Solutions to Final Step-A | Chemistry

Stoichiometry-1 \& Redox Reactions

1.(D) $\mathrm{As}_{\mathrm{H}_{2} \mathrm{O}_{2} \text { is loosing } \mathrm{e}^{\ominus} \text { S }}^{\text {2.(D) }} \quad \stackrel{+1}{\mathrm{HClO}} \longrightarrow \stackrel{-1}{\mathrm{HCl}}+\stackrel{+5}{\mathrm{HClO}}{ }_{3} \quad$ 3.(A)

4.(D) $\quad\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}: \mathrm{Cr}=+3$
5.(C) $\mathrm{MnO}_{4}^{-} \xrightarrow{5 \mathrm{e}^{-}} \mathrm{Mn}^{2+}$; $\stackrel{+7}{\mathrm{MnO}_{4}^{-}} \xrightarrow{1 \mathrm{e}^{-}} \stackrel{+6}{\mathrm{MnO}_{4}^{2-}} \quad ; \mathrm{MnO}_{4}^{-} \xrightarrow{3 \mathrm{e}^{-}} \stackrel{+4}{\mathrm{Mn} \mathrm{O}_{2}} ;$ $\stackrel{+7}{\mathrm{MnO}_{4}^{-}} \xrightarrow{4 \mathrm{e}^{-}} \stackrel{+3}{\mathrm{Mn}_{2}} \mathrm{O}_{3}$
6.(C) Anode - where oxidation takes place
7.(C) $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=32+\frac{9}{5} \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$
8.(D) $\mathrm{He} \longrightarrow$ 1 mole ; $\mathrm{Na} \longrightarrow 2$ moles $; \mathrm{Ca} \longrightarrow 10^{-2}$ moles $; \mathrm{He} \longrightarrow 3$ moles
9.(A) $\quad\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ moles $=0.1 \times 0.02=2 \times 10^{-3} \Rightarrow 2 \times 10^{-3}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \equiv 2 \times 10^{-3} \times \mathrm{N}_{\mathrm{A}}$ molecules Moles of $=12.044 \times 10^{20}$ molecules
10.(A) $(3.12 \times 1.5)_{\mathrm{g}}$ to be one decimal as minimum significant figure has one digit after decimal.
11.(C) Example: $\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
12.(B) Typical case of Law of multiple proportions.
13.(AD) $\mathrm{O}_{2} \longrightarrow 32 \mathrm{~g}$ For 1 mol there are N_{A} molecules
14.(AB) $[\mathrm{NaOH}] \longrightarrow \mathrm{M}=\frac{20}{40} \times \frac{1000}{200}=\frac{5}{2} \mathrm{M} ; \quad[\mathrm{KOH}] \longrightarrow \mathrm{M}=0.5 \times \frac{1000}{200}=\frac{5}{2} \mathrm{M}$
15.(CD) Refer formula
16.(BD) Refer theory
17.(A) As bromine case more change in oxidation state
18.(A) $\mathrm{NaH} \longrightarrow$ Oxidation State $\rightarrow(-1)$ as compared to iodine
19.(B) $\left(\mathrm{NH}_{4}^{+}\right)\left(\mathrm{NO}_{3}^{-}\right)$

21.(D)

22.(ABC)

23.(CD)

reductant
24.(CD) C : Vanadium, D : Phosphorous
25.(B) As oxidizing nature depends on electron gain enthalpy and hydration energy.
26.(C) Mn acts as oxidizing agent and oxidation state changes from +7 to +2 .
27.(D) $\underset{V}{\mathrm{CxHy}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \underset{(\mathrm{Vx})}{\mathrm{CO}_{2}}+\frac{\mathrm{y}}{2} \underset{\left(V_{y / 2}\right)}{\mathrm{H}_{2} \mathrm{O}}$

$$
\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{0.72}{18}\right) \mathrm{n}_{\mathrm{CO}_{2}}=\left(\frac{3.08}{44}\right) \Rightarrow \frac{\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{3.08}{44} \times \frac{18}{0.72} \Rightarrow \frac{\mathrm{x}}{\mathrm{y} / 2}=\frac{7}{4} \Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{7}{8}
$$

28.(D) Volume $=\left(\frac{\begin{array}{c}\text { Total Mass } \\ \uparrow \\ 1.15\end{array}}{1.15}\right) \longrightarrow \mathrm{ml} \mathrm{M}=\frac{120}{60} \times\left(\frac{1000 \times 1.15}{1120}\right)=2.05 \mathrm{M}$
29.(C) $\frac{\mathrm{g}}{(294 / 6)}=0.75 \times 0.6 \times 1 \Rightarrow \mathrm{~g}=22.05 \mathrm{~g} \quad$ 30.(C) As Cl^{\ominus} reduces Mn to Mn^{2+}
31.(D) At STP 1 mole $\mathrm{H}_{2} \longrightarrow 22.4 \mathrm{~L} \Rightarrow 6$ mole $\mathrm{HCl} \longrightarrow 3 \mathrm{H}_{2} \Rightarrow 1$ mole $\mathrm{HCl} \longrightarrow\left(\frac{1}{2}\right)$ mole H_{2}
32.(B) Mass will remain constant
33.(B) $\mathrm{BCl}_{3}+\frac{3}{2} \mathrm{H}_{2} \longrightarrow \mathrm{~B}+3 \mathrm{HCl}\left(2\right.$ moles of $\mathrm{B} \equiv 3$ moles of $\left.\mathrm{H}_{2}\right)$
34.(A) Mole ratio $: \frac{9}{12}: \frac{1}{1}: \frac{3.5}{14} \Rightarrow 3: 4: 1$.
35.(D)

36.(C)

37.(C) Refer structure from module
38.(B) $\stackrel{-3}{\mathrm{NH}_{4}} \stackrel{+3}{\mathrm{NO}_{2}} \longrightarrow \stackrel{0}{\mathrm{~N}_{2}}+2 \mathrm{H}_{2} \mathrm{O}$
39.(C) meq $\mathrm{FeC}_{2} \mathrm{O}_{4}=$ meq $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{7}$ $3 \times 1=6 \times$ mmoles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

40.(ABC) $(0.1) \mathrm{NaHC}_{2} \mathrm{O}_{4} \longrightarrow 0.1$ moles of H^{+}
geq of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=2 \times 0.1=0.2$
41.(B) 16.9% solution of AgNO_{3} means 16.9 g of AgNO_{3} in 100 mL of solution. 16.9% of AgNO_{3} in 100 mL solution $\equiv 8.45 \mathrm{~g}$ of AgNO_{3} in $50 \mathrm{~mL} \equiv 0.049 \mathrm{~mol}$
Similarly, 5.8% of $\mathrm{NaCl} \equiv 2.9 \mathrm{~g}$ of NaCl in 50 mL solution $\equiv 0.05 \mathrm{~mol}$.
The reaction can be represented as :
Initially

$$
\underset{0.049}{\mathrm{AgNO}_{3}}+\underset{0.05}{\mathrm{NaCl}} \rightarrow \underset{0}{\mathrm{AgCl}}+\underset{0}{\mathrm{NaNO}_{3}}
$$

$\begin{array}{lllll}\text { Finally } & 0 & 0 & 0.049 \mathrm{~mol} & 0.049 \mathrm{~mol}\end{array}$
$\therefore \quad$ Mass of AgCl precipitated $=0.049 \times 143.3 \approx 7.0 \mathrm{~g}$
42.(A) Mass of $1 \mathrm{~mol}\left(6.022 \times 10^{23}\right.$ atoms $)$ of carbon $=12 \mathrm{~g}$.

If Avogadro number is changed to 6.022×10^{20} atoms then mass of 1 mol of carbon

$$
=\frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}}=12 \times 10^{-3} \mathrm{~g}
$$

43.(C) According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of their moles.

$$
\mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{g}}{2}: \mathrm{n}_{\mathrm{O}_{2}}=\frac{\mathrm{g}}{32} ; \mathrm{n}_{\mathrm{CH}_{4}}=\frac{\mathrm{g}}{16}
$$

So, the ratio is $\frac{\mathrm{g}}{2}: \frac{\mathrm{g}}{32}: \frac{\mathrm{g}}{16}$ or $16: 1: 2$.
44.(D) Moles of urea $=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}=0.001$

Concentration of solution $=\frac{0.001}{100} \times 1000=0.01 \mathrm{M}$
45.(B) $\quad \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mol} \quad 0.5 \mathrm{~mol} \quad 1 \mathrm{~mol}$
10 g of $\mathrm{H}_{2}=5 \mathrm{~mol}$ and 64 g of $\mathrm{O}_{2}=2 \mathrm{~mol}$
$\therefore \quad$ In this reaction, oxygen is the limiting reagent hence amount of $\mathrm{H}_{2} \mathrm{O}$ produced depends on that of O_{2}.
Since 0.5 mol of O_{2} gives $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\therefore \quad 2 \mathrm{~mol}$ of O_{2} will give $4 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}}$
46.(D) Average isotopic mass of $\mathrm{X}=\frac{200 \times 90+199 \times 8+202 \times 2}{90+8+2}=\frac{18000+1592+404}{100}=199.96 \mathrm{amu} \sim 200 \mathrm{amu}$
47.(A) At STP: $22.4 \mathrm{~L} \mathrm{H}_{2}=6.023 \times 10^{23}$ molecules
$15 \mathrm{~L} \mathrm{H}_{2}=\frac{6.023 \times 10^{23} \times 15}{22.4}=4.033 \times 10^{23}$
$5 \mathrm{~L} \mathrm{~N}_{2}=\frac{6.023 \times 10^{23} \times 5}{22.4}=1.344 \times 10^{23}$
$0.5 \mathrm{~g} \mathrm{H}_{2}=\frac{6.023 \times 10^{23} \times 0.5}{2}=1.505 \times 10^{23}$
10 g of $\mathrm{O}_{2}=\frac{6.023 \times 10^{23} \times 10}{32}=1.882 \times 10^{23}$
48.(D) Zeros placed left to the number are never significant, therefore the number of significant figures for the numbers. $161 \mathrm{~cm}, 0.161$ and 0.0161 are same, i.e. 3 .
49.(A) Amount of iron in one molecule (in gms) $=\frac{67200}{100} \times 0.334=224.45 \mathrm{amu}$

Number of iron atoms in one molecule of hemoglobin $=\frac{224.45}{56}=4$.
50.(A) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
$4 \mathrm{~mol} \mathrm{NH}_{3(\mathrm{~g})} \equiv 5$ moles $\mathrm{O}_{2(\mathrm{~g})} \equiv 4$ moles $\mathrm{NO}_{(\mathrm{g})} \equiv 6$ moles $\mathrm{H}_{2} \mathrm{O}_{(l)}$
Observe that O_{2} is limiting reagent, so it will be consumed totally leaving behind NH_{3}.
51.(A) $1 \mathrm{~mol} \mathrm{CCl}_{4}$ vapour $=12+4 \times 35.5=154 \mathrm{gm}$

At S.T.P.: Density of CCl_{4} vapour $=\frac{154}{22.4} \mathrm{~g} \mathrm{~L}^{-1}=6.875 \mathrm{~g} \mathrm{~L}^{-1}$.
52.(A) $\mathrm{Mg}^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{MgCO}_{3}+2 \mathrm{Na}^{+}$

1 gmeq of Mg^{2+} requires 1 gmeq of soda.
$12.00 \mathrm{mg} \equiv 12.00 \times 10^{-3} \mathrm{~g} \equiv \frac{12.00 \times 10^{-3}}{24 / 2} \times 1000=1 \mathrm{meq}$ of Mg^{2+}
$\Rightarrow \quad 1 \mathrm{meq}$ of soda is required.
53.(C) Both FeCl_{2} and SnCl_{2} are reducing agents with lower oxidation numbers.
54.(C)

Increase in oxidation state (reducing agent)

$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing agent in all those reactions in which O_{2} is evolved..

