethanol (C) 2, 2, 2-trichloropropanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHO $\xrightarrow{OH^{\Theta}}$ CH ₃ OH + HCO ^{Θ} / ₂ the slowest step is : (A) The attack of OH ^{Θ} at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH ₂ OH 21. When CH ₂ = CH - COOH is reduced with LiAlH ₄ , the compound obtained will be : (A) CH ₃ - CH ₂ - COOH (B) CH ₂ = CH - CH ₂ OH (C) CH ₃ - CH ₂ - CH ₂ OH (D) CH ₃ - CH ₂ - CHO 22. The oxidation of benzene by V ₂ O ₃ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? H ₃ CO (A) (B) (C) (C) (D) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O O O O OH O OH O	
(A) 2, 2, 2-trichlorethanol (C) 2, 2, 2, 2-trichloropropanol (D) Chloroform 20. In Cannizzaro reaction given below 2HCHO $\xrightarrow{OH^{\Theta}} CH_{3}OH + HCO_{2}^{\Theta}$ the slowest step is : (A) The attack of OH ^{\OPP} at the carboxyl group (B) The transfer of hydride to the carbonyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH ₂ OH 21. When CH ₂ = CH - COOH is reduced with LiAlH ₄ , the compound obtained will be : (A) CH ₃ - CH ₂ - COOH (B) CH ₂ = CH - CH ₂ OH (C) CH ₃ - CH ₂ - COOH (B) CH ₂ = CH - CH ₂ OH (C) CH ₃ - CH ₂ - CH ₂ OH (D) CH ₃ - CH ₂ - CHO 22. The oxidation of benzene by V ₂ O ₃ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? H ₃ CO (A) (B) (C) (C) (C) (D) (D) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O = O O O O OH O	
 (C) 2, 2, 2 Anthenotophysical (D) Church of the slowest step is : (A) The attack of OH[∩] at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (A) (B) (C) (C) (C) (D) (D) 24. The order of stability of the following tautomeric compounds is : 	
 20. In Cannizzaro reaction given below 2HCHO → CH₃OH + HCO₂^O the slowest step is : (A) The attack of OH^o at the carboxyl group (B) The transfer of hydride to the carboxyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) COCOCH₃ (B) COCOCH₃ (C) OCOCH₃ 	
 (A) The attack of OH[∩] at the carboxyl group (B) The transfer of hydride to the carbonyl group (C) The abstraction of proton from the carboxylic group (D) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₃ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (B) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O OH O OH O OH O 	
 (b) The transfer of hydride to the carbonyl group (c) The abstraction of proton from the carbonyl group (d) The deprotonation of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₃ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (B) (C) (C) (D) 24. The order of stability of the following tautomeric compounds is : OH O O OH O O OH O O OH O O OH O 	
 (b) The depotention of PhCH₂OH 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) COCCH₃ (B) CH₂ = CH - CH₂OH (C) benzaldehyde (D) benzoic anhydride 24. The order of stability of the following tautomeric compounds is : OH O O OH O O 	
 21. When CH₂ = CH - COOH is reduced with LiAlH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) COCCH₃ (B) CH₂ - CHO 24. The order of stability of the following tautomeric compounds is : OH O O 	
 21. When CH₂ = CH - COOH is reduced with LIAIH₄, the compound obtained will be : (A) CH₃ - CH₂ - COOH (B) CH₂ = CH - CH₂OH (C) CH₃ - CH₂ - CH₂OH (D) CH₃ - CH₂ - CHO 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? 4. The order of stability of the following tautomeric compounds is : OH O O O O OH O OH O O O OH O 	
(A) $CH_3 = CH_2 = COOH$ (C) $CH_3 = CH_2 = CH_2OH$ (D) $CH_3 = CH_2 = CH_2OH$ (22. The oxidation of benzene by V ₂ O ₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic acid (C) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic acid (C) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic anhydride (C) benzaldehyde (D) benzoic acid (C) benzaldehyde (D) benzoic anhydride (D) benzoic anhyd	
 22. The oxidation of benzene by V₂O₅ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
22. The oxidation of benzene by $v_2 O_5$ in the presence of air produces : (A) maleic anhydride (B) benzoic acid (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? $\downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow	
(I) induce unifyende (D) benzoic active (C) benzaldehyde (D) benzoic anhydride 23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? $\downarrow \downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \bigcirc OCOCH_3$ $\downarrow \downarrow	
23. Which one of the following esters gets hydrolysed most easily under alkaline conditions? $ \begin{array}{c} $	
23. Which one of the following esters gets hydrolysed most easily under alkaline conditions ? $\begin{array}{c} \downarrow \\	
$H_{3}CO (A) (B) (C) (O)$ $H_{3}CO (A) (B) (C) (D)$ $24. The order of stability of the following tautomeric compounds is: OH O O O O OH O H O H O H O H O$	COCH ₃
H ₃ CO (A) (B) Cl (C) O ₂ N (D) 24. The order of stability of the following tautomeric compounds is : OH O O O O OH O	5
(A)(B)(C)(D)24. The order of stability of the following tautomeric compounds is : $OH O$ $OH O$ $OH O$ $OH O$ H H H H H	
24. The order of stability of the following tautomeric compounds is : OH O O O OH O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
OH O O OH O	
$CH_2 = \dot{C} - CH_2 - \ddot{C} - CH_3 \Longrightarrow CH_2 - \ddot{C} - CH_2 - \ddot{C} - CH_3 \Longrightarrow CH_3 - \dot{C} = CH - \ddot{C} - CH_3$	
(A) $II > I > III$ (B) $II > III > I$ (C) $I > II > III$ (D) $III > II > I$	
*25. Which of the following reactions can prepare benzaldehyde ?	
(A) $+ CO + HC1$ in presence of anhydrous AlCl ₃	
(B) $+ 2h/Hg$ and conc. HCl	
(C) $+ CrO_2Cl_2$ in CS ₂ followed by H ₃ O'	

(D)
$$+ H_2$$
 in Presence of Pd-BaSO₄

26. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is :

B > A > D > C (B) B > D > C > A (C) A > B > C > D (D) A > C > B > D(A)

27. The given reaction is an example of : RCHO + $NH_2NH_2 \rightarrow RCH = N - NH_2$

What sort of reaction is it?

- Electrophilic addition-elimination reaction (A)
- **(B)** Free radical addition-elimination reaction
- **(C)** Electrophilic substitution-elimination reaction
- **(D)** Nucleophilic addition-elimination reaction
- 28. Match the compounds gives in List-I with List-II and select the suitable option using the code given below.

	Column-I		Column-II
(A)	Benzaldehyde	(i)	Phenolphthalein
(B)	Phthalic anhydride	(ii)	Benzoin
(C)	Phenyl benzoate	(iii)	Oil of wintergreen
(D)	Methyl salicylate	(iv)	Fries rearrangement
(A)	(A) - (iv), (B) - (i), (C) - (iii), D - (ii)	(B)	(A) – (iv), (B) – (ii), (C) – (iii), D – (i)
(C)	(A) - (ii), (B) - (iii), (C) - (iv), D - (i)	(D)	(A) - (ii), (B) - (i), (C) - (iv), D - (iii)
Which	of the following reactions will result in the	formation	of carbon-carbon bonds?

*29. will result in the formation of

- Reimer-Tiemann reaction **(B) (A)** Cannizzaro reaction
- **(D)** Friedel-Crafts acylation **(C)** Wurtz reaction
- Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is : 30.