Maximum change in oxidation number of chlorine, i.e., from +5 to -1 .
56.(C) $5 \mathrm{e}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$;
$\mathrm{FeC}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}+3 \mathrm{e}^{-} \quad\left[\right.$ Both Fe^{2+} ion and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions will be oxidized]
gmeq of $\mathrm{MnO}_{4}^{-}=$gmeq of $\mathrm{FeC}_{2} \mathrm{O}_{4} \Rightarrow 5 \mathrm{n}=3 \times 1 \Rightarrow \mathrm{n}=\frac{3}{5}=0.6$
57.(B) $\quad \stackrel{0^{\mathrm{H}}}{2} \mathrm{O}+\stackrel{+1}{\mathrm{Br}_{2}} \rightarrow \stackrel{-1}{\mathrm{HOBr}}+\stackrel{\mathrm{HBr}}{\mathrm{H}}$

In the above reaction the oxidation number of Br_{2} increases from zero (in Br_{2}) to +1 (in HOBr) and decreases from zero (in Br_{2}) to -1 (in HBr). Thus Br_{2} is oxidised as well as reduced and hence it is a disproportionation redox reaction.
58.(B) meq of $\mathrm{NaOCl}=$ meq of NaCrO_{2}.
$\left[\mathrm{OCl}^{-}+\mathrm{H}_{2}+2 \mathrm{e} \longrightarrow \mathrm{Cl}^{-}+2 \mathrm{OH}^{-}\right] ;\left[\mathrm{CrO}_{2}^{-}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-}\right]$
n-factor of $\mathrm{NaOCl}=2 \quad \mathrm{n}$-factor of $\mathrm{NaCrO}_{2}=3$
$\Rightarrow \quad 2 \times 0.15 \times \mathrm{V}=3 \times 0.2 \times 20 \Rightarrow \mathrm{~V}=40 \mathrm{~mL}$
59.(D) meq of $\mathrm{H}_{2} \mathrm{O}_{2}=$ meq of $\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+}$

$$
\Rightarrow \quad \mathrm{N} \times 10=\frac{1}{0.56} \times 10 \Rightarrow \mathrm{~N}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=\frac{1}{0.56}
$$

Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2} ; 1 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2} \equiv 5.6 \times \frac{1}{0.56}=10 \mathrm{vol}$
60.(C) Find oxidation state of each element.
(A) $\quad \mathrm{VO}_{4}^{3-}[\mathrm{V}=+5]$
(B) $\quad \mathrm{Mn}_{2} \mathrm{O}_{3}[\mathrm{Mn}=+3]$
(C) $\quad \mathrm{S}_{4} \mathrm{O}_{6}^{2-}[\mathrm{S}=+2.5]$
(D) $\quad \mathrm{Cl}_{2} \mathrm{O}_{7}[\mathrm{Cl}=+7]$
61. (820)

$\mathrm{CO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
90 m mole $500 \mathrm{mmole} \quad 0$
$0 \quad 500-180 \quad 90$
$=320$ mmoles
320 mmoles of NaOH and 90 mmoles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will need 410 mmole of HCl . Since HCl is 0.5 M
$\Rightarrow \quad$ Volume required is 820 ml
62. (4) Mol of $\mathrm{O}_{2}=\frac{44.8}{22.4}=2.0 \quad \mathrm{Mol}$ of $\mathrm{CH}_{3} \mathrm{OH}=\frac{64}{32}=2.0$
$\because \quad 2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ require $3 \mathrm{~mol}_{2}$, hence O_{2} is a limiting reagent.
Moles of CO_{2} formed $=\frac{2}{3} \times 2=1.33$
63.(2) The balanced chemical reaction equation is $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \longrightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Now, mol of HCl produced $=0.08 \times 3$
$\Rightarrow \quad$ mol. of $\mathrm{Al}(\mathrm{OH})_{3}$ needed $=0.08 \Rightarrow$ mass of $\mathrm{Al}(\mathrm{OH})_{3}$ needed $=0.08 \times 78=6.24$
64. (3) Balancing the chemical reactions $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}+6 \mathrm{CO}_{2}$

Since,

$$
\begin{aligned}
& \Rightarrow \quad(2+6)-(2+3) \\
& \Rightarrow \quad 3
\end{aligned}
$$

65. (20) $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{CrO}_{4}^{2-}} \mathrm{BaCrO}_{4}$
$\mathrm{BaCrO}_{4} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-} \xrightarrow{\mathrm{H}^{+}} 3 \mathrm{I}_{2}+\mathrm{Cr}^{3+}$
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
$\therefore \quad$ milli moles of $\mathrm{I}_{2}=\frac{90 \times 0.2}{2}=9$
milli moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=3$
milli moles of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=6$
Amount of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=6 \times 10^{-3} \times 244=1.464$
$\%$ purity $=\frac{1.464}{7.32} \times 100$
$=20 \%$
66. (5) $\underset{\mathrm{n}=15}{\mathrm{Al}\left(\mathrm{MnO}_{4}\right)_{3}}+\underset{\mathrm{n}=3}{\mathrm{FeC}_{2} \mathrm{O}_{4}} \rightarrow \mathrm{Al}^{3+}+\mathrm{Mn}^{2+}+\mathrm{Fe}^{2+}+\mathrm{CO}_{2}$
67. (2) Normality of acid $=\frac{39}{82 / \mathrm{n} \times 1}$

Normality of $\mathrm{NaOH}=\frac{40}{40} \times \frac{1000}{1000}=1$

Now, meq. of acid $=$ meq. of $\mathrm{NaOH} \Rightarrow \frac{39 \mathrm{n}}{82} \times 100=1 \times 95$
$\mathrm{n}=2$
68. (20) $3 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}$
0.08 gm .
$\mathrm{w}=\frac{0.08}{32} \times 2 \times 3 \times 160$
$=2.4 \mathrm{gm}$
$\therefore \quad \% \mathrm{SiO}_{2}=\frac{0.6}{3} \times 100$
$=20 \%$
69. (24) $\frac{a \times 16+b \times 28}{a+b}=20$

$$
\Rightarrow \quad a=a b
$$

$$
\frac{b \times 16+a \times 28}{a+b}=?
$$

$$
\Rightarrow \quad M=24
$$

70. (56) 56 gm

$\therefore 8 \mathrm{gm} \mathrm{A} \rightarrow 56 \mathrm{gm} \mathrm{B}$
71. (10) $\frac{\mathrm{a}}{72} \times 1+\frac{\mathrm{b}}{160} \times 2=\frac{7}{56}$
$\frac{\mathrm{a}}{72} \times 1+\frac{\mathrm{b}}{160} \times 3=\frac{2.5}{16}$
72. (1) $\frac{\frac{500 \times 0.2}{1000}+\frac{17.1 \times 3}{342}}{0.6 \times 5}=\frac{1}{12} \mathrm{M}$.
73.(1) $\frac{17.4}{87}=\frac{12.6}{110+16 y} \times 2 \quad \Rightarrow \quad y=1$
73. (15) $\mathrm{Mn}_{3} \mathrm{O}_{4} \rightarrow \mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}$
$\mathrm{Mn}_{3} \mathrm{O}_{4} \rightarrow 3 \mathrm{MnO}_{4}^{-}+13 \mathrm{e}^{(-)}$
$\mathrm{Mn}_{3} \mathrm{O}_{4}+2 \mathrm{e}^{(-)} \rightarrow 3 \mathrm{Mn}^{2+}$
$\mathrm{n}_{\text {eff }}=\frac{2 \times 13}{2+13}=\frac{26}{15} \Rightarrow \mathrm{E}=\frac{\mathrm{M}}{26} \times 15$
74. (3) $4 \mathrm{~m} \mathrm{~mol} \mathrm{KI} \longrightarrow 2 \mathrm{~m}$ mole $\mathrm{e}^{(-)}$
$5 \mathrm{~m} \mathrm{~mol} \mathrm{KI} \longrightarrow \frac{2}{4} \times 5 \mathrm{~m} \mathrm{~mole}^{(-)}$

Atomic Structure

1.(ABD) Option (C) is postulate of Bohr's model
3.(ABCD) Refer theory 4.(ACD) Refer theory
6.(D) Sane atomic mass but different atomic numbers
8.(C) $4 \mathrm{~d} \rightarrow \ell$ (angular nodes)
10.(B) $\mathrm{Fe}^{3+}, \mathrm{Mn}^{2+}$ have same no. of electrons
2.(B) $\quad C u$ has $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}(z=29)$
5.(A) Plum pudding model
7.(D) $\quad 3 \mathrm{p} \rightarrow \mathrm{n}-\ell-1$ (radial nodes) $=3-1-1=1$
9.(B) Refer theory
11.(D) Pauli's Exclusion Principal
12.(CD) For an atom $\underset{Z}{A} \underset{\text { symbol }}{\downarrow} \underset{\sim}{X}$; A : Mass number, Z : Atomic Number ; For isotopes Z is same
13.(AD) Energy is governed by $(\mathrm{n}+\ell)$ rule
14.(BC) As $\mathrm{n}=\ell$ (is not allowed); $\mathrm{n}<\ell$ (is not allowed) 15.(AC) Both pairs have $10 \mathrm{e}^{\ominus} \mathrm{S}$
16.(A) Isotopes have same number of electrons
17.(B) (R) is not correct explanation of (A)
18.(A) $\frac{\mathrm{hc}}{\lambda}=2.18 \times 10^{-18}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)(1)^{2}$
$\frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}=2.18 \times \frac{3}{4} \times 10^{-18} \Rightarrow \lambda=\left(\frac{6.626 \times 4}{2.18}\right) \times 10^{-8}=1.214 \times 10^{-7} \mathrm{~m}$
19.(B) Apply $(\mathrm{n}+\ell)$ rule: For $\mathrm{n}_{1}+\ell_{1}=\mathrm{n}_{2}+\ell_{2}$