(A)	CH ₃ COOCH ₃	(B)	CH ₃ CONF
(A)	CH ₃ COOCH ₃	(B)	CH ₃ CONI

(C) CH₃COOCOCH₃ (D) CH₃COCl

31. Trichloroacetaldehyde, CCl₃CHO reacts with chlorobenzene in presence of sulphuric acid and produces :

41.	In the re	eaction $CH_3CN + 2$	2[H] — <u>H</u>	$\xrightarrow{\text{HCl}} X \xrightarrow{\text{H}_2\text{O}/\text{H}_2}$	$\xrightarrow{H^+} Y; t$	he compound Y is	5:			
	(A)	acetaldehyde	(B)	ethanamine	(C)	acetone	(D)	acetic acid		
*42.	Which o	one of the followir	ng ester ca	annot undergo Cla	aisen self-	-condensation ?				
	(A)	C ₆ H ₅ CH ₂ COOC ₂	H_5		(B)	$C_6H_5COOC_2H_5$				
	(C)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂	2COOC ₆ I	H_5	(D)	HCOOC ₂ H ₅				
43.	An este treated v +ve idoo (A) (C)	r (A) with molecu with H ₂ SO ₄ to give doform test. The s CH ₃ CH ₂ COOC ₆ I C ₆ H ₅ COOC ₂ H ₅	llar form e an olefi tructure c H5	ula, C9H10O2 was n (B). Ozonolysis of (A) is :	treated w s of (B) ga (B) (D)	with excess of CH ave a ketone with $C_2H_5COOC_6H_5$ $p-H_3CO-C_6F_5$	$_{3}$ MgBr a molecul H_{4} – COC	nd the complex so ar formula C ₈ H ₈ O CH ₃	formed, was which shows	
44.	Ketone	[RCOR] can be of	otained in	one step by :		1 5 0	-	5		
	(A)	oxidation of terti	ary alcoh	ol	(B)	reaction of acid h	nalide wi	th alcohols		
	(C)	hydrolysis of este	ers		(D)	oxidation of prin	nary alco	hol		
45.	Phenvlr	nethanol can be pr	epared by	v reducing the ber	nzaldehvd	le with :				
	(A)	CH ₃ Br and Na	(B)	CH ₃ I and Mg	(C)	CH ₃ Br	(D)	LiAlH ₄		
46. *47	Compor monoca (A) (C) Which o	and A has a mo rboxylic acid B. If methyl chloride chloral	olecular f A is obt	formula C ₂ Cl ₃ Ol ained by the action	H. It rec n of chlor (B) (D) aldol con	luces Fehling's s rine on ethyl alcoh monochloro acet chloroform densation in the p	solution iol, then ic acid	and on oxidation compound A is : of dilute alkali ?	, it gives a	
• / •	(A)	C ₆ H ₅ CH ₂ CHO	(B)	$CH_2 = CHCHO$	(C)	C ₆ H ₅ CHO	(D)	CH ₃ CH ₂ CHO		
48.	Sodium	formate on heatin	g vields :							
	(A)	oxalic acid and H	I_2		(B)	sodium oxalate a	nd H ₂			
	(C)	CO_2 and NaOH			(D)	sodium oxalate				
49.	(CH ₃) ₂ C	$C = CHCOCH_3$ car	n be oxidi	zed to $(CH_3)_2C =$	CHCOO	H by :				
	(A)	chromic acid	(B)	NaOI	(C)	Cu at 300° C	(D)	KMnO ₄		
*50.	In whic oxidation (A)	h of the following on with strong oxid CH ₃ COCH ₃	g, the nu lising age (B)	mber of carbon a ent such as KMnC CCl ₃ CH ₂ CHO	atoms doo 0 ₄ ⁺ /H ⁺ /Δ. (C)	es not remain san CH ₃ CH ₂ CH ₂ OH	ne when (D)	carboxylic acid is C ₆ H ₅ CH ₂ CHO	obtained by	
51.	The pol (A) (C)	ymers shown is ob trioxane paraformaldehyd	otained w	hen formaldehyde	e is allowe (B) (D)	ed to stand. It is a formose metaldehyde	white so	lid. The polymer is		
52.	The con	npound formed wh	nen malor	nic acid is heated	with urea	is :			~	
	(A)	cinnamic acid	(B)	butryric acid	(C)	barbituric acid	(D)	crotonic acid		
53.	If forma (A)	ldehyde and KOH methane	I are heat (B)	ed, then we get ; methyl alcohol	(C)	ethyl formate	(D)	acetylene		
54.	In the fo	ollowing sequence	of reaction	ons Toluene—KM	$\xrightarrow{\text{AnO}_4} A$	$\xrightarrow{\text{SOCl}_2} B \xrightarrow{\text{H}_2} Ba$	$2 \xrightarrow{Pd} C$, the product C is:		
	(A)	C ₆ H ₅ COOH	(B)	$C_6H_5CH_3$	(C)	C ₆ H ₅ CH ₂ OH	(D)	C ₆ H ₅ CHO		

*55. CH₂CHO and C₄H₂COCH₂ can be distinguished chemically by :
(A) Benedict's test (B) Iodoform test
(C) Tollen's reagent test (D) Fehling's solution test
56. Me₅C - CH₂ - CH₃ -
$$\frac{50\%}{(A)}$$
 Me₅C - CH₂ - Br
(B) O^{H}
Me₅C - CH₂ - $CH_3 - \frac{50\%}{(A)}$ Me₅C - CH₂ - Br
(B) O^{H}
Me₅C - CH₃ - $CH_3 - \frac{50\%}{(A)}$ Me₅C - $CH_2 - Br$
Yield of each step as actually carried out in the laboratory is given above. The overall yield of reaction is ______.
(C) O^{H}
57. CH₃ - C^{-} CH₃ + x HCHO \xrightarrow{KOH} HO \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} HO \xrightarrow{HO} \xrightarrow{HO}
x = moles of HCHO consumed. Value of (x) will be ______.
(C) $O_{2}H$
58. (CH₂)_n; For what value of n, the given carboxylic acid is known as acidic acid ______.
(H₂)_H
59. The total number of addol reaction (s) and cannizaro reaction (s) that occurs in the given transformation is :
(H₃) \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO} \xrightarrow{HO}
61. Among the following, the number of reaction(s) that produce(s) benzaldehyde is:
(i) \overrightarrow{D} \xrightarrow{COOH} \xrightarrow{COOH} (ii) \overrightarrow{D} \xrightarrow{COOH} \xrightarrow{HO} \xrightarrow{HO} (iv) \overrightarrow{D} \xrightarrow{COOH} \xrightarrow{HO}
(iii) \overrightarrow{D} \xrightarrow{COOH} \xrightarrow{COOH} (iv) \overrightarrow{D} \xrightarrow{COOH} \xrightarrow{HO} \xrightarrow{HO}
62. What is the molecular weight of a compound that undergrees an aldol self-condensation reaction to result in a β -bydroxy ketome with a molecular weight of 142?
63. Total number of species that can give silver mirror test with Tollen's reagent isfare
C₆H₃CHO₂CH₂CH₂CH₃ \xrightarrow{COOH} CH₃CD₄CH₂CH₂CH₀ \xrightarrow{COOH} \xrightarrow{COOH}
64. CH₃CH₂-C₁-CH₂-CH₃ $\xrightarrow{CH_2}$ CH₂CH₀ \xrightarrow{COOH} \xrightarrow{COOH} \xrightarrow{COOH} \xrightarrow{COOH} \xrightarrow{OO} $\xrightarrow{$

OH

CHO

64. Examine the structural formulas given below and identify number of compounds which are reduced by NaBH₄

65. Find out number of substrates which can undergo Cannizzaro's reaction.

66. Examine the structural formulas of compounds given below and identify number of compounds which show positive iodoform test.

67. Of the following compounds, how many would give positive test with Tollen's reagent ?

$$\begin{array}{c} O & O & O & O & O & O \\ CH_{3} - C - H , CH_{3} - C - OH , H - C - OH , CH_{3} - C - CH_{3} , Ph - C - H \\ \vdots & & & \\ H_{3}C & OC_{2}H_{5} & H_{3}C & OC_{2}H_{5} \\ H & & OC_{2}H_{5} & H_{3}C & OC_{2}H_{5} \end{array}$$

68. Of the following carbonyl compounds, how many would give aldol condensation reaction ?

69. Consider the following reactions and identify how many reactions can give carbonyl compounds as major product. Ph

70. Examine the structural formulas of following compounds and find out number of compounds which show higher rate of nucleophilic addition than

72. Examine the structure of following compounds, and find out number of compounds that will readily undergo decarboxylation in presence of heat.

73. How many moles of NaOH would be required for complete neutralization of following compound?

74. How many moles of CO_2 will released when 1 mol of following compound is heated.

75. Examine the structural formulas of following compounds and find out how many compounds can show Claisen condensation reaction.

76. Br
$$H_{n}$$
 Br $+ CH_{2}$ $C - OC_{2}H_{5}$ $NaOC_{2}H_{5}$ Cyclic product,

At what value of 'n' the formation of six membered ring take place?

77.
$$O \xrightarrow{(X' CH_3MgBr)} HO \xrightarrow{OH}, Find out value of 'X'.$$

78.
$$CH_3 - C - OC_2H_5 + CH_3CH_2 - C - OC_2H_5 \xrightarrow{C_2H_5ON_a} C_{2H_5ON_a}$$

How many different condensation products would be formed by above reaction?