$$
\mathrm{n}_{2}>\mathrm{n}_{1}
$$

The electron with n_{2} principal quainter number has more energy.
20.(C) Apply $\frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{1}}+\frac{\mathrm{hc}}{\lambda_{2}} \Rightarrow \frac{1}{355}=\frac{1}{680}+\frac{1}{\lambda_{2}} \Rightarrow \frac{680-355}{680 \times 355}=\left(\lambda_{2}\right)^{-1} \Rightarrow \lambda_{2}=\frac{680 \times 355}{325}=742.76 \mathrm{~nm}$
21.(B) For Helium ion, $E \propto \frac{Z^{2}}{n^{2}} \propto(2)^{2}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$ for hydrogen atom
22.(D) $\frac{\mathrm{hc}}{\lambda} \times \mathrm{N}_{\mathrm{A}}=242 \times 10^{3} \quad \Rightarrow \quad \lambda=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8} \times 6.023 \times 10^{23}}{242 \times 10^{3}}=494 \mathrm{~nm}$
23.(B) $\left[\mathrm{He}^{+}\right]=-19.6 \times 10^{-18}=\mathrm{E}_{\mathrm{n}}\left(\frac{\mathrm{Z}^{2}}{1^{2}}\right)=\mathrm{E}_{\mathrm{n}}\left(\frac{2^{2}}{1^{2}}\right) \Rightarrow \mathrm{E}_{\mathrm{n}}=-4.9 \times 10^{-18}$
$\left[\mathrm{Li}^{2+}\right]=-4.9 \times 10^{-18} \frac{(3)^{2}}{1^{2}}=-4.41 \times 10^{-17} \mathrm{~J} \mathrm{atom}^{-1}$
24.(C) $\Delta x \cdot \Delta \mathrm{P}=\frac{\mathrm{h}}{4 \pi}$
$\Delta \mathrm{x} .\left(9.1 \times 10^{-31} \times\left(0.005 \times 10^{-2}\right) 600\right) \geq \frac{6.626 \times 10^{-34}}{4 \pi} \Delta \mathrm{x} \cdot\left(9.1 \times 10^{-33} \times 3\right) \geq \frac{6.626 \times 10^{-34}}{4 \pi}$ $\Delta \mathrm{x} \geq \frac{6.626 \times 10^{-1}}{4 \pi \times 3 \times 9.1} \Rightarrow \Delta \mathrm{x} \geq 1.92 \times 10^{-3} \mathrm{~m}$
25.(B) $\mathrm{n}+\ell$ is greatest
26.(A) As neutron emission only change A not Z.
27.(C) $\Delta v=\left(300 \times 0.001 \times 10^{-2} \mathrm{~m} / \mathrm{s}\right)$
$\Delta \mathrm{x} \cdot\left(9.1 \times 10^{-31} \times 3 \times 10^{-3}\right) \geq \frac{6.63 \times 10^{-34}}{4 \pi} \Rightarrow \Delta \mathrm{x} \geq\left(\frac{6.63}{4 \pi \times 9.1 \times 3}\right) \Rightarrow \Delta \mathrm{x} \geq 1.92 \times 10^{-2} \mathrm{~m}$
28.(D) $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}=\frac{5}{2} \frac{\mathrm{~h}}{\pi}=\frac{2.5 \mathrm{~h}}{\pi}$
29.(A) In single electron system energy is governed by principal quantum numbers only
30.(BC) Refer theory \quad 31.(C) For 4 f orbital $\mathrm{n}=4, \ell=3 \quad$ 32.(B) $\mathrm{Cr} \rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
33.(B) Ist line $3 \rightarrow 2$, Ind line $4 \rightarrow 2$, IIIrd line $5 \rightarrow 2$
34.(D) $\mathrm{Fe}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6} ; \mathrm{Fe}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6}$
35.(B) $\quad \ell=0$ (s) Angular momentum $=0$
36.(C) Second excited state $(\mathrm{n}=3): \quad \mathrm{E}(\mathrm{n}=3)=-\frac{13.6}{(3)^{2}}(1)^{2}=-1.51 \mathrm{eV}$
37.(A) $\Delta \mathrm{E}_{1}+\Delta \mathrm{E}_{2}=\Delta \mathrm{E}_{3} \Rightarrow \mathrm{~h} v_{1}+\mathrm{h} v_{2}=\mathrm{h} v_{3} \Rightarrow v_{1}+v_{1}=v_{3}$

38.(C) Number of waves in nth orbit $=n$
39.(D) $\mathrm{K} . \mathrm{E} .=\mathrm{h} v-\mathrm{h} v_{0}$
$\mathrm{h} v=1.5 \mathrm{~h} v_{0} \quad \Rightarrow \quad$ K.E. $=0.5 \mathrm{~h} v_{0} \quad \Rightarrow \quad \mathrm{~h} v_{0}=13.6 \quad \Rightarrow$ K.E. $=13.6 \times 0.5=6.8 \mathrm{eV}$
40.(D) $\quad \mathrm{E}_{\mathrm{n}_{1} \rightarrow \mathrm{n}_{2}}=13.6\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}^{2} 2}\right)$
41.(D) Total energy $=-13.6(2)^{2}$; P.E. $=2$ T.E. $=-13.6 \times 2 \times(2)^{2}=-108.8 \mathrm{eV}$
42.(B)

43.(B) $\operatorname{Ti}(22) 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{2 \times 4}=\sqrt{8}$ B.M.
44.(B) Refer theory
45.(C) $\quad a_{0} \longrightarrow$ Bohr's radius $\quad r=a_{0}\left(\frac{n^{2}}{\mathrm{z}}\right)\left\{\begin{array}{l}\mathrm{n}=2 \\ \mathrm{z}=1\end{array}\right\}$
$\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi} \quad \Rightarrow \quad \operatorname{mva}_{0} \frac{\mathrm{n}^{2}}{\mathrm{z}}=\frac{\mathrm{nh}}{2 \pi} \quad \Rightarrow \quad \operatorname{mv}=\left(\frac{\mathrm{hz}}{2 \pi \mathrm{a}_{0} \mathrm{n}}\right)(\mathrm{z}=1)$
$\mathrm{mv}=\left(\frac{\mathrm{h}}{2 \pi \mathrm{a}_{0} \mathrm{n}}\right) \Rightarrow \mathrm{mv}=\left(\frac{\mathrm{h}}{4 \pi \mathrm{a}_{0}}\right)(\mathrm{n}=2) \quad \Rightarrow \quad \frac{(\mathrm{mv})^{2}}{2 \mathrm{~m}}=\frac{1}{2 \mathrm{~m}} \times\left(\frac{\mathrm{h}}{4 \pi \mathrm{a}_{0}}\right)^{2} \quad \Rightarrow$ K.E. $=\left(\frac{\mathrm{h}^{2}}{32 \mathrm{~m}^{2} \mathrm{a}_{0}^{2}}\right)$
46.(C) Use $(\mathrm{n}+\ell)$ rule $\therefore \quad$ Order of increasing energy is $3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}$.
47.(D) Number of d-electrons in $\mathrm{Fe}^{2+}=6$; Number of d-electrons in $\mathrm{Fe}=6$ (as in Fe^{2+}, e's are removed from 4s) Number of p-electron is $\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$ in $N e=6$; Number of s-electron in $\operatorname{Mg}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\right)$ Number of p-electrons in $\mathrm{Cl}=11\left(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}\right)$
48.(A) Only one orbital, 3 p has following set of quantum numbers, $\mathrm{n}=3, l=1$ and $\mathrm{m}_{l}=0$.
49.(B) The electron is more tightly bound in the smallest allowed orbit.
50.(A) Orbital angular momentum $(\mathrm{m})=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}$

For p-electrons ; $\ell=1$
Thurs, $\mathrm{m}=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=\frac{\sqrt{2} \mathrm{~h}}{2 \pi}=\frac{\mathrm{h}}{\sqrt{2} \pi}$
51.(A) Correct order of filling for $n=6$ in outermost will be : (Aufbau principle) : 6 s 4 f 5 d 6 p
52.(B) In an atom, for any value of n , the values of $l=0$ to $(\mathrm{n}-1)$. For a given value of l, the values of $\mathrm{m}_{1}=-l$ to $+l$ and the value of $s=1 / 2$ or $-1 / 2$.
53.(C) From Heisenberg uncertainty principle

$$
\begin{aligned}
& \Delta \mathrm{p} \cdot \Delta \mathrm{x} \geq \frac{\mathrm{h}}{4 \pi} \text { or } \mathrm{m} \Delta \mathrm{v} \times \Delta \mathrm{x} \geq \frac{\mathrm{h}}{4 \pi} \\
& \text { or } \quad(\mathrm{m} \Delta \mathrm{v})^{2} \geq \frac{\mathrm{h}}{4 \pi} \quad(\because \Delta \mathrm{x}=\Delta \mathrm{p}) \\
& \text { or } \quad \Delta \mathrm{v} \geq \frac{1}{2 \mathrm{~m}} \sqrt{\frac{\mathrm{~h}}{\pi}}
\end{aligned}
$$

54.(C) Uncertainty in momentum $(\mathrm{m} \Delta \mathrm{v})=1 \times 10^{-18} \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}$

Uncertainly in velocity, $(\Delta \mathrm{v})=\frac{1 \times 10^{-18}}{9 \times 10^{-28}}=1.1 \times 10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$
55.(B) (i) represents an electron in 3 s orbital.
(ii) is not possible as value of l varies from 0 to ($n-1$)..
(iii) represents an electron in 4 f orbital.
(iv) is not possible as value of m varies from $-l$ to $+l$.
(v) is not possible as value of m varies from $-l$ to $+l$, it can never be greater than l.
56.(A) $\quad E_{n}=-13.6\left(\frac{Z^{2}}{n^{2}}\right) ; \quad$ Hence 1 st excited state is $n=2: K E=-E_{n}=-(-3.4) e V=3.4 e V$
57.(A) $\mathrm{n}=3, l=2, \mathrm{~m}=+2(+2,+1,0,-1,-2)$. It symbolizes one of the five d-orbitals
58.(C) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.63 \times 10^{-27} \mathrm{erg} \mathrm{sec}}{1 \mathrm{~g} \times 10^{4} \mathrm{~cm} / \mathrm{s}}=6.63 \times 10^{-31} \mathrm{~cm}=6.63 \times 10^{-23} \mathrm{~m}$
59.(A) Since both CO and CN^{-}have 14 electrons, therefore these are iso-electronic (i.e having same number of electrons).
60.(A) The number of electrons in $\mathrm{O}^{2-}, \mathrm{N}^{3-}, \mathrm{F}^{-}$and Na^{+}is 10 each, but number of electrons in Mg^{+}is 11 .
61.(1)

	H^{1}	H^{2}	H^{3}
p	1	1	$1=3$
n	0	1	$2=3$
\therefore	$\frac{3}{3}=1$		

62.(20) $100 \times 8000=\mathrm{W} \times 4000 \quad \Rightarrow \quad \mathrm{~W}=200 \quad$ 63.(32) Total number of $\mathrm{e}^{-}=7+8 \times 3+1=32$
64.(1) $\frac{\mathrm{hc}}{\lambda}=1+\mathrm{W} ; \frac{3 \mathrm{hc}}{\lambda}=5+\mathrm{W} \Rightarrow \mathrm{W}=1 \mathrm{eV}$
65.(27) $\mathrm{kZ}{ }^{2}=36,36\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=27 \mathrm{eV}$
66.(5) $\Delta \mathrm{x}_{\min }=\frac{\mathrm{h}}{4 \pi . \mathrm{m} . \Delta \mathrm{V}}=\frac{6.626 \times 10^{-34}}{4 \pi \times 10^{-6} \times \frac{3.313}{\pi} \times 10^{-3}}=5 \times 10^{-26} \mathrm{~m}$
67.(1) $\lambda=\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}, \lambda \propto \mathrm{m}^{-1 / 2} \mathrm{~T}^{-1 / 2}$
68.(45) $\mathrm{n}=12$ to $\mathrm{n}=3 ; \Delta \mathrm{n}=9 ; 9 \times \frac{10}{2}=45$
69.(20) $3.6 \times 1.6 \times 10^{-13}=\frac{\left(9 \times 10^{9}\right)(Z)(2)\left(1.6 \times 10^{-19}\right)^{2}}{1.6 \times 10^{-14}}$
$\mathrm{Z}=20$
70.(12) Intensity of each beam $=1.2 \times 10^{-3}$

Wattage of each beam $=1.2 \times 10^{-3} \times 10^{-4}=1.2 \times 10^{-7} \mathrm{~W}$
$\mathrm{E}_{1}=\frac{12400}{4144} 3 \mathrm{eV}, \mathrm{E}_{2}=\frac{12400}{4972}=2.5 \mathrm{eV}$
$\mathrm{E}_{3}=\frac{12400}{6216}=2 \mathrm{eV}$;
Only E_{1} and E_{2} can eject photoelectrons.
$\mathrm{N}_{1}=\frac{1.2 \times 10^{-7}}{2.5 \times 1.6 \times 10^{-19}} ; \mathrm{N}_{2}=\frac{1.2 \times 10^{-7}}{3.0 \times 1.6 \times 10^{-19}}$
$\Rightarrow \quad \mathrm{N}_{1}+\mathrm{N}_{2}=0.55 \times 10^{12}$ in 1 sec
$\therefore \quad$ in $2 \mathrm{sec} .=1.1 \times 10^{12}$
71.(25) $\quad r_{n}=\frac{n^{2} h^{2}}{4 k \pi^{2} \times 3 e^{2} \times 208 m_{e}}$
72.(80) $n_{2}=3, n_{1}=1$

$$
\begin{aligned}
& \frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} \times 3^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \\
& \Rightarrow \quad \lambda=\frac{4}{5 \mathrm{R}_{\mathrm{H}}}=8 \times 10^{-8} \mathrm{~m}=80 \mathrm{~nm}
\end{aligned}
$$

73.(10) No. of photoelectrons emitted $=\frac{90}{3} \times \frac{4000 \times 10^{-10}}{6.4 \times 10^{-34} \times 3 \times 10^{8}}=\frac{1}{1.6} \times 10^{20}$

$$
\therefore \quad \text { Magnitude of charge passing per second }=\frac{1}{1.6} \times 10^{20} \times 1.6 \times 10^{-19}=10 \mathrm{~A}
$$

74.(97)
75.(4) $\quad E_{\text {incident }}=\frac{1240}{300}=4.1 \mathrm{eV}$

So Li, Na, K, Mg will show.