79. How many of following esters show A_{AL⁻¹} hydrolysis (Acid catalyzed, unimolecular and alkyl-oxygen fission ester hydrolysis)?

$$\begin{array}{c} O & CH_{3} & O & C_{6}H_{5} \\ CH_{3} - C - O - C & -CH_{3}, & CH_{3} - C - O - C & -C_{6}H_{5} \\ CH_{3} & C - O - CH_{3}, & CH_{3} - C - O - C & -C_{6}H_{5} \\ H_{3}C & & C - O - CH_{3} \\ H_{3}C & & C - O - CH_{3} \\ H_{3}C & & C - O - CH_{3} \\ CH_{3} & & O_{2}N \\ CH_{3} & & C - O - CH_{3} \\ \end{array}$$

Nitrogen Containing Organic Compounds

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1.	Which of the following is a 3° amine?												
	(A)	1-methylcycloh	exylamin	e	(B)	Triethylamine							
	(C)	tert-butylamine			(D)								
2.	The cor	rect IUPAC nam	e for CH ₂	$e = CHCH_2NHCH_3$	is :								
	(A)	Allylmethylam	ine		(B)	2-amino-4-per	ntene						
	(C)	4-Aminopent-1	-ene		(D)	N-methylprop-2-en-1-amine							
3.	Among	st the following,	the strong	gest base in aqueou	ıs mediu	m is							
	(A)	CH ₃ NH ₂	(B)	NCCH ₂ NH ₂	(C)	$(CH_3)_2NH$	(D)	C ₆ H ₅ NHCH ₃					

- *14. Which of the following methods of preparation of amines will give same number of carbon atoms in the chain of amines as in the reactant?
 - (A) Reaction of nitrile with LiAlH₄
 - (B) Reaction of amide with LiAlH₄ followed by treatment with water
 - (C) Heating alkylhalide with potassium salt of phthalimide followed by Hydrolysis
 - (D) Treatment of amide with bromine in aqueous solution of sodium hydroxide

*15. Reduction of nitrobenzene by which of the following reagent gives aniline?

(A) Sn/HCl (B) Fe/HCl (C) $H_2 - Pd$ (D) Sn/NH₄OH

*17. Arenium ion involved in the bromination of aniline is _

- *18. Which of the following amines can be prepared by Gabriel synthesis.
 - (A) Isobutyl amine (B) 2-Phenylethylamine
 - (C) N-methylbenzylamine (D) Aniline
- *19. Under which of the following reaction conditions, aniline gives p-nitro derivative as the only major product?
 - (A) Acetyl chloride / pyridine followed by reaction with conc. H_2SO_4 + conc. HNO_3
 - (B) Acetic anhydride / pyridine followed by conc. H_2SO_4 + conc. HNO_3
 - (C) Dil. HCl followed by reaction with conc. $H_2SO_4 + conc. HNO_3$
 - **(D)** Reaction with conc. $HNO_3 + conc. H_2SO_4$
- *20. Which of the following reactions belong to electrophilic aromatic substitution?
 - (A) Bromination of acetanilide (B) Coupling reaction of aryldiazonium salts
 - (C) Diazotisation of aniline (D) Acylation of aniline

For Questions 21 - 26

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True
- 21. Statement : 1 Hoffmann's bromamide reaction is given by primary amides.
- **Statement : 2** Primary amines are more basic than secondary amines.
- 22. Statement : 1 N-Ethylbenzene sulphonamide is soluble in alkali.
- **Statement : 2** Hydrogen attached to nitrogen in sulphonamide is quite acidic.
- 23. Statement : 1 N, N-Diethylbenzene sulphonamide is insoluble in alkali.
- **Statement : 2** Sulphonyl group attached to nitrogen atom is strong electron withdrawing group.
- 24. Statement : 1 Only a small amount of HCl is required in the reduction of nitro compounds with iron scrap and HCl in the presence of steam.
 - **Statement : 2** FeCl₂ formed gets hydrolysed to release HCl during the reaction.
- 25. Statement : 1 Aromatic 1° amines cannot prepared by Gabriel Phthalimide Synthesis.
- **Statement : 2** Aryl halides undergo nucleophilic substitution with anion formed by phthalimide.

26. Statement : 1 Acetanilide is less basic than aniline.

Statement: 2 Acetylation of aniline results in decrease of electron density on nitrogen.

27. The following reaction :

is known by the name :

- (A) Perkin's reaction
- (C) Schotten-Baumann reaction

Acetylation reaction Friedel-Craft's reaction

- ***28.** Aniline can be prepared by :
 - (A) degradation of benzamide with bromine in alkaline solution
 - (B) reduction of nitrobenzene with H_2/Pd in ethanol
 - (C) potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution

(B)

(D)

- (D) hydrolysis of phenylisocyanide in acidic solution
- **29.** In the following reaction, the product (A) is :

The reagent R is :

30.

(A) H_3PO_2 and H_2O (B)

(C)

 $HgSO_4/H_2SO_4$ (**D**) Cu_2Cl_2

31. On hydrolysis of a compound (X), two compounds are obtained. One of which on treatment with sodium nitrite and hydrochloric acid gives a product which does not respond to iodoform test. The second one reduces Tollen's reagent and Fehling's solution. The compound (X) is :

(A)
$$CH_3CH_2CH_2NC$$
 (B) $CH_3CH_2CH_2CN$ (C) $CH_3CH_2CH_2ON = O$ (D) $CH_3CH_2CH_2CON$ (CH₃)₂

***32.** Which of the following reactions of amines is(are) correct ?

(A)
$$(CH_3)_2 N - \bigcirc + NaNO_2 + HCl \rightarrow (CH_3)_2 N - \bigcirc + N \equiv NCl^-$$

 H^+/H_2O

- (B) $CH_3CH_2NH_2 + HNO_2 \rightarrow CH_3CH_2OH + N_2$
- (C) $CH_3NH_2 + C_6H_5SO_2Cl \rightarrow CH_3NHSO_2C_6H_5$
- (D) $(CH_3)_2 NH + NaNO_2 + HCl \rightarrow (CH_3)_2 N-N=O$

- 33. An organic compound (C_3H_9N) (A), when treated with nitrous acid, gave an alcohol and N_2 gas was evolved. (A) on warming with CHCl₃ and caustic potash gave (C) which on reduction gave isopropylmethylamine. Predict the structure of (A).
 - $CH NH_2$ **(B)** $CH_3CH_2 - NH - CH_3$ (A)

(C)
$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{N-CH}_3 \\ | \\ \operatorname{CH}_3 \end{array} \qquad (D) \qquad \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 - \operatorname{NH}_2 \end{array}$$

34. What is the product obtained in the following reaction?

35. Which of the following compounds is most basic?

$$O_2 N \longrightarrow NH_2 \qquad \swarrow CH_2 NH_2 \qquad \swarrow NH_2 MH_2 MH_2 MH_2$$
(A) (B) (C) (D)

*36. Which of the following statements about primary amines is(are) true ?

- Alkyl amines are stronger bases than aryl amines (A)
- **(B)** Alkyl amines react with nitrous acid to produce alcohols
- Aryl amines react with nitrous acid to produce phenols
- **(D)** Alkyl amine are stronger bases than ammonia
- 37. Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO3 and conc. H2SO4. In the mixture, nitric acid acts as a/an :
 - (A) acid **(B) (C)** catalyst **(D)** reducing agent base
- 38. Aniline in a set of reactions yielded a product D.

$$\underbrace{\text{NH}_2}_{\text{HCl}} A \xrightarrow{\text{CuCN}}_{\text{HCl}} B \xrightarrow{\text{H}_2}_{\text{Ni}} C \xrightarrow{\text{HNO}_2}_{\text{D}} D$$

The structure of the product D would be :

- (A) C₆H₅NHOH **(B)** C₆H₅NHCH₂CH₃
- **(C)** $C_6H_5CH_2NH_2$ (D) C₆H₅CH₂OH

(C)

39. Aniline when diazotized in cold and then treated with dimethyl aniline gives a coloured product. Its structure would be :

40.	On hea formed	ating an aliphatic l is :	primary	amine with chlor	oform an	d ethanolic potas	sium hy	droxide, the organic compound
	(A)	an alkanol	(B)	an alkanediol	(C)	an alkyl cyanide	(D)	an alkyl isocyanide
41.	Consid	ering the basic stre	ength of a	mines in aqueous	solution,	which one has the	smalles	t pKb value?
	(A)	$(CH_3)_2NH$	(B)	CH ₃ NH ₂	(C)	$(CH_3)_3N$	(D)	$C_6H_5NH_2$
42.	An org to give	anic compound A CH ₃ CH ₂ NH ₂ . A is	on reactin	ng with NH ₃ gives	s B. On ho	eating B gives C. C	C in the p	presence of KOH reacts with Br ₂
	(A)	$CH_3 - CH - C$ CH_3	ООН		(B)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂	2COOH	
	(C)	CH ₃ CH ₂ COOH			(D)	CH ₃ COOH		
43.	A com 390 an	pound with mole nu. The number of	cular ma f amino g	ss 180 amu is ad roups present per	cylated w molecule	vith CH ₃ COCl, to of the former com	get a c pound i	ompound with molecular mass s:
	(A)	0	(b)	Z	(C)	5	(D)	4
44.	Which	one of the following	ng is the s	strongest base in a	iqueous s	olution ?	(D)	Maladan
	(A)	Irimetnylamine	(В)	Aniline	(C)	Dimethylamine	(D)	Methylamine
45.	In the c	chemical reaction :	CH ₃ CH ₂	$_2$ NH ₂ + CHCl ₃ +	3КОН -	\longrightarrow (A) + (B) +	· 3H ₂ O	the compounds (A) and (B) are
	respect	ively:	CI				1 0177	
	(A) (C)	C_2H_5CN and $3K$	CI KCI		(D) (B)	$C_{13}CH_{2}CONH_{2}$	and $3KC$	
46.	Among	est the following th	ie most ba	asic compound is	(D) :	C ₂ 115 IVC and 11	CI	
	(A)	p-nitroaniline	(B)	acetanilide	(C)	aniline	(D)	benzylamine
47.	Which	of the following is	the stror	ngest base ?				
		NH ₂	$\langle C$		$\langle \bigcirc$	≻NHCH ₃	\bigcirc	- CH ₂ NH ₂
		(A)		(B)	(C	а	0)
48	The co	rrect order of incre	asing has	vic nature for the h	vases NH2	CH2NH2 and (CI	י) NH ההו	in gas phase is :
10,	(A)	CH ₃ NH ₂ < NH ₃	< (CH ₃)2	NH	(B)	$(CH_3)_2NH < NH_3$	$3 < CH_3$	NH ₂
	(C)	$NH_3 < CH_3 NH_2$	< (CH ₃)2	NH	(D)	$CH_3NH_2 < (CH_3)$) ₂ NH < 1	NH ₃
49.	Interm	ediates formed dur	ing reacti	on of R – CONH	2 with Br	2 and KOH are :		
	(A)	RCONHBr and	RNCO		(B)	RNHCOBr and I	RNCO	
	(C)	RNH – Br and R	CONHB	r	(D)	RCONBr ₂		

- **50.** Aniline is reacted with bromine water and the resulting product is treated with an aqueous solution of sodium nitrite in presence of dilute hydrochloric acid. The compound so formed is converted into a tetrafluoroborate which is subsequently heated dry. The final product is :
 - (A) p-bromoaniline (B) p-bromofluorobenzene
 - (C) 1, 3, 5-tribrobenzene (D) 2, 4, 6-tribromofluorobenzene
- 51. When aniline reacts with oil of bitter almonds (C_6H_5CHO) condensation takes place and benzal derivative is formed. This is known as :
 - (A) Schiff's base (B) Benedict's reagent (C) Million's base (D) Fehling reagent

*52. Which of the following order(s) is(are) correct, with respect to the property indicated ?

- (A) Benzoic acid > phenol > cyclohexanol (acid strength)
- (B) Aniline > cyclohexylamine > benzamide (basic strength)
- (C) Formic acid > acetic acid > propanoic acid (acid strength)
- (D) Fluoroacetic acid > chloroacetic acid > bromoacetic acid (acid strength)

53. In the reaction

$$(\longrightarrow_{CH_3}^{NH_2} \xrightarrow{NaNO_2/HCl} D \xrightarrow{CuCN/KCN} E + N_2$$

the product E is :

$$\begin{array}{c} COOH \\ \hline \\ \hline \\ \\ CH_3 \\ (A) \end{array} \qquad H_3C - \begin{array}{c} \hline \\ \\ \hline \\ \\ CH_3 \\ \hline \\ \\ (B) \end{array} \qquad CH_3 \\ \hline \\ \\ CH_3 \\ \hline \\ \\ (C) \end{array} \qquad \begin{array}{c} CN \\ \hline \\ \\ \\ CH_3 \\ \hline \\ \\ CH_3 \\ \hline \\ \\ (C) \end{array} \qquad \begin{array}{c} CN \\ \hline \\ \\ \\ CH_3 \\ \hline \\ \\ (D) \end{array}$$

- 54. In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br₂ used per mole of amine produced are:
 - (A) Four moles of NaOH and two moles of Br_2 (B) Two moles of NaOH and two moles of Br_2
 - (C) Four moles of NaOH and one mole of Br_2 (D) One mole of NaOH and one mole of Br_2

*55. Indicate which nitrogen compound amongst the following would undergo Hoffmann's rearrangement reaction ? (A) RCONHCH₃ (B) RCOONH₄ (C) RCONH₂ (D) PhCONH₂ O ||

56.
$$R - C - NH_2 + x NaOH + Br_2 \longrightarrow R - NH_2 + NaBr + Na_2CO_3 + H_2O$$

Number of moles of NaOH used in above Hoffmann bromide reaction is _____. NH₂

57.
$$V \equiv C$$

 $x = moles of KOH consumed is _____.$

58.

Find out number of reactions which involve electron deficient nitrogen during reaction mechanism.

59. Examine the structural formulas of following compounds and identify how many compounds are more basic than aniline.

60. Of the following amines how many can give carbylamine reaction?

61. Of the following reactions, how many reaction, are used for the preparation of amines ?

(a)
$$R-C \equiv N \xrightarrow{\text{LiAH}_4}$$
 (b) $R \xrightarrow{H}_{-C-NH_2} \xrightarrow{\text{LiAH}_4}$
(c) $R \xrightarrow{H}_{-C-NH_2} \xrightarrow{Br_2+OH}$ (d) $R \xrightarrow{H}_{-C-CH_3} + H_3C - NO_2 \xrightarrow{NaOH}$
(e) $H \xrightarrow{O}_{-V} \stackrel{N \oplus H}{K^{\oplus}} \xrightarrow{R-X}_{H^{\oplus}/H_2O}$ (f) $R \xrightarrow{O}_{-CH_3} \xrightarrow{N_2H_4,OH}$
(g) $R \xrightarrow{H}_{-C-NH_2} \xrightarrow{P_2O_5}$ (h) $R \xrightarrow{-CH_2-NO_2} \xrightarrow{H_2,Ni}$

62. Of the following amines how many can give Hoffmann's mustard reaction?

- 63. The total number of structural 2° amines possible having formula $C_5H_{13}N$, is :
- 64. Phenol is less acidic than how many of the compounds given below.

65. What is the maximum number of compounds with the molecular formula $C_4H_{11}N$, which give an alkali soluble precipitate with benzenyl sulfonyl chloride?

66. Me
$$Me$$
 Me $(i) 3 mol Mel X (Major)$
 $(ii) AgOH (Major)$

Number of hyperconjugative hydrogens in X are

- 67. Certain nitrogeneous compound with molecular mass 180 shows an increase in its molecular mass to 348 after treatment with acetyl chloride. The number of NH₂ groups in the molecule is _____.
- **68.** Consider the following reaction.

The position number at which PhN_2^+ attacks to form major product is :

69. Ketone P (having minimum molar mass) on reaction with NH₂OH form two oxime Q and R that are geometrical isomer (P contain only C, H and O)

$$\begin{array}{c} Q \xrightarrow{H_2SO_4} Amide \xrightarrow{(i) Basic hydrolysis} (ii) H_3O^+ \\ R \xrightarrow{H_2SO_4} Amide \xrightarrow{(i) Basic hydrolysis} (ii) H_3O \\ \end{array} \xrightarrow{(ii) Basic hydrolysis} Acid + Amine \\ (W) \xrightarrow{(ii) H_3O} (II) \end{array}$$

The difference in molar mass of Acid I and II is :

70. In a given reaction sequence

$$CH_3 - C \equiv N \xrightarrow{(i) CH_3MgBr} A \xrightarrow{Br_2 / NaOH} B \xrightarrow{Red P + Br_2} C$$

Number of lone pair in end product (C) is x then the value of 2x will be :

Biomolecules & Polymers

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

1. Glycogen is a branched chain polymer of α -D-glucose units in which chain is formed by glycosidic linkage whereas branching occurs by the formation of C1-C6 glycosidic linkage. Structure of glycogen is similar to Amylopectin Cellulose (A) Amylose **(B) (C) (D)** Glucose 2. Which of the following polymer is stored in the liver of animals? Amylose **(B)** Cellulose **(C)** Amylopectin Glycogen (A) **(D)** 3. Sucrose (cane sugar) is a disaccharide. One molecule of sucrose on hydrolysis gives (A) 2 molecules of glucose 2 molecules of glucose + 1molecule of fructose **(B)** 1 molecule of glucose +1 molecule of fructose **(C) (D)** 2 molecules of fructose 4. Proteins are found to have two different types of secondary structures viz. α -helix and β -pleated sheet structure. α -helix structure of protein is stabilised by : Peptide bonds van der Waals forces **(B)** (A) **(C)** Hydrogen bonds **(D)** Dipole-dipole interaction

5. In disaccharides, if the reducing groups of monosaccharides i.e. aldehydic or ketonic groups are bonded, these are non-reducing sugars. Which of the following disaccharide is a non-reducing sugar ?