Periodic Properties of Elements

1.(C)
2.(B) Pb has most stable +2 state among the given (inert pair effect)
3.(C) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{+2}$
5.(A) Shielding effect : $\mathrm{s}>\mathrm{p}>\mathrm{d}>\mathrm{f}$
6.(A) $1^{\text {st }}$ ionization enthalpies: $\mathrm{Na}<\mathrm{Mg}>\mathrm{Al}<\mathrm{Si}$
7.(C)
8.(D) $\mathrm{I}^{-}>\mathrm{I}>\mathrm{I}^{+}$(anion are larger than parent; cations are smaller)
9.(C)
$\left.\begin{array}{cc|}\text { I } & \text { is Neon } \\ \text { II } & \text { is oxygen } \\ \text { III } & \text { is sodium } \\ \text { IV } & \text { is fluorine }\end{array}\right]$ Electron Affinity
11.(BC) Suphur and Phosphorus can show covalency greater than 4. $\mathrm{Ex}: \mathrm{SF}_{6}, \mathrm{PCl}_{5}$ etc.
12.(AC) Group 1 and 2 elements impart characteristic flame colour.
13.(AD) Sulphur has maximum electron affinity in its group. Chlorine has maximum electron affinity among halogens.
14.(ACD)
15.(BC)
16.(BC) (Actually $1^{\text {st }}$ ionization enthalpy follows $\mathrm{B}<\mathrm{C}<\mathrm{N}>\mathrm{O}$) and $1^{\text {st }}$ electron gain enthalpy $\mathrm{Cl}>\mathrm{F}>\mathrm{Br}>\mathrm{I}$)
17.(AD)
18.(AC)
19.(AC)
20.(B)
21.(A)
22.(C)
23.(B)
24.(A) Alkali metal oxides are more basic $\therefore \quad \mathrm{K}_{2} \mathrm{O}>\mathrm{Na}_{2} \mathrm{O}>\mathrm{MgO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
25.(D) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{+2}>\mathrm{Al}^{+3}$
26.(B)
27.(C) Denser the cation, more will be the polarizing power.
28.(B) Rb^{+}is least solvated

29.(B)	30.(D)	31.(C)	32.(C)	33.(C)		
34.(C)	35.(D)	$36 .(D)$	$37 .(B)$	$38 .(B)$	39.(B)	40.(ABCD)

41.(D) Electron gain enthalpy becomes less negative from top to bottom in a group while it becomes more negative from left to right within a period.
42.(A) As positive charge on the cation increases, effective nuclear charge increases. Thus atomic size decreases.
43.(A) $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-} ; \Delta \mathrm{H}=5.1 \mathrm{eV} ; \mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na} ; \Delta \mathrm{H}=-5.1 \mathrm{eV}$.
44.(A) In going left to right across a period in the periodic table, the basicity (i.e. proton affinity) decreases as the electronegativity of the atom possessing the lone pair of electrons increases. Hence basicity of NH_{2}^{-}is higher than F^{-}. In moving down in a group, as the atomic mass increases, basicity decreases. Hence F^{-}is more basic than I^{-}and HO^{-}is more basic than HS^{-}. Hence among the given ionic species, NH_{2}^{-}has maximum proton affinity.
45.(A)

$\mathrm{X}-\mathrm{X}$ bond	$\mathrm{F}-\mathrm{F}$	$\mathrm{Cl}-\mathrm{Cl}$	$\mathrm{Br}-\mathrm{Br}$	$\mathrm{I}-\mathrm{I}$
Bond dissociation energy $(\mathrm{kcal} / \mathrm{mol})$	38	57	45.5	35.6

The lower value of bond dissociation energy of fluorine is due to the high inter-electronic repulsion between non-bonding electrons in the 2 p-orbitals of fluorine. As a result $\mathrm{F}-\mathrm{F}$ bonds is weaker in comparison to $\mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{Br}-\mathrm{Br}$ bonds.
46.(B) Amongst isoelectronic ions, ionic radii of anions is more than that of cations. Further size of the anion increases with in -ve charge and size of cation decreases with increases in $+v e$ charge. Hence correct order is

$$
\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}
$$

47.(D) Atomic volume is the volume occupied by one gram of an element. Within a period from left to right, atomic volume first decreases and then increases.
48.(2) $\mathrm{Ti}^{2+}, \mathrm{V}^{3+}$
50.(9) $\mathrm{Fe}^{+3}, \mathrm{Mn}^{2+}, \mathrm{Co}^{4+}, \mathrm{Co}^{3+}, \mathrm{Cr}^{+}, \mathrm{Fe}^{2+}, \mathrm{Mn}^{3+}, \mathrm{Cr}^{3+}, \mathrm{V}^{3+}$
52.(3) $\mathrm{Se}^{2-}, \mathrm{N}^{3-}, \mathrm{P}^{3-}$
53.(6) $\mathrm{Li}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Rb}, \mathrm{Sr}, \mathrm{Ca}$
57.(9) $\mathrm{a}=0, \mathrm{~b}=5, \mathrm{c}=14$
56.(9) $\mathrm{x}=4, \mathrm{y}=13$
49.(3) $83,54,34$
59.(5) $x=2\left(\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}\right) ; y=3\left(\mathrm{MgO}, \mathrm{SrO}, \mathrm{K}_{2} \mathrm{O}\right)$
61.(48) $7 \mathrm{~s}, 7 \mathrm{p}, 6 \mathrm{~d}, 5 \mathrm{f}$

No. of orbitals $=1+3+5+7=16$.
$16 \times 3=48$
51.(4) $\mathrm{Sc}, \mathrm{Pd}, \mathrm{Os}, \mathrm{Zr}$
54.(1) Pt only
55.(4)
58.(0)
60.(4) $\mathrm{n}=3, \ell=1$
62.(32)

Chemical Bonding-1 \& 2

1.(C) Apply Fajan's rule
3.(D) Te^{2-} largest size, loosely packed e^{-}
5.(ABCD)

$9 \sigma, 1 \pi$ bond, 2 lone-pairs

2.(AB)

4.(D) $\mathrm{BF}_{3} \mathrm{sp}^{2}$, planar ; $\mathrm{NF}_{3} \mathrm{sp}^{3}$, pyramidal
7.(D)

8.(D) BCl_{3} planar
 [steric number $=3$]
NCl_{3}

Pyramid [steric number $=4]$
9.(B)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \quad$ All C are sp^{2}
10.(ABD) CuCl more covalent than NaCl [Greater effective charge density]
11.(B)
12.(B) $: \ddot{\mathrm{F}}-\mathrm{O}-\ddot{\mathrm{F}}: 2 \sigma, 8$ lone pairs.
13.(B) BF_{4}^{-}and NH_{4}^{+}both sp^{3}, tetrahedral
14.(C)
15.(B) $\quad \mathrm{NO}_{2}^{+} \quad$ sp ; $\quad \mathrm{NH}_{3}^{-} \quad$ sp $^{2} ; \quad \stackrel{+}{\mathrm{N}} \mathrm{H}_{4} \quad$ sp 3
16.(B) $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
17.(D)

19.(C)
 $\mathrm{C}-\mathrm{H} \& \mathrm{C}=\mathrm{C}$ are different
18.(A) A tetrahedral shape for BH_{4}^{-}

21.(D) Valence shell used.
22.(A) Most E.N. element is F $2 s^{2} \mathrm{sp}^{5}$
23.(B) $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2} \Rightarrow \mathrm{Mg}$ (pseudo inert configuration)
24.(D) $\mathrm{H}-\mathrm{O}-\mathrm{H} \quad \stackrel{\ominus}{\mathrm{O}}-\mathrm{H}$

Both bonds if cleaved one by one can never be of same strength. Successive H^{+}donating ability of acids $\downarrow_{\text {se }}$ successively.
25.(B) $\mathrm{CsI}_{3}: \mathrm{Cs}^{+}$and $\mathrm{I}_{3}^{-} \Rightarrow \mathrm{It}$ is ionic.
27.(C) PF_{5} : bipyramidal ; BaF_{5} : Square pyramidal
29.(D) $\mathrm{IF}_{7}:$ pentagonal bipyramid
31.(A) $\mathrm{CaC}_{2} \quad \mathrm{C}^{-} \equiv \mathrm{C}^{-}(1 \sigma, 2 \pi)$
33.(A) SF_{4} axial bonds longer than equitorial
36.(A) $\underset{\text { 1 lone pair }}{\mathrm{SF}_{4},} \underset{\substack{\downarrow \text { lone pair }}}{\mathrm{CF}_{4},}, \quad \underset{2 \text { lone pairs }}{\mathrm{XeF}_{4}}$
38.(C) BF_{4}^{-}: Regular tetrahedral
40.(B) $\quad \mathrm{H}_{3} \mathrm{BO}_{3}$