Class XII | Chemistry

- 15. Which of the following reactions of glucose can be explained only by its cyclic structure ?
 - (A) Glucose forms pentaacetate
 - **(B)** Glucose reacts with hydroxylamine to form an oxime
 - (C) Pentaacetate of glucose does not react with hydroxylamine
 - **(D)** Glucose is oxidised by nitric acid to gluconic acid
- 16. Optical rotations of some compounds along with their structures are given below which of them have D configuration.

(A) 17. RNA contains :

18.

- (A) Ribose sugar and thymine
- **(C)** Deoxyribose sugar and uracil
- **(B)** Ribose sugar and uracil
- **(D)** Deoxyribose sugar and thymine
- Three structures are given below in which two glucose units are linked. Which of these linkages between glucose units are between C1 and C4 and which linkages are between C1 and C6?

- (A) is between C1 and C4, (B) and (C) are between C1 and C6 (A)
- (A) and (B) are between C1 and C4, (C) is between C1 and C6 **(B)**
- **(C)** (A) and (C) are between C1 and C4, (B) is between C1 and C6
- (A) and (C) are between C1 and C6, (B) is between C1 and C4 **(D)** . .

19.	Which of the following polymers of glucose is stored by animals ?												
	(A)	Cellulose	(B)	Amylose	(C)	Amylopectin	(D)	Glycogen					
20.	Which	Which of the following is not a semisynthetic polymer ?											
	(A)	Cis-polyisopr	ene		(B)	Cellulose nitrate							
	(C)	Cellulose ace	tate		(D)	Vulcanised rub	ber						
21.	The commercial name of polyacrylonitrile is												
	(A)	Dacron			(B)	Orlon (acrilan)							
	(C)	PVC			(D)	Bakelite							

22. Which of the following polymer is biodegradable ?

(A)
$$-(CH_2-C=CH-CH_2)_n$$

(B) $-(CH_2-CH=CH-CH_2-CH_2-CH_2)_n$
(C) $-(O-CH-CH_2-C-O-CH-CH_2-C)_n$
(C) $-(O-CH-CH_2-C-O-CH-CH_2-C)_n$
(D) $-(N-(CH_2)_6-N-C-(CH_2)_4-C)_n$

23. In which of the following polymers ethylene glycol is one of the monomer units ?

(D)

24. Which of the following statements is not true about low density polythene ?

- (A) Tough (B) Hard
- (C) Poor conductor of electricity

Highly branched structure

CN

30.	The spe (A)	ccies which can be LiAlH4	st serve a (B)	s an initiator for t HNO3	he cation (C)	ic polymerization AlCl ₃	is (D)	BaLi
31.	Which (A) (C)	of the following co Nitro compounds Amines	ompound 5	s can be detected	by Molis (B) (D)	h's test? Sugars Primary alcohols	5	
32.	The pre	sence or absence of	of hydrox	y group on which	a carbon a	tom of sugar diffe	rentiates	RNA and DNA?
	(A)	1st	(B)	2nd	(C)	3rd	(D)	4th
33.	The cha (A)	ange in the optical tautomerism	rotation of (B)	of freshly prepare racemization	d solutior (C)	n of glucose is kno specific rotation	wn as (D)	mutarotation
34.	Thermo (A)	osetting polymer, b CH ₃ CH ₂ CHO	akelite is (B)	s formed by the re CH ₃ CHO	action of (C)	phenol with HCHO	(D)	НСООН
35.	Biuret t (A)	est is not given by Carbohydrates	: (B)	Polypeptides	(C)	Urea	(D)	Proteins
36.	The pol	ymer containing s	trong inte	ermolecular forces	s e.g., hyd	drogen bonding, is	:	
	(A)	Teflon	(B)	Nylon 66	(C)	Polystyrene	(D)	Natural rubber
37.	The two	o functional group	s present	in a typical carbo	hydrate a	re :		
	I.	– OH and – COC	θH		II.	– CHO and – CO	OOH	
	The cor	C = O and $-OH$			IV.	- OH and $-$ CHC)	
	(A)	I, II	(B)	III, IV	(C)	III	(D)	IV
38.	Buna-N	synthetic rubber i	s a copol	lymer of :				
	(A)	Cl $H_2C = CH - C$	= CH2 a	and H2C=CH-0	CH = CH	I.		
	(B)	$H_2C = CH - C$	$H = CH_2$	and $H_5C_6 = CH$	$H = CH_2$	-2		
	(C)	$H_2C = CH - CI$	N and H_2	$_2C = CH - CH = 0$	CH ₂			
	(D)	$H_2C = CH - CL$	N and H	$_{3}^{C} - C = CH_{2}$				
39.	Which	one of the followir	ng is used	l to make 'non-sti	ck' cooky	ware?		
	(A)	Poly-ethylene ter	rephthala	te	(B)	Polytetrafluoroet	hylene	
	(C)	PVC			(D)	Polystyrene		
40.	α – D((+)-glucose and β	– D – (-	+) - glucose are :				
	(A)	Conformers	(B)	Epimers	(C)	Anomers	(D)	Enantiomers
41.	The sec	ondary structure o	f a protei	in refers to :				
	(A)	α -helical backb	one		(B)	Hydrophobic inte	eractions	5
10	(C)	Sequence of α -a	amino aci	ids	(D)	Fixed configurat	ion of th	e polypeptide backbone
42.	The term (Λ)	m anomers of gluc	ose refer se that di	s to : iffer in configurati	ions at ca	rhons one and four	C = 1	and (-4)
	(A) (B)	A mixture of (D)	-glucose	and (L)-glucose		Toolis one and four	(C - 1 a	and $C = +)$
	(C)	Enantiomers of g	glucose	() 820				
	(D)	Isomers of gluco	se that di	ffer in configuration	ion at car	bon one $(C - 1)$		

43.	The py (A) (C)	rimidine bases pre Cytosine and ad Cytosine and the	esent in DNA are : enine ymine	(B) (D)	Cytosine and Cytosine and	l guanine l uracil	
44.	Which (A)	of the following is PVC	s fully fluorinated (B) Thioko	polymer ? l (C)	Teflon	(D)	Neoprene
45.	Which (A)	of the following is Bakelite	s a polyamide ? (B) Teryler	ne (C)	Nylon-66	(D)	Teflon
46.	In both (A) (B) (C) (D)	n DNA and RNA, h C'_5 and C'_1 resp C'_1 and C'_5 resp C'_2 and C'_5 resp C'_5 and C'_2 resp	neterocylic base ar nectively of the sug ectively of the sug ectively of the sug ectively of the sug	nd phosphate este gar molecule ar molecule gar molecule gar molecule	er linkages are at	t:	
47.	Identif (A) (B) (C) (D)	y the correct stater Enzymes are spo (T ~ 1000K) Enzymes are no Enzymes are spo Enzymes are spo	nent regarding enz ecific biological ca rmally heterogene ecific biological ca ecific biological ca	zymes. atalysts that can f ous catalysts that atalysts that cann atalysts that posse	function normall t are very specifi ot be poisoned ess well defined	y at very hi ic in their a active sites	gh temperatures ction
48.	Insulin which (A) (C)	n production and it of the following ca A coenzyme An enzyme	ts action in human ategories?	n body are respo (B) (D)	A hormone An antibiotic	evel of diab	betes. This compound belongs to
49.	Which (A) (C)	base is present in Uracil Guanine	RNA but not in D	NA? (B) (D)	Cytosine Thymine		
50.	The rea (A) (C)	ason for double he van der Waals' i hydrogen bondii	lical structure of D forces ng	DNA is operation (B) (D)	of : dipole-dipole electrostatic	e interactior attractions	1
51.	Nylon (A) (C)	threads are made u Polyvinyl polym Polyamide polym	ıp of : ner mer	(B) (D)	Polyester pol Polyethylene	lymer e polymer	
52.	Compl (A) (C)	ete hydrolysis of c D-fructose D-glucose	ellulose gives :	(B) (D)	D-ribose L-glucose		
53.	Monor (A) (C)	ners are converted Hydrolysis of m Protonation of n	to polymer by : onomers nonomers	(B) (D)	Condensation	n reaction b above	etween monomers
54.	A subs (A) (C)	tance form Zwitter –NH ₂ , – COOH Both (A) and (B	r ion. It can have f	unctional groups (B) (D)	– NH2, –SO3 None of the a	H above	