42.(C) $\mathrm{H}_{2} \mathrm{~S}$ smallest angle
44.(C)
45.(D)
26.(C) SbCl_{3} : Lowered bond angle
28.(C) AlCl_{3} most covalent (Apply Fajan's Rule)
30.(D) $\mathrm{XeF}_{2}: 3$ lone pairs
32.(B) $\mathrm{F}-\mathrm{H}----\mathrm{F}$ strongest
34.(D) 35.(A)
37.(D) $\mathrm{sp}^{3} \mathrm{~d}^{2} \Rightarrow 12$ angles at 90°
39.(C) $\mathrm{H}_{2} \mathrm{C}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
41.(B) XeF_{2} linear; CO_{2} linear
43.(C)
46.(A)
47.(B) Fe^{+3} is more polarizing than $\mathrm{Fe}^{+2} \quad \therefore \mathrm{FeCl}_{3}$ more covalent
48.(A) II has high vapour pressure because of intra-H-bonding
49.(B) HCl has lowest boiling point
51.(D) $\mathrm{Be}^{+2}<\mathrm{Mg}^{+2}<\mathrm{Li}^{+}<\mathrm{Na}^{+} \quad$ 52.(D)
50.(C) MX_{3}; zero dipole $\therefore \mathrm{sp}^{2}$
53.(C) ${ }_{\text {CH }}^{\mathrm{CH}_{3}-} \mathrm{CH}_{3}-\mathrm{OH}$
55.(C) NF_{3} and $\mathrm{H}_{3} \mathrm{O}^{+}$iso-structural ; NO_{3}^{-}and BF_{3} iso-structural
56.(C) Unpaired e^{-}in $\mathrm{KO}_{2} \quad \mathrm{O}_{2}^{-}$(check MOT)
57.(B) $\mathrm{NH}_{3} \quad \mathrm{sp}^{3} ; \quad\left[\mathrm{PtCl}_{4}\right]^{2-} \mathrm{dsp}^{2} ; \mathrm{PCl}_{5} \quad \mathrm{sp}^{3} \mathrm{~d} \quad ; \quad \mathrm{BCl}_{3} \quad \mathrm{sp}^{2}$
58.(A) $\mathrm{H}_{3} \mathrm{~N} \rightarrow \mathrm{BF}_{3}$
$\mathrm{sp}^{3} \quad \mathrm{sp}^{3}$
tetrahedral tetrahedral
59.(C) $\begin{array}{lllllllllllll}\mathrm{SF}_{2} & 2 \mathrm{BP} & 2 \ell \mathrm{p} & \mathrm{sp}^{3} & ; & \mathrm{SF}_{4} & 4 \mathrm{BP} & 1 \ell \mathrm{p} & \mathrm{sp}^{3} \mathrm{~d} & ; & \mathrm{SF}_{6} & 6 \mathrm{BP} & 0 \ell \mathrm{p}\end{array} \mathrm{sp}^{3} \mathrm{~d}^{2}$
60.(C)
$\mathrm{B}_{2} \mathrm{H}_{6}$

61.(D) $\left.\begin{array}{ll}\mathrm{SO}_{4}^{2-} & \mathrm{sp}^{3} \\ \mathrm{ClO}_{4}^{-} & \mathrm{sp}^{3}\end{array}\right]$ tetrahedral \quad 62.(A)
63.(D)
64.(B) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
65.(AB) C_{2} and N_{2} diamagnetic
66.(C) $1.5 \quad 2 \quad 2.5$
67.(B) Read the option (B) as $\mathrm{Li}_{2}^{-}<\mathrm{Li}_{2}^{+}<\mathrm{Li}_{2} \quad\left(\mathrm{Li}_{2}^{2-}\right.$ has more electron in anti-bonding orbitals) $\begin{array}{llll}\text { Bond order } & 0.5 & 0.5 & 1\end{array}$
68.(A)

> 69.(A)
72.(B) Bond length $\propto \frac{1}{\text { Bond order }}$
70.(B) $\underset{\text { Para }}{\mathrm{NO}} \longrightarrow \underset{\text { Diamagnetic }}{\mathrm{NO}^{+}}$
71.(C)
74.(AB) Both 3
75.(AD) Both sp
77.(CD) Both are bent
79.(AD) Check MOT
73.(D) $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
76.(AB) Both $14 \mathrm{e}^{-}$
78.(CD) Check resonance
80.(CD) Both $17 \mathrm{e}^{-}$species
81.(C) In diamond and silicon carbide, central atom is sp^{3} hybridised and hence, both are isostructural. NH_{3} and PH_{3}, both are pyramidal and central atom in both cases is sp^{3} hybridised. SiCl_{4} and PCl_{4}^{+}, both are tetrahedral and central atom in both cases is sp^{3} hybridised. In $\mathrm{XeF}_{4}, \mathrm{Xe}$ is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and structure is square planar while in $\mathrm{XeO}_{5}, \mathrm{Xe}$ is sp^{3}

 hybridised and structure is tetrahedral.
82.(B)

Species	Hybridistion	Shape	No. of e ${ }^{-} \mathrm{s}$
SO_{3}^{2-}	sp^{3}	Pyramidal	42
ClO_{3}^{-}	sp^{3}	Pyramidal	42
CO_{3}^{2-}	sp^{2}	Triangular planar	32
NO_{3}^{-}	sp^{2}	Triangular planar	32

83.(D)
$\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
$\begin{array}{llll}\text { Boiling point } & 1.5 & 2.0 & 2.5\end{array}$
84.(A)

	NO_{3}^{-}	NO_{2}	NO_{2}^{-}	NO_{2}^{+}
Hybridisation	sp^{2}	sp^{2}	sp^{2}	sp
Bond angle	120°	134°	115°	180°

85.(A) Boron hydrides are electron deficient compounds.
86.(A) HCl is polar $(\mu \neq 0)$ and He is non-polar $(\mu=0)$ gives dipole-induced dipole interaction.
87.(C) M.O. configuration of $\mathrm{O}_{2} \Rightarrow \sigma \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \pi * 2 \mathrm{p}_{\mathrm{x}}^{1} \pi * 2 \mathrm{p}_{\mathrm{y}}^{1}$
$\Rightarrow \quad$ Paramagnetic and B.O. $=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{+} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \pi * 2 \mathrm{p}_{\mathrm{x}}^{1} \quad \Rightarrow \quad$ Paramagnetic and Bond order $=\frac{10-5}{2}=2.5$
$\mathrm{C}_{2} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \Rightarrow \quad$ Diamagnetic and Bond order $=\frac{8-4}{2}=2$
$\mathrm{C}_{2}^{+} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{1} \Rightarrow$ Paramagnetic and Bond order $=\frac{7-4}{2}=1.5$
$\mathrm{NO} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \pi * 2 \mathrm{p}_{\mathrm{x}}^{1} \Rightarrow \quad$ Paramagnetic and Bond order $=\frac{10-5}{2}=2.5$
$\mathrm{NO}^{+} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \Rightarrow$ Diamagnetic and Bond order $=\frac{10-4}{2}=3$
$\mathrm{N}_{2} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \Rightarrow$ Paramagnetic and Bond order $=\frac{10-4}{2}=3$
$\mathrm{N}_{2}^{+} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma * 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}^{1} \Rightarrow \quad$ Paramagnetic and Bond order $=\frac{9-4}{2}=2.5$.
88.(D)

2 B.P. and 1 L.P.
2 B.P. and 2 L.P.

3 B.P. and 1 L.P.

89.(D) Diatomic Species :

$\mathrm{NO} \quad \mathrm{O}_{2}^{-}$
C_{2}^{2-}
Bond order :
$2.5 \quad 1.5$
$\begin{array}{ccc}\mathrm{NO}_{2}^{-} & \mathrm{NO}_{3}^{-} & \mathrm{NH}_{2}^{-} \\ \mathrm{sp}^{2} & \mathrm{sp}^{2} & \mathrm{sp}^{3}\end{array}$
NH_{4}^{+}
SCN^{-}
Hybridisation :

3 B.P. and 0 L.P.

He_{2}^{+}
0.5 Thus increasing order : $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$
90.(A) Ions :
91.(A) Increasing order of bond length is $\underset{107 \mathrm{pm}}{\mathrm{C}-\mathrm{H}}<\underset{134 \mathrm{pm}}{\mathrm{C}}=\mathrm{C}<\underset{141 \mathrm{pm}}{\mathrm{C}-\mathrm{O}}<\underset{154 \mathrm{pm}}{\mathrm{C}}$
92.(C) $\mathrm{SF}_{4}, \mathrm{I}_{3}^{-}$and PCl_{5} all have central atom with $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation; whereas $\left[\mathrm{SbCl}_{5}\right]^{2-}$ has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation of Sb .
93.(D) Methanol can undergo intermolecular association through H -bonding as the -OH group in alcohols is highly polarized.

As a result, in order to convert liquid $\mathrm{CH}_{3} \mathrm{OH}$ to gaseous state, the strong hydrogen bonds must be broken.
94.(D) For $A B_{5}$ molecules, there are three possible geometries i.e. planar pentagonal, square pyramidal and trigonal bipyramidal.

planar pentagonal

square pyramidal

trigonal bipyramidal

Out of these three geometries, it is only trigonal pyramidal shape in which bond pair-bond pair repulsions are minimum and hence this geometry is the most probable geometry of AB_{5} molecule.
95.(B) Bond angle is maximum in NH_{4}^{+}tetrahedral molecule with bond angle 109°.
96.(B) In PO_{4}^{3-}, P atom has vacant d-orbitals, thus it can form $\mathrm{p} \pi-\mathrm{d} \pi$ bond. ' N ' and ' C ' have no vacant ' d ' orbital in their valence shell, so they cannot form such bond.
97.(B) Diamagnetism is caused due to the absence of unpaired electrons. But in N^{2+}, there is unpaired electron. So, it is paramagnetic.
98.(A) The structure of CS_{2} is linear and therefore it does not have permanent dipole moment. It is represented as $\mathrm{S}=\mathrm{C}=\mathrm{S}$.
99.(B) The strength of interaction follow the order van der Waal's $<$ hydrogen-bond $<$ dipole-dipole $<$ covalent. It is so because bond length of H -bond is larger than that of a covalent bond. And also covalent bond is strongest because the greater the extent of overlapping, the stronger is the bond formed.
100.(C) In $\mathrm{NH}_{3}, \mathrm{~N}-\mathrm{H}$ bond is most polar and the shape is tetrahedral.
101.(4) $\mathrm{ICI}_{2}^{-}, \mathrm{XeO}_{3} \mathrm{~F}_{2}, \mathrm{SF}_{4}, \mathrm{SOF}_{4}$
102.(3) Planar species are:

103.(3) $\mathrm{NO}^{+}, \mathrm{CN}^{-}, \mathrm{CO}$
104.(3) $\left(\mathrm{HPO}_{3}\right)_{\mathrm{n}}$ has $\mathrm{n}-\mathrm{O}-\mathrm{P}$ linkages.
105.(3) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3} \quad$ 106.(4) $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeO}_{6}^{4-}, \mathrm{XeCl}_{4}$
107.(17) $\mathrm{P}-\mathrm{O}-\mathrm{P} \rightarrow 6 ; \mathrm{B}-\mathrm{O}-\mathrm{B} \rightarrow 5 ; \mathrm{Si}-\mathrm{O}-\mathrm{Si} \rightarrow 3 ; \mathrm{S}-\mathrm{O}-\mathrm{S} \rightarrow 3$
108.(4) $\mathrm{CCl}_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{SiO}_{4}^{4-}$
109.(1) (b) is only correct.
110.(5) Any existing species has $\mathrm{N}_{\mathrm{b}}<\mathrm{N}_{\mathrm{a}}$ electron.
111.(4) $\mathrm{C}_{2}, \mathrm{O}_{2}, \mathrm{O}_{2}^{+}$, NO
112.(2) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{O}_{2}$
113.(4)

	HOMO	Symmetry
B_{2}	$\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}$	u
N_{2}	$\sigma 2 \mathrm{pz}$	g
C_{2}	$\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}$	u
N_{2}^{2+}	$\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}$	u
O_{2}	$\pi * 2 \mathrm{p}_{\mathrm{x}}=\pi * 2 \mathrm{p}_{\mathrm{y}}$	g
O_{2}^{2-}	$\pi * 2 \mathrm{p}_{\mathrm{x}}=\pi * 2 \mathrm{p}_{\mathrm{y}}$	g
N_{2}^{2-}	$\pi * 2 \mathrm{p}_{\mathrm{x}}=\pi * 2 \mathrm{p}_{\mathrm{y}}$	g