55.	D(+)-g	glucose reacts with	hydrox	yl amine and yields	an oxin	ne. The structure of	f the oxii	me would be :						
		CH = NOH	[CH = NOH		CH = NOH		CH = NOH						
		H - C - OH		HO - C - H		HO - C - H		H – C – OH						
	(A)	HO – C – H	(B)	HO - C - H	(C)	H– C – OH	(D)	HO – C – H						
		HO - C - H		H - C - OH		HO - C - H		H-C-OH						
		H - C - OH		H - C - OH		H - C - OH		H - C - OH						
		CH ₂ OH		Г СН ₂ ОН		Г СН ₂ ОН		CH ₂ OH						
56.	In DN	A, the linkages bet	ween d	ifferent nitrogenous	bases an	re								
	(A)	phosphate linkag	ge		(B)	H-bonding								
	(C)	glycosidic linka	ge		(D)	peptide linkage								
57.	Defici	ency of vitamin B_1	causes (B)	the disease	(\mathbf{C})	cheilosis	(D)	sterility						
7 0	(A)		(D)		(C)	chenosis	(D)	sterinty						
58.	Which (A)	α one of the followi	ng sets ranose a	of monosaccharides and α -D gluconvra	s forms s nose	sucrose ?								
	(B)	α -D-glucopyra	nose an	d B-D-fructofurano	se									
	(C)	β -D-glucopyra	nose an	d α -D-fructofurance	ose									
	(D)	α -D-glucopyranose and α -D-fructopyranose												
59.	Which	one of the followi	ng state	ements is not true re	garding	(+) lactose ?								
	 (A) On hydrolysis (+) lactose gives equal amount of D(+) glucose and D(+) galactose. 													
	(B)	(+) lactose is a β -glucoside formed by the union of a molecule of D(+) glucose and a molecule of D(
		galactose.	galactose.											
	(C) (D)	(+) Lactose is a	reducin	ig sugar and does no	ot exihib	it mutarotation.								
(0)	(D)	$(+)$ Lactose, C_{12}	1 4 4		1 1	4.9								
60.	which (1)	of the statements	about "	Denaturation giver	i below a	are correct?	es of the	nrotein						
	(1)	Denaturation lea	ids to th	ne conversion of dou	uble stan	d of DNA into sin	gle stran	d.						
	(3)	Denaturation aff	fects pr	imary structure which	ch gets d	listorted.	C							
	(A)	(2) and (3)	(B)	(1) and (3)	(C)	(1) and (2)	(D)	(1), (2) and (3)						
61.	Which	one of the followi	ng does	s not exhibits the ph	enomen	on of mutarotation	?							
	(A)	(+) Sucrose	(B)	(+) lactose	(C)	(+) Maltose	(D)	(-) Fructose						
62.	Fructo	se reduces Tollen's	s reagei	nt due to										
	(A)	asymmetric carb	ons		(B)	primary alcohol	ic group							
	(C) (D)	enolisation of fr	olic gro	oup followed by convers	sion to al	ldehvde by base								
(\mathbf{c})				ionowed by convers		lucifyde by base.								
03.	(\mathbf{A})	A, the compliment	ary bas nine · f	es are hymine and cytosin	e (B)	uracil and adeni	ne · cvtc	osine and guanine						
	(C)	adenine and thy	mine ; g	guanine and cytosing	e (D)	adenine and thy	mine ; g	uanine and uracil						
64.	RNA a	and DNA are chiral	l molec	ules, their chirality	is due to									
	(A)	Chiral bases			(B)	chiral phosphate	e ester ui	nits						
	(C)	D-sugar compou	ınd		(D)	L-sugar compor	nent							

65.	During	the process of dig	estion, th	ne proteins present	in food 1	materials are hydr	olysed to	amino acids. The two enzymes					
	involve (A)	d in the process : invertase and zyr	proteins · mase	\rightarrow poly	ypeptides (B)	$\xrightarrow{\text{enzyme (B)}} \text{arr}$ amylase and mal	nino acio Itase	ls, are respectively.					
	(C)	diastase and lipa	se		(D)	pepsin and tryps	in						
66.	Which (A)	functional group p Thioester	articipate (B)	es in disulphide bo Thioether	ond forma (C)	tion in proteins ? Thiol	(D)	Thiolactone					
67.	Numbe	r of chiral carbons	in $\beta - D$	-(+) glucose is :									
	(A)	five	(B)	six	(C)	three	(D)	four					
68.	The hel (A)	ical structure of pr dipeptide bonds	rotein is s (B)	stabilized by : hydrogen bonds	(C)	ether bonds	(D)	peptide bonds					
69.	Which (A) (B) (C) (D)	is the correct state: Starch is a polyn Amylose is a con Proteins are com In cyclic structur	ment ? her of α - mponent (posed of re of fruc	-glucose of cellulose only one type of a tose, there are five	amino aci e carbons	d and one oxygen a	tom						
70.	0 ∥• −C−N	• I H – (peptide bor	nd).										
	Which (A) (B)	 nich statement is incorrect about peptide bond? C - N bond length in proteins is longer than usual bond length of N - N bond, structure Spectroscopic analysis shows planarity of - C - NH - group C - N bond length in proteins is smaller than usual bond length of C - N bond 											
	(C) (D)	None of the abov	ve	eins is smaller tha	n usual o	ond length of C –	IN DOILD						
71.	Bakelit (A) (C)	e is prepared by th phenol and form urea and formalc	e reaction aldehyde lehyde	n between	(B) (D)	phenol and tetramethylene glycol phenol and ethylene glycol							
72.	Glucos	e molecule reacts v	with X nu	umber of molecule	s of phen	yl hydrazine to yi	eld osazo	one. The value of X is :					
	(A)	two	(B)	one	(C)	four	(D)	three					
73.	Haemo (A)	globin is a vitamin	(B)	a carbohydrate	(C)	an enzyme	(D)	a globular protein					
74.	The α	D-glucose and B.	-D-gluco	se differ from eacl	n other du	e to difference in	carbon a	tom with respect to its					
	(A) (C)	number of OH g conformation	roups		(B) (D)	size of hemiaceta	al ring						
75.	Caprola (A)	tctam is used for th teflon	ne manuf (B)	acture of : terylene	(C)	nylon-6,6	(D)	nvlon-6					
76.	Biodeg (A)	radable polymer w buna-N	vhich can (B)	be produced from nylon-6,6	glycine a	and aminocaproic nylon-2-nylon 6	acid is : (D)	PHBV					

77. Which one of the following is an example of thermosetting polymer? $(CH_2 - CH)_n$ $(CH_2 - C = CH - CH_2)_n$ **(B)** (A) Ċ1 $\begin{array}{cccc} H & H & O & O \\ | & | & || & || \\ (N - (CH_2)_6 - N - C - (CH_2)_4 - C)_n \end{array} (D)$ CH₂ (C) 78. Which of the following organic compounds polymerizes to form the polyester Dacron? Propylene and para $HO - (C_6H_4) - OH$ (A) **(B)** Benzoic acid and ethanol Terphthalic acid and ethylene glycol **(C) (D)** Benzoic acid and para $HO - (C_6H_4) - OH$ 79. Which one of the following is not a condensation polymer? (A) Melamine **(B)** Glyptal **(C)** Dacron **(D)** Neoprene 80. Which of the following statements is false? Artificial silk is derived from cellulose (A) **(B)** Nylon-6, 6 is an example of elastomer **(C)** The repeat unit in natural rubber is isoprene **(D)** Both starch and cellulose are polymers of glucose 81. Which one of the following sets form a biodegradable polymer? (A) $CH_2 = CH - CN$ and $CH_2 = CH - CH = CH_2$ **(B)** H₂N - CH₂ - COOH and H₂N - (CH₂)₅-COOH $HO - CH_2 - CH_2 - OH$ and $HOOC - \langle \bigcirc \rangle$ - COOH **(C)** - $CH = CH_2$ and $CH_2 = CH - CH = CH_2$ **(D)** 82. Which of the following structures represents neoprene polymer? C1 $+CH_2 - C = CH - CH_2 + n$ (A) **(B)** Ċl $+CH_2 - CH_n$ CN {-CH −CH₂}_n [-CH₂ − CH₃]_n **(C) (D)** L6H5 $[NH(CH_2)_6NHCO(CH_2)_4CO]$ is a : 83. homopolymer copolymer (A) **(B)** (C) addition polymer thermosetting polymer **(D)** 84. Which one of the following is a chain growth polymer? (A) Starch **(B)** Nucleic acid **(C)** Polystyrene **(D)** Protein

85. The number of moles of HIO_4 required for the following reaction is :

- 86. What is the number of functional groups present in α -amino acid having molecular formula C₃H₇NO₃?
- **87.** Consider the following compound :

It is a γ - lactone

1.

How many of the following statements are correct regarding it ?

2. It has furanose structure

- 88. Glucose molecule reacts with 'x' number of molecule of phenylhydrazine to yield osazone. The value of 'x' is :
- **89.** The number of chiral carbons present in β -D(+)-glucose is :
- **90.** How many of the following are addition polymers ? Polyethylene, Polypropylene, Bakelite, Polyether, Terylene, Polyamide
- 91. Maltose is composed of 2α D glucose units joined together by $C_1 C_x$ glycosidic linkage x is :

Chemistry in Everyday Life

CHOOSE THE CORRECT ALTERNATIVE. ONLY ONE CHOICE IS CORRECT. HOWEVER, QUESTIONS MARKED '*' MAY HAVE MORE THAN ONE CORRECT OPTION.

- 1. Which of the following statements is not correct ?
 - (A) Some antiseptics can be added to soaps
 - (B) Dilute solutions of some disinfectants can be used as antiseptic
 - (C) Disinfectants are antimicrobial drugs
 - (D) Antiseptic medicines can be ingested
- 2. Which is the correct statement about birth control pills?
 - (A) Contain estrogen only
 - (B) Contain progesterone only
 - (C) Contain a mixture of estrogen and progesterone derivatives
 - (D) Progesterone enhances ovulation

3.	Which	statement about as	spirin is r	not true ?							
	(A)	Aspirin belongs	to narcot	tic analgesics		(B)	It is e	ffective in	n relieving	pain	
	(C)	It has anti-blood	l clotting	action		(D)	It is a	neurolog	ically activ	ve drug	
4.	The mo	st useful classific	ation of c	lrugs for medicin	al chemist	ts is					
	(A)	On the basis of o	chemical	structure		(B)	On th	e basis of	drug actio	on	
	(C)	On the basis of 1	molecula	r targets		(D)	On th	e basis of	pharmaco	ological effect	
5.	Which	of the following s	tatements	s is correct?							
	(A)	Some Tranquiliz	zers funct	tion by inhibiting	the enzyn	nes whic	ch cataly	se the deg	radation o	of noradrenaline	
	(B)	Tranquilizers ar	e narcotio	c drugs	2		5	6	,		
	(C)	Tranquilizers are	e chemic	al compounds that	t do not a	ffect the	message	e transfer	from nerve	e to receptor	
	(D)	Tranquilizers are	e chemic	al compounds that	t can reliv	ve pain a	nd fever			1	
6.	Salvars	an is arsenic conta	aining dri	19 which was firs	t used for	the treat	tment of				
	(A)	Syphilis	(B)	Typhoid	(C)	Menin	ngitis	(D)	Dysent	ery	
7	A narro	w spectrum antib	iotic is ac	tive against			-		-	-	
7.	(A)	Gram positive o	r gram ne	egative bacteria	(B)	 Gram	negative	bacteria	only		
	(C)	Single organism	or one d	isease	(D)	Both g	gram pos	itive and	gram nega	tive bacteria	
0	The ser	an over d that source	~~~~~	l antidannagant a	ation on t	ha aantu		a avatam	halamaa ta	the close of	
0.	(\mathbf{A})	Analgesies	(B)	Tranquilizers	(C)	Norco	tic opolo		(D)	Antihistomines	
	(A)	Analgesies	(b)	Tranquilizers	(C)	INATCO	tie anaig	csics	(D)	Antinistanines	
9.	Compo	und which is adde	d to soap	to impart antisep	otic proper	rties is	1 1	·	11.		
	(A)	Sodium lauryl s	ulphate		(B)	Sodiui	m dodecy	ylbenzene	sulphonat	e	
	(C)	Rosin			(D)	Bithio	onal				
10.	Equani	l is									
	(A)	Artificial sweete	ener		(B)	Tranq	uilizer				
	(C)	Antihistamine			(D)	Antife	ertility dr	ug			
11.	Which	of the following e	nhances	lathering property	of soap?						
	(A)	Sodium carbona	ite		(B)	Sodiu	m rosina	te			
	(C)	Sodium stearate			(D)	Trisod	lium pho	sphate			
12.	Glycero	ol is added to soap	. It funct	ions	(D)	т. і	1	41			
	(A) (C)	As a filler	1.1		(B)	To inc	rease lea	thering			
	(C)	10 prevent rapic	i drying		(D)	10 ma	ike soap	granules			
13.	Which	of the following is	s an exan	ple of liquid dish	washing o	detergen	t?				
	())		CII OG	~- ` . +							
	(A)	$CH_3(CH_2)_{10} -$	CH ₂ OSO	J_3 Na '	(B)	C_9H_{10}		≻0-(($CH_2 - CH_2$	2-0)-	
								CH ₃]+		
	(\mathbf{C})		- 50 -		(D)	CH	(CH_{\bullet})	 N-CF	I Rr ⁻		
			30 ₂ 1	Na	(1)	$\begin{bmatrix} CH_2 \end{bmatrix}_{15} = N - CH \end{bmatrix}$ Br					
						L		ĊH3	3		

14. Polyethyleneglycols are used in the preparation of which type of detergents? Cationic detergents **(B)** Aniodic detergents (A) (D) (C) Non-ionic detergents Soaps 15. Which of the following is not a target molecule for drug function in body? Carbohydrates **(B)** Lipids Vitamins **(D)** Proteins **(A) (C)** 16. Which of the following statements is not true about enzyme inhibitors? Inhibit the catalytic activity of the enzyme **(B)** Prevent the binding of substrate (A) **(C)** Generally a strong covalent bond is formed between an inhibitor and an enzyme **(D)** Inhibitors can be competitive or non-competitive 17. Which of the following chemicals can be added for sweetening of food items at cooking temperature and does not provide calories? Sucrose **(B)** Sucrolose **(A)** Glucose **(C)** Aspartame **(D)** 18. Which of the following will not enhance nutritional value of food? Minerals **(B)** Artificial sweeteners (A) Vitamins **(C) (D)** Aminoacids *19. Which of the following statements are incorrect about receptor proteins? Majority of receptor proteins are embedded in the cell membranes (A) **(B)** The active site of receptor proteins are embedded in the cell membranes **(C)** Chemical messengers are received at the binding sites of receptor proteins **(D)** Shape of receptor doesn't change during attachment of messenger 20. Which of the following are not used as food preservatives? (A) Table salt **(B)** Sodium hydrogen carbonate Benzoic acid **(C)** Cane sugar **(D)** *21. Compounds with antiseptic properties are **(B)** CHCl₃ CHI₃ (A) **(C)** Boric acid **(D)** 0.3 ppm aqueous solution of Cl₂ *22. Which of the following statements are correct about barbiturates? Hypnotics or sleep producing agents These are tranquilizers (A) **(B)** (C) **(D)** Pain reducing without disturbing the nervous system Non-narcotic analgesics *23. Which of the following are sulpha drugs? (A) Sulphapyridine (B) Prontosil **(C)** Salvarsan **(D)** Nardil *24. Which of the following are antidepressants? Iproniazid **(B)** Phenelzine **(C) (D)** (A) Equanil Salvarsan *25. Which of the following statements are incorrect about penicillin? An antibacterial fungus (A) Ampicillin is its synthetic modification **(B)** (C) It has bacteriostatic effect **(D)** It is a broad spectrum antibiotic *26. Which of the following compounds are administered as antacids? (A) Sodium carbonate **(B)** Sodium hydrogen carbonate

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Magnesium hydroxide

(D)

(C)