114.(4) $\mathrm{NO}, \mathrm{ClO}_{2}, \mathrm{OF}, \mathrm{B}_{2}$
115.(3) $\mathrm{N}_{2}^{+}=(13) /$ Bond order $\mathrm{N}_{2}^{+}=\frac{9-4}{2}=2.5$
[N_{2}^{+}has one unpaired electron in $\left.\sigma_{(2 p)}(\mathrm{BMO})\right]$
$\mathrm{O}_{2}^{-}=(17) /$ Bond order $\mathrm{O}_{2}^{-}=\frac{10-7}{2}=1.5$
[O_{2}^{-}has one unpaired electron in π^{*}]
$\mathrm{OF}(17)=$ Bond order $(\mathrm{OF})=\frac{10-7}{2}=1.5$
[OF has one unpaired electron in π^{*}]

States of Matter

1.(B) Refer theory
2.(C) $\quad \mathrm{V}=\left(\frac{\mathrm{nR}}{\mathrm{P}}\right) \mathrm{T} \quad ; \quad$ Slope $\propto \frac{1}{\mathrm{P}} \quad \therefore \quad \mathrm{P}_{1}<\mathrm{P}_{2}<\mathrm{P}_{3}<\mathrm{P}_{4}$
3.(C) Refer theory from module on intermolecular forces.
4.(A) $\mathrm{V}=\mathrm{C} \quad \Rightarrow \quad \mathrm{P} \propto \mathrm{T} \quad \therefore \quad \mathrm{T} \uparrow, \mathrm{P} \uparrow$
5.(D) $\uparrow T_{C}$ implies case of liquefaction Hence $\underset{154.3}{\mathrm{O}_{2}}>\underset{126}{\mathrm{~N}_{2}}>\underset{33.2}{\mathrm{H}_{2}}>\underset{5.3}{\mathrm{He}} \quad$ Increasing order of liquefaction
6.(B) $\quad F=\eta A \frac{d v}{d x} \quad\left(\eta:\right.$ Viscosity coefficient) Observe that its unit in SI system will be $\mathrm{Ns} \mathrm{m}^{-2}$.
7.(A) $\quad \mathrm{PV}=\mathrm{C}$ at lowest temperature for ideal gases
8.(C) Viscosity \uparrow with \uparrow in intermolecular forces
9.(B) Refer theory
10.(BC) By kinetic theory of gases
11.(BC) Because at high pressure and low perpendicular interaction between the particles increases.
12.(BD) V. $\mathrm{P} \propto$ surface area \propto temperature
13.(A) Refer theory
14.(B) (R) is not a correct explanation of (A) but both statements are correct.
15.(C) At high altitude atmospheric pressure reduces
16.(A) Refer theory on liquefaction of gases on Andrew isotherms.
17.(D) Liquids tends to have minimum surface area in order to have minimum energy.
18.(B) At law $\mathrm{P} \Rightarrow \mathrm{Vm}-\mathrm{b} \approx \mathrm{V}_{\mathrm{m}}$

$$
\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}^{2}}\right)\left(\mathrm{V}_{\mathrm{m}}\right)=\mathrm{RT} \quad \Rightarrow \quad \mathrm{Z}=\frac{\mathrm{PV}_{\mathrm{m}}}{\mathrm{RT}}=1-\frac{\mathrm{a}}{\mathrm{RTV}}
$$

19.(C) $\quad \mathrm{C}^{*}=\sqrt{\frac{2 \mathrm{RT}}{\mathrm{M}_{0}}} ; \quad \overline{\mathrm{C}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}_{0}}} ; \mathrm{C}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{0}}}$
20.(C) At $\uparrow \mathrm{P} \Rightarrow\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{Vm}^{2}}\right) \approx \mathrm{P}$ although Vm is mall
$\mathrm{P}(\mathrm{Vm}-\mathrm{b})=\mathrm{RT} \quad \Rightarrow \quad \mathrm{Z}=\frac{\mathrm{PVm}}{\mathrm{RT}}=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
21.(D) $\mathrm{T}_{\mathrm{C}} \propto\left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
$\uparrow \mathrm{T}_{\mathrm{C}}$ means ease of liquefaction Cl_{2} is larger in size as compared to $\mathrm{C}_{2} \mathrm{H}_{6} \quad \therefore \underset{\left(\mathrm{Cl}_{2}\right)}{\mathrm{a}}>\underset{\mathrm{C}_{2} \mathrm{H}_{6}}{a}$ also $\underset{\left(\mathrm{Cl}_{2}\right)}{\mathrm{b}}<\underset{\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}{\mathrm{b}}$
22.(D) By kinetic theory of gases.
23.(D) $\underset{\substack{\text { Vapour } \\ \text { Pressure }}}{\mathrm{P}} \times \quad \mathrm{V}=\mathrm{n} \times \mathrm{R} \times 300$

$$
\left(\frac{26.7}{760}\right) \times 1=\mathrm{n} \times 0.0821 \times 300 \Rightarrow \mathrm{n}=1.42 \times 10^{-3}
$$

24.(C)

26.(C) $\mathrm{b}=4 \times[\mathrm{Na} \times$ Volume of one particle $]$
25.(C) K.E. of an atom $=\frac{3}{2} K_{B} T \Rightarrow$ K.E. $\propto T$

28.(D) Boyle's law, Avogadro's law, Charle's law are based on ideal gases which is explained by kinetic theory of gases.
29.(C) $\mathrm{PV}=\mathrm{nRT} \Rightarrow \frac{\mathrm{P}}{\mathrm{RT}}=\left(\frac{\mathrm{n}}{\mathrm{V}}\right)$ 30.(B) $\frac{\mathrm{V}}{\mathrm{T}}=\left(\frac{\mathrm{nR}}{\mathrm{P}}\right) \quad \Rightarrow \quad \mathrm{P} \uparrow \frac{\mathrm{V}}{\mathrm{T}} \downarrow$
31.(C) Initially $2 \times 0.5=\mathrm{n}_{1} \mathrm{RT}$

$$
1 \times 1=\mathrm{n}_{2} \text { RT } \quad \Rightarrow \quad \mathrm{n}_{1}=\mathrm{n}_{2}
$$

Finally Let common $P_{\text {resence }}=P$

$$
\mathrm{P} \times 2=\mathrm{n}_{1}^{1} \mathrm{RT}
$$

$$
\mathrm{P} \times 1=\mathrm{n}_{2}^{1} \mathrm{RT} \quad \Rightarrow \quad \frac{\mathrm{n}_{1}^{1}}{\mathrm{n}_{2}^{1}}=2 \quad \Rightarrow \quad \mathrm{n}_{2}^{1}=\frac{\mathrm{n}_{1}^{1}}{2}
$$

Also $\quad \mathrm{n}_{1}^{1}+\mathrm{n}_{2}^{1}=2 \mathrm{n}_{1} \quad \Rightarrow \quad \mathrm{n}_{1}^{1}+\frac{\mathrm{n}_{1}^{1}}{2}=2 \mathrm{n}_{1} \quad \Rightarrow \quad \mathrm{n}_{1}^{1}=\left(\frac{4 \mathrm{n}_{1}}{3}\right)$
Re writing equation $(\alpha),(\beta)$ and (γ)

$$
\begin{aligned}
& \mathrm{P} \times 2=\left(\frac{4 \mathrm{n}_{1}}{3}\right) \mathrm{RT} \quad \Rightarrow \quad 2 \times 0.5=\mathrm{n}_{1} \mathrm{RT} \\
& \frac{\mathrm{P}}{0.5}=\frac{4}{3} \quad \Rightarrow \quad \mathrm{P}=\frac{2}{3}=0.67
\end{aligned}
$$

32.(CD) Units of Boltzmann's constant $\mathrm{J} \mathrm{mol}^{-2} \mathrm{~K}^{-1}$
33.(B) It is a polar molecule, thus more attractive forces among its molecules.
34.(D) C_{P} for monoatomic gas mixture of same volume $=\frac{5}{2} \mathrm{R}$ and $\mathrm{C}_{\mathrm{V}}=\frac{3}{2} \mathrm{R} \quad \therefore \quad \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{5}{3}=1.67$
35.(A) We know that from ideal equation : $\mathrm{V} \propto \frac{\mathrm{T}}{\mathrm{P}}$

Given $\mathrm{T}_{1}=15+273=288 ; \mathrm{P}_{1}=1.5$ bar; $\mathrm{T}_{2}=25+273=298, \mathrm{P}_{2}=1 \mathrm{bar}$
$\mathrm{V}_{1} \propto \frac{288}{1.5}$ i.e. $\mathrm{V}_{1} \propto 192$ and $\mathrm{V}_{2} \propto \frac{298}{1} \Rightarrow \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\frac{298}{192}=1.55=1.6$
36.(A) The average translational K.E. (E_{T}) of one molecule of an ideal gas will be given by $E_{T}=\frac{K . E .}{N_{A}}=\frac{3 / 2 R T}{N_{A}}=\frac{3}{2} K T$ where $\frac{\mathrm{R}}{\mathrm{N}_{\mathrm{A}}}=$ Boltzmann constant $\Rightarrow \mathrm{E}_{\mathrm{T}} \propto \mathrm{T}$. So, at constant temperature K.E. of molecules remains same.
37.(D) Mass of the gas = mass of the cylinder including gas - mass of empty cylinder.

So mass of a gas can be determined by weighing the container in which it is enclosed.
Thus, the statement (D) is wrong for gases.
38.(A) Temperature at which all molecular motion ceases is called absolute zero.
39.(A) According to Charles' law which states that "the volume of the given mass of a gas increases or decreases by $\frac{1}{273}$ of its volume at $0^{\circ} \mathrm{C}$ for each degree rise or fall of temperature at constant pressure".

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{0}\left(1+\frac{\mathrm{t}}{273}\right) \text { at constant } \mathrm{P} \text { and } \mathrm{n} .
$$

40.(B) $\frac{\mathrm{PV}}{\mathrm{T}}=$ constant $\Rightarrow \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \Rightarrow \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2} \mathrm{~V}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
41.(4) $3.2 \mathrm{~g} \mathrm{O}_{2}=0.1 \mathrm{~mol}$,
$0.2 \mathrm{~g} \mathrm{H}_{2}=0.1 \mathrm{~mol}$,
Total $\mathrm{n}=0.2 \mathrm{~mol}$,
$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{0.2 \times 0.0821 \times 273}{1.12}=4 \mathrm{~atm}$
42.(4) Suppose molecular masses of A and B are M_{A} and M_{B} respectively. Then their number of moles will be
$\mathrm{n}_{\mathrm{A}}=\frac{1}{\mathrm{M}_{\mathrm{A}}}, \quad \mathrm{n}_{\mathrm{B}}=\frac{2}{\mathrm{M}_{\mathrm{B}}}$
$\mathrm{P}_{\mathrm{A}}=2 \mathrm{bar}, \mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=3 \mathrm{bar}$
i.e. $P_{B}=1$ bar