Aluminium carbonate

*27.	Amon	Amongst the following antihistamines, which are antacids?											
	(A)	Ranitidine			(B)	Bromp	heniramine						
	(C)	Terfenadine			(D)	Cimeti	dine						
*28.	Veronal and luminal are derivatives of barbituric acid which are												
	(A) (C)	I ranquilizers	drugs		(B)	Non-na Neurol	arcotic analg	gesic	100				
*20	(C)		ulugs	• • • •	(D)	Incuror	ogically acti		ugs				
*29.	Which (A)	(A) Sodium salts of sulphonated long chain alcohol											
	(A) (B)	Ester of stearic acid and polyethylene glycol											
	(C)	Quaternary ammonium salt of amine with acetate ion											
	(D)	Sodium salts of	of sulphon	ated long cha	ain hydrocarb	ons							
*30.	Which of the following statements are correct?												
	(A)	(A) Cationic detergents have germicidal properties											
	(B)	Bacteria can degrade the detergents containing highly branched chains											
	(C)	 (C) Some synthetic detergents can give foam even in ice cold water (D) Synthetic detergents are not soons 											
	(D)	Synthetic dete	ergents are	not soaps									
31.	The g	as leaked from a	storage tar	nk of the Uni	on Carbide pl	ant in Bho	pal gas trage	edy wa	as :				
	(A) (C)	Ammonia	anate		(D) (B)	Phose	amine						
22		· DDT 4	C 11 .	0	(D)	Those							
32.	What (A)	is DDT among th	he followir	ng?	(B)	A forti	izer						
	(A) (C)	Biodegradable	gas e pollutant		(D)	Non bi	odegradable	nollu	tant				
33.	Identi	fy the incorrect s	tatement fi	rom the follo	wing :	11011 01	ouogiuuuoie	pond	unit				
	(A)	A) Oxides of nitrogen in the atmosphere can cause the depletion of ozone layer											
	(B)	Ozone absorbs the intense ultraviolet radiations of the sun											
	(C)	C) Depletion of ozone layer is because of its chemical reactions with chlorofluoro alkanes											
	(D)	Ozone absorb	s infrared	radiations									
34.	Identi:	Identify the wrong statements in the following (A) Chlorefluenceschare are recreasible for evene laver derletter											
	(A) (B)	 (A) Chlorofluorocarbons are responsible for ozone layer depletion (B) Green house effect is responsible for global warming 											
	(C)	(C) Ozone layer does not permit infrared radiation from the sun to reach the earth											
	(D)	Acid rain is m	nostly beca	use of oxide	s nitrogen and	l sulphur							
35.	The smog is essentially caused by the presence of :												
	(A)	O_2 and O_3	1 1	•,	(B)	O_2 and	N ₂						
	(C)	Oxides of sulf	phur and n	itrogen	(D)	O_3 and	IN ₂						
36.	When	When rain is accompanied by a thunderstorm, the collected rain water will have a pH value : (A) Slightly lower than that of rain water without thunderstorm											
	(A) (B)	 (A) Slightly lower than that of rain water without thunderstorm (B) Slightly higher than that when the thunderstorm is not there 											
	(C)	(C) Uninfluenced by occurrence of thunderstorm											
	(D)	Which depend	ds on the a	mount of due	st in air								
37.	For the estimation of nitrogen, 1.4g an organic compound was digested by Kjeldahl's method and the evolved ammonia											ammonia	
	was a	bsorbed in 60 ml	L of M/10	sulphuric ac	id. The unrea	cted acid 1	required 20 i	mL of	f M/10 s	odium	hydroxi	de for the	
	compl	ete neutralization	n. The perc (R)	centage of ni 10%	trogen in the (compound	1S :	D)	5%				
	(* *)	0,0	(12)	10/0		270	(~,	270				

38.	29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCl solution. The excess of the acid required 15 ML of 0.1 M NaOF solution for complete neutralization. The percentage of nitrogen in the compound is :							and the evolved of 0.1 M NaOH					
	(A)	59.0	(B)	47.4	(C)	23.7	(D)	29.5					
39.	How n Ca ²⁺ io	by many EDTA (ethylenediamine tetraacetic acid) molecules are required to make on octahedral complex with a 2^{2+} ion?											
	(A)	Six	(B)	Three	(C)	One	(D)	Two					
40.	Which (A)	one of the followi Tranquilizer	ng types (B)	of drugs reduce Antibiotic	s fever ? (C)	Antipyretic	(D)	Analgesic					
41.	Coordi stateme (A) (B) (C) (D)	dination compounds have great importance in biological systems. In this context, which of the following ments is incorrect ? Chlorophyll is green pigment in plant and contain calcium Haemoglobin is the red pigment of blood and contains iron Cyanocobalamin is vitamin B ₁₂ and contains cobalt Carboxypeptidase-A is an enzyme and contains zinc											
42.	The co (A)	mpound formed in Fe ₄ [Fe(CN) ₆] ₃	the posi (B)	tive test for nitro Na ₃ [Fe(CN) ₆]	ogen with t (C)	he Lassigne so Fe(CN) ₃	olution of an (D)	organic compou Na ₄ [Fe(CN) ₅]	ınd is : NOS]				
43.	Which (A) (C)	of the following c Liquid hydroger Liquid hydroger	ould act n + liquic n + liquic	as a propellant f l nitrogen l oxygen	for rockets (B) (D)	? Liquid oxyş Liquid nitro	gen + liquid a ogen + liquid	argon oxygen					
44.	If Fe ³⁺ (A) (B) (C) (D)	 ⁷e³⁺ and Cr³⁺ both are present in group III of qualitative analysis, then distinction can be made by : Addition of NH₄OH in the presence of NH₄Cl when only Fe(OH)₃ is precipitated Addition of NH₄OH in presence of NH₄Cl when Cr(OH)₃ and Fe(OH)₃ both are precipitated and on adding Br₂ water and NaOH, Cr(OH)₃ dissolves Precipitate of Cr(OH)₃ and Fe(OH)₃ as obtained in (b) are treated with conc. HCl when only Fe(OH)₃ dissolves 											
	(D)	Both (B) thit (C)				OCOCH	1,					
45.	Compo	Compound A given below is :											
	(A) (C)	Antiseptic Analgestic			(B) (D)	Antibiotic Pesticide	\bigcup						
46.	Bithior	al is generally add	led to the	e soaps as an ado	litive to fu	nction as a/an	А						
	(A)	buffering agent	(B)	antiseptic	(C)	softner	(D)	alitame					
47.	Artificial sweetner which is stable under cold conditions only is:												
	(A)	saccharine	(B)	sucralose	(C)	aspartame	(D)	alitame					
48.	Antisej is not t (A) (B) (C) (D)	 Antiseptics and disinfectants either kill or prevent growth of microorganism. Identify which of the following statements is not true. (A) Dilute solutions of boric acid and hydrogen peroxide are strong antiseptics (B) Disinfectants harm the living tissues (C) A 0.2% solution of phenol is an antiseptic while 1% solution acts as a disinfectant (D) Chlorine and Lysol are used as strong disinfectants 											

49.	Which (A)	one of the followi Chloramphenico	ng is empl ol	loyed as Antihista	amine? (B)	Diphenylhydra	mine				
	(C)	Norothindrone			(D)	Ompeprazole					
50.	Chlorop (A) (C)	picrin is obtained Steam on carbor chlorine on picr	by the read n tetrachlo ic acid	ction of ride	(B) (D)	nitric acid on chlorobenzene nitric acid on chloroform					
51.	Which (A) (C)	of the following f Sodium dodecyl Urea	orms catio sulphate	nic micelles abov	ve certain (B) (D)	in concentration ? Sodium acetate Cetyltrimethylammonium bromide					
52.	Which (A) (A) (B) (C) (D)	 hich one of the following statements is not true ? Ampicillin is a natural antibiotic Aspirin is both analgesic and antipyretic Sulphadiazine is a synthetic antibacterial drug Some disinfectants can be used as antiseptics 									
53.	Which (A) (C)	of the following is Sodium lauryl s Glyceryl oleate	s an anioni ulphate	ic detergent?	(B) (D)	Cetyltrimethyl ammonium bromide Sodium stearate					
54.	The dist (A) (C)	distillation technique most suited for separating glycerol from spent-lye in the soap industry is:Fractional distillation(B)Steam distillationDistillation under reduced pressure(D)Simple distillation									
55.	The concentration of fluoride, lead, nitrate and iron in a water sample from an underground lake was found to be 1000 ppb, 40 ppb, 100 ppm and 0.2 ppm, respectively. This water is unsuitable for drinking due to high concentration of										
	(A)	Lead	(B)	Nitrate	(C)	Iron	(D)	Fluoride			
56.	How many of the following compounds are used as tranquilizers ? Brompheniramine, Valium, Serotonin, Ranitidine, Codeine										
57.	How many of the following compounds has $-N = N - \text{linkage}$?										
	Salvarsan, Prontosil, Sulphanilamide, Sulphapyridine										
58.	How many of the following are bacteriostatic antibiotics ? Erythromycin, Ofloxacin, Penicillin, Tetracycline, Chloramphenicol										
59.	How many of the following compounds contain an amide linkage ? Pencillin, Salvarsan, Prontosil, Chloramphenicol										
60.	How many of the following compounds contain a phenolic group ? Chloroxylenol, Terpineol, Bithionol										
61.	How many of the following compounds are used as artificial sweeteners ? Aspartame, Saccharin, Sucrolose, Alitame, Terpineol										