Applying the relation $\mathrm{PV}=\mathrm{nRT}$
$\therefore \quad \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}=\frac{1 / \mathrm{M}_{\mathrm{A}}}{2 / \mathrm{M}_{\mathrm{B}}}=\frac{\mathrm{M}_{\mathrm{B}}}{2 \mathrm{M}_{\mathrm{A}}}$
or $\quad \frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{A}}}=2 \times \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=2 \times \frac{2}{1}=4$
or $\quad M_{B}=4 M_{A}$
43.(44) If t is the time taken for diffusion of each gas, then by Graham's law of diffusion
$\frac{\mathrm{r}_{\mathrm{x}}}{\mathrm{rCl}_{2}}=\frac{127 / \mathrm{t}}{100 / \mathrm{t}}=\sqrt{\frac{\mathrm{M}_{\mathrm{Cl}_{2}}}{\mathrm{M}_{\mathrm{x}}}}=\sqrt{\frac{71}{\mathrm{M}_{\mathrm{x}}}}$
or $\quad \frac{71}{\mathrm{M}_{\mathrm{x}}}=\left(\frac{127}{100}\right)^{2}$
or

$$
\mathrm{M}_{\mathrm{x}}=44 \mathrm{u}
$$

44.(56) The balanced equation for combustion
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \rightarrow \mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
1 volume $\left(x+\frac{y}{4}\right)$ volume
$\therefore \quad x+\frac{y}{4}=6$ (by equation)
or $\quad 4 x+y=24$
Again $\mathrm{x}=4$ since evolved CO_{2} is 4 times that of hydrocarbon
$\therefore \quad 16+y=24 \quad$ or $\mathrm{y}=8 \therefore$ formula of hydrocarbon $\mathrm{C}_{4} \mathrm{H}_{8}$
45.(40) $\mathrm{n}_{\mathrm{A}}=\frac{2.9}{\mathrm{M}_{\mathrm{A}}} ; \mathrm{nH}_{2}=\frac{0.184}{2}=0.092$
$\frac{(\mathrm{PV})_{\mathrm{A}}}{(\mathrm{PV}) \mathrm{H}_{2}}=\frac{(\mathrm{nRT})_{\mathrm{A}}}{(\mathrm{nRT})_{\mathrm{H}_{2}}}$
$1=\frac{2.9}{\mathrm{M}_{\mathrm{A}}} \times \frac{(95+273)}{(17+273)} \times \frac{1}{0.092}$
$M_{A}=\frac{2.9 \times 368}{290 \times 0.092}=40 \mathrm{~g} \mathrm{~mol}^{-1}$
46.(22) $\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{n_{1} R T_{1}}{n_{2} R T_{2}}=\frac{n_{1} T_{1}}{n_{2} T_{2}}$

As, $\mathrm{V}_{1}=\mathrm{V}_{2} \& \mathrm{~T}_{1}=\mathrm{T}_{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}$
$\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{CO}_{2}}}=\frac{\mathrm{n}_{\mathrm{H}_{2}}}{\mathrm{n}_{\mathrm{CO}_{2}}}$
$\frac{\mathrm{P}_{\mathrm{H}_{2}}}{1}=\frac{44 / 2}{44 / 44}=22 \mathrm{~atm}$
47.(1) $\quad P \propto \frac{1}{V}$
48.(16) $\frac{r_{A}}{r_{B}}=\sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{2}{1}=\sqrt{\frac{64}{M_{A}}}$
$M_{A}=16 \mathrm{~g} / \mathrm{mole}$
49.(3) $\quad P V=n R T$
$\frac{(P V)_{i}}{(P V)_{f}}=\frac{(n R T)_{i}}{(n R T)_{f}}$
$\frac{10 V}{8 V}=\frac{(15 / M M)}{W / M M}$
$\frac{10}{8}=\frac{15}{W}$
$W=12 \mathrm{~kg}$
Leaked gas $=(15-12)=3 \mathrm{~kg}$
50.(327) $\left(\sqrt{\frac{2 \mathrm{RT}}{\mathrm{M}}}\right)_{\mathrm{SO}_{2}}=\left(\sqrt{\frac{2 \mathrm{RT}}{\mathrm{M}}}\right)_{\mathrm{O}_{2}}$
$\left(\frac{\mathrm{T}}{\mathrm{M}}\right)_{\mathrm{SO}_{2}}=\left(\frac{\mathrm{T}}{\mathrm{M}}\right)_{\mathrm{O}_{2}}$
$\frac{\mathrm{T}_{\mathrm{SO}_{2}}}{64}=\frac{300}{32} \Rightarrow \mathrm{~T}_{\mathrm{SO}_{2}}=600 \mathrm{~K}=327^{\circ} \mathrm{C}$
51.(3) $\quad \operatorname{rms}(\mu)=\sqrt{\frac{3 R T}{M}}$

For atom, $\mu^{\prime}=\left(\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}\right)$,
$\mathrm{T}^{\prime}=3 \mathrm{~T}$ and $\mathrm{M}=3 \mathrm{M}^{\prime}$
$\frac{\mu^{\prime}}{\mu}=\frac{\left(\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}\right)^{\prime}}{\left(\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}\right)^{\prime}}=\sqrt{\frac{\frac{3 \mathrm{R} \times 3 \mathrm{~T}}{\mathrm{M}^{\prime}}}{\frac{3 \mathrm{RT}}{3 \mathrm{M}^{\prime}}}}=\sqrt{9}=3$
$\mu^{\prime}=3 \mu$
52.(500) Let the initial number of moles in vessel be 5 at $27^{\circ} \mathrm{C}$, i.e., 300 K . Moles of air left at new temperature
$=5-\frac{2}{5} \times 5=3$
Pressure and volume remaining the same,

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{RT}_{1}=\mathrm{n}_{2} \mathrm{RT}_{2} \\
& 5 \times 300=3 \times \mathrm{T}_{2} \Rightarrow \mathrm{~T}_{2}=500 \mathrm{~K}
\end{aligned}
$$

53.(32) $\frac{r_{X}}{r_{Y}}=\frac{\frac{V_{X}}{t_{X}}}{\frac{V_{Y}}{t_{Y}}}=\frac{\frac{40}{20}}{\frac{80}{20}}=\frac{1}{2} \Rightarrow \sqrt{\frac{M_{X}}{M_{Y}}}=\frac{r_{Y}}{r_{X}} \Rightarrow \frac{M_{X}}{M_{Y}}=4$
$\mathrm{M}_{\mathrm{Y}}=\frac{128}{4}=32$
54.(400) $\mathrm{T}_{\mathrm{C}}=\frac{8}{3} \frac{\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}}{\mathrm{R}}=\frac{8}{3} \times \frac{40 \times 3}{0.8}=400 \mathrm{~K}$
55.(3) $\quad P M=\rho R T \quad \Rightarrow \quad \frac{(P M)_{\text {given }}}{(P M)_{\text {STP }}}=\frac{(\rho R T)_{\text {given }}}{(\rho R T)_{\text {STP }}}$
$\frac{2}{1}=\frac{5.46 \times 300}{\rho \times 273} \Rightarrow \rho=3 \mathrm{~g} \mathrm{dm}^{-3}$

Thermochemistry \& Thermodynamics

1.(C) Closed system allows heat exchange but not mass between system and surrounding.
2.(C) Specific heat is constant
3.(B)
4.(C) For adiabatic process, $q=0 \Rightarrow w=\Delta U$

$$
\text { Free expansion } \quad \Rightarrow \quad \mathrm{w}=0, \Delta \mathrm{U}=0 \Rightarrow \Delta \mathrm{~T}=0
$$

5.(B)

Expansion (- ve work)

Compression (+ve work)
6.(C) $\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }} \geq 0$
7.(C) $\quad \mathrm{C}$ (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g}) ; \Delta_{\mathrm{r}} \mathrm{H}=\mathrm{y} \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=\mathrm{z} \mathrm{kJmol}^{-1}$
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H} y+\mathrm{z}=\mathrm{x}$
8.(C) Thus $y=\Delta H_{1}+x \Rightarrow x>y$ since $\Delta H_{1}=+v e$ and x and y are negative.

9.(C) Enthalpy of formation can be +ve or -ve
10.(A)
11.(B) For spontaneous process $\Delta \mathrm{G}$ should be negative
12.(AD)

Chemical Rxn
13.(AB)

Heat is flowing out of system. So, it is -ve. If indicates that system is losing energy.
So $\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}-\Delta \mathrm{H}_{\mathrm{i}}=-\mathrm{ve}$
14.(CD) Flow of heat from warmer body to colder body is spontaneous. In general dissipation of energy is spontaneous process.
15.(CD) $\mathrm{w}_{1}=-\mathrm{nR} \times 300 \times \ln 10 ; \mathrm{w}_{2}=-\mathrm{nR} \times 600 \times \ln 10$
$\frac{\mathrm{w}_{1}}{\mathrm{w}_{2}}=\frac{1}{2} \Rightarrow \mathrm{w}_{2}=2 \mathrm{w}_{1} \quad$ Also for ideal gases $\Delta \mathrm{U}=\mathrm{U}(\mathrm{T}) \quad \Rightarrow \quad$ for isothermal process $\Delta \mathrm{U}=0$
16.(AC) $\Delta_{\mathrm{r}} \mathrm{H}=\sum \Delta \mathrm{H}$ (Pr oduct) $-\sum \Delta \mathrm{H}$ (Reactant)

If $\Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{ve} \Rightarrow \sum \Delta \mathrm{H}$ (products) $<\sum \Delta \mathrm{H}$ (Reactants)
Since energy of product is reduced it means. Some energy is evolved for the system
17.(B)

$$
\text { 18.(A) } \quad \Delta_{\mathrm{C}} \mathrm{H}=\mathrm{q}_{\mathrm{p}}=\mathrm{q}_{\mathrm{r}}+\Delta \mathrm{H}_{\mathrm{g}} \mathrm{RT}=-1364.47-\frac{1 \times 8.314 \times 298}{1000} \quad \Delta_{\mathrm{C}} \mathrm{H}=-1366.95 \mathrm{~kJ} / \mathrm{mol}
$$

19.(A) $q=208 \mathrm{~J}$ since system absorbs head
$\mathrm{w}=-\mathrm{nRT} \ln \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=-0.04 \times 8.314 \times 310 \times \ln \left(\frac{375}{50}\right)=-207.7 \mathrm{~J} \approx-208 \mathrm{~J}$
20.(C) For (A) : $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad$ For adiabatic process OR for a free expansion of a gas; $\Delta \mathrm{H}=0 \quad \therefore$
$\frac{\Delta \mathrm{G}_{\text {system }}}{\Delta \mathrm{S}_{\text {system }}}=-\mathrm{T}$
For (C) : $\Delta \mathrm{G}=-\mathrm{nRT} \ell \mathrm{nK} \Rightarrow \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
21.(A) $\Delta \mathrm{S}=\mathrm{nR} \ln \frac{\mathrm{v}_{\mathrm{f}}}{\mathrm{v}_{\mathrm{i}}}=2 \times 8.314 \times \ln 10=38.3 \mathrm{~J} / \mathrm{K}$
22.(D) $\mathrm{PbO}_{2}+\mathrm{Pb} \longrightarrow 2 \mathrm{PbO}, \Delta \mathrm{G}^{\circ}<0 \Rightarrow$ spontaneous
$\mathrm{SnO}_{2}+\mathrm{S}_{\mathrm{n}} \longrightarrow 2 \mathrm{SnO}, \Delta \mathrm{G}^{\circ}>0 \Rightarrow$ non-spontaneous
Thus O.S. for lead $=+2$; O.S for $\operatorname{tin}=+4$
23.(B) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

For spontaneous $\Delta \mathrm{G}<0 \Rightarrow \mathrm{~T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$
But at equilibrium $\Delta \mathrm{G}=0 \Rightarrow \Delta \mathrm{H}-\mathrm{T}_{\mathrm{e}} \Delta \mathrm{S}=0 \quad \Rightarrow \quad \mathrm{~T}_{\mathrm{e}}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}} \quad$ Thus $\mathrm{T}>\mathrm{Te}$

Thus energy involved in $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cl}^{-}(\mathrm{g})$ is : $\frac{1}{2} \Delta_{\text {diss }} \mathrm{H}_{\mathrm{Cl}_{2}}^{\circ}+\Delta_{\mathrm{EA} \mathrm{H}_{\mathrm{Cl}}^{\circ}+\Delta_{\mathrm{hyd}} \mathrm{H}_{\mathrm{Cl}^{-}}^{\circ}=-610 \mathrm{~kJ} / \mathrm{mol}, ~}$
25.(A) $\quad \Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }} \geq 0$ for spontaneous process

For isolated system $\Delta \mathrm{S}_{\text {surrounding }}=0 \quad$ Thus $\Delta \mathrm{S}_{\text {system }} \geq 0$
26.(A) For isolated system $\mathrm{q}=0$

For ideal gas $\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=\mathrm{nC}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \quad ; \quad$ For reversible process $\Delta \mathrm{U}_{\text {rev }}=\mathrm{W}_{\text {rev }}$
For irreversible process $\Delta \mathrm{U}_{\mathrm{irr}}=\mathrm{W}_{\mathrm{irr}} \quad ; \quad$ But for same expansion $\left|\mathrm{W}_{\mathrm{rev}}\right|>\left|\mathrm{W}_{\mathrm{irr}}\right|$

$$
\begin{aligned}
& \left|\Delta \mathrm{U}_{\mathrm{rev}}\right|>\left|\Delta \mathrm{U}_{\mathrm{irr}}\right| \\
& \left|\Delta \mathrm{T}_{\mathrm{fer}}\right|>\left|\Delta \mathrm{T}_{\mathrm{irr}}\right| \Rightarrow\left(\mathrm{T}_{\mathrm{f}}\right)_{\mathrm{irr}}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\mathrm{rev}}
\end{aligned}
$$

27.(B) At const T and $P, \Delta S=n r \ln \frac{V_{f}}{V_{i}}$

Since work is done by system $\mathrm{V}_{\mathrm{f}}>\mathrm{V}_{\mathrm{i}} \quad \Rightarrow \quad \Delta \mathrm{S}>0 \quad$ Also $\mathrm{dG}=\mathrm{dH}-\mathrm{Tds}$
For ideal gas $\mathrm{dU}=0$ at constant $\mathrm{T} \quad \Rightarrow \quad \mathrm{q}=\mathrm{W}=-\mathrm{ve} \quad$ and $\quad \mathrm{dH}=\mathrm{q} \Rightarrow \mathrm{dG}=-\mathrm{ve}$
Thus (ds) >0 and $(\mathrm{dG})<0$
28.(B) $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$
$\mathrm{Cp}=$ Heat transfer at constant $\mathrm{V}+$ energy transferred to surrounding as work.
Thus $C_{p}-C_{v}=R=$ energy transferred to surrounding as mechanical work.
29.(C) Since $\Delta \mathrm{H}$ is negative, increasing temperature equilibrium will shift on reverse direction and solubility will decrease.
30.(B) Using Gibb's Helmholtz equation: $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

During adsorption of a gas, entropy decreases i.e. $\Delta \mathrm{S}<0$
For spontaneous adsorption, $\Delta \mathrm{G}$ should be negative, which is possible when $\Delta \mathrm{H}$ is highly negative.
31.(A) $\quad \Delta \mathrm{H}=\left(\mathrm{E}_{\mathrm{a}}\right)_{\mathrm{f}}-\left(\mathrm{E}_{\mathrm{a}}\right)_{\mathrm{b}}=0$.
32.(A) $\Delta_{\text {vap }} \mathrm{H}^{\circ}=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{T}=100+273=373 \mathrm{~K}, \Delta \mathrm{E}=$?
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT} \Rightarrow \Delta \mathrm{E}=\Delta \mathrm{H}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{n}_{\mathrm{g}}=1-0=1$
$\Delta \mathrm{E}=\Delta \mathrm{H}-\mathrm{RT}=\left(40.66 \times 10^{3}\right)-(8.314 \times 373)=37559 \mathrm{~J} / \mathrm{mol}$ or $37.56 \mathrm{~kJ} / \mathrm{mol}$
33.(C) For free expansion of an ideal gas under adiabatic condition $\mathrm{q}=0, \Delta \mathrm{~T}=0, \mathrm{w}=0$.
34.(D) Gas phase reaction : $\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$. It is a dissociation reaction, hence $\Delta \mathrm{H}=+\mathrm{ve}$. Also one mole of PCl_{5} is dissociated into two moles of PCl_{3} and Cl_{2} in the same phase. Therefore, $\Delta \mathrm{S}=\mathrm{S}_{\text {product }}-\mathrm{S}_{\text {reactant }} \Rightarrow \Delta \mathrm{S}=+\mathrm{ve}$.
35.(C) The criteria for spontaneity of a process in terms of $\Delta \mathrm{G}$ is as follows:

* If $\Delta \mathrm{G}$ is negative, the process is spontaneous.
* If $\Delta \mathrm{G}$ is positive, the process does not occur in the forward direction. It may occur in the backward direction.
* If $\Delta \mathrm{G}$ is zero, the system is in equilibrium.

The process does not occur.
36.(C) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{G}=-\mathrm{ve}$ for spontaneous reaction
When $\Delta \mathrm{S}=+\mathrm{ve}, \Delta \mathrm{H}=+\mathrm{ve}$ and $\mathrm{T} \Delta \mathrm{S}<\Delta \mathrm{H} \Rightarrow \Delta \mathrm{G}=-\mathrm{ve}$
When randomness favours and energy factor do not favour then spontaneity depends upon the temperature.
37.(A) For spontaneous process, $\Delta \mathrm{S}_{\text {Total }}$ i.e., $\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }}$ should be positive.
38.(C) The entropy of a substance increases with increase in temperature. However at absolute zero the entropy of a pure crystalline substance is taken as zero, which is also called as third law of thermodynamics.
39.(B) Since a catalyst affect equally both forward and backward reactions, therefore it does not affect equilibrium constant of reaction.
40.(C) If more trans-2-pentene is added, then its concentration in right hand side will increase. But in order to maintain the constant K , concentration of cis-2-pentene will also increase. Therefore more cis-2-pentene will be formed.
41.(810) Since, the external pressure is greatly different form the pressure of N_{2} and thus, process is irreversible.

$$
\begin{aligned}
\therefore \quad \mathrm{W} & =-\mathrm{P}_{\mathrm{ex}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
\mathrm{W} & =-1 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)
\end{aligned}
$$

Given, $\mathrm{V}_{1}=2 \mathrm{~L} \quad \mathrm{~V}_{2}=? \quad \mathrm{~T}=273 \mathrm{~K}, \mathrm{P}_{1}=5 \mathrm{~atm}, \mathrm{P}_{2}=1 \mathrm{~atm} \therefore \quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\therefore \quad \mathrm{V}_{2}=\frac{2 \times 5}{1}=10 \mathrm{~L}$
$\therefore \quad \mathrm{W}=-1 \times(10-2)=-8 \mathrm{~L}-\mathrm{atm}=-810 \mathrm{~J}$

$$
\therefore \quad W \times(-1)=810 J
$$

42.(27) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=3-0=3$
$\because \quad \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$\Delta \mathrm{U}=\Delta \mathrm{H}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$30-3 \times .0821 \times 500 \times 10^{-3}$
$\Delta \mathrm{U}=27 \mathrm{kcal}$
43.(33) For adiabatic process
$\mathrm{TV}^{\gamma-1}=$ constant
For poly atomic gas
$\gamma=\frac{4}{3}=1.33 \quad\left(\gamma=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$
$\mathrm{n}=1.33-1=0.33$
$\therefore \quad \mathrm{n} \times 100=33$
44.(97) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} ; \Delta \mathrm{H}=194 \mathrm{~kJ}$
\therefore Heat of formation of $\mathrm{HCl}=\frac{194}{2}+97 \mathrm{~kJ}$
45.(800) $\mathrm{X}_{2}+\mathrm{Y}_{2} \rightarrow 2 \mathrm{XY}$
$\Delta H=(B E)_{x-x}+(B E)_{y-y}-2(B E)_{x-y}$
If BE of $(x-y)=a$, then BE of $(x-x)=a$
and BE of $(y-y)=\frac{a}{2}$
$\Delta H_{f}(x-y)=-200 k J$
$\therefore \quad 400=\frac{\mathrm{a}}{2}$ or $\mathrm{a}=+800 \mathrm{~kJ}$

The bond dissociation energy of $\mathrm{x}_{2}=800 \mathrm{~kJ} / \mathrm{mol}$
46.(5) The neutralization of a strong acid by a strong base is represented by
$\mathrm{H}^{\oplus}(\mathrm{aq})+\stackrel{\oplus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}=-55.6 \mathrm{~kJ}$.
We have to calculate:

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{\Theta}+\mathrm{H}^{\oplus} \quad \Delta \mathrm{H}=?
$$

Given:
$\mathrm{CH}_{3} \mathrm{COOH}+\stackrel{\oplus}{\mathrm{O}} \mathrm{H} \Rightarrow \mathrm{CH}_{3} \mathrm{COO}^{\oplus}+\mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}_{2}=-50.6$. \qquad (ii)

Subtract equation (i) from equation (ii), we get
$\Delta \mathrm{H}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}$
$=-50.6-(-55.6)=5.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
47. (482) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-723 \mathrm{~kJ}$

By burning with $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g})$ heat evolved $=-723 \mathrm{~kJ}$
$\therefore \quad$ By burning with 1 mole $\mathrm{O}_{2}(\mathrm{~g})=\frac{-723 \times 2}{3}=482 \mathrm{~kJ}$
48.(150) $\quad \because 150 \mathrm{~kJ}$ energy required for muscular work to walk a distance of one km . (Given)
$\therefore \quad 750 \mathrm{~kJ}$ energy required for work to walk of 5 km distance. Enthalpy of combustion is $3000 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Glucose provide 30% energy of its mass.
Molecular weight of glucose $=180$
Weight of glucose required for work to 5 km (750 kj energy)
$=\frac{180}{3000} \times 750 \times \frac{100}{30}=150 \mathrm{~g}$
49.(300) $\frac{\Delta \mathrm{H}_{\text {fusion }}}{\mathrm{T}_{\mathrm{mp}}}=\Delta \mathrm{S}_{\text {fusion }}$
$\frac{600}{T}=2$
$\mathrm{T}=300 \mathrm{~K}$
50.(0) From $\Delta \mathrm{S}_{\mathrm{fu}}=\frac{\Delta \mathrm{H}_{\mathrm{fu}}}{\mathrm{T}_{\mathrm{f}}}$
$\mathrm{T}_{\mathrm{f}}=\frac{1.435 \times 1000}{5.26}=272.81 \simeq 273 \mathrm{~K}$
In ${ }^{\circ} \mathrm{C}=0$
51.(0) Form $\Delta \mathrm{G}_{\mathrm{r}}=\Delta \mathrm{H}_{\mathrm{r}}-\mathrm{T} \Delta \mathrm{S}_{\mathrm{r}}$
$\Delta \mathrm{G}_{\mathrm{r}}=40.63-\frac{373.4 \times 108.8}{1000}=0$
52.(1) $\because \Delta \mathrm{G}^{0}=-2.303 R T \log \mathrm{~K}$

$$
\therefore \quad \log \mathrm{K}=\frac{4.606 \times 1000}{2.303 \times 2 \times 500}=2=\log 100
$$

$$
\begin{array}{ll}
\therefore & \mathrm{K}=1 \times 10^{2} \\
\therefore & \mathrm{x}=1
\end{array}
$$

53.(5) Net work done $=W_{A}+W_{B}=25-20=5$ unit
54.(2) From $q_{p}=q_{v}+\Delta n_{g} R T$
$\left(q_{v}-q_{p}\right)=\Delta n_{g} R T$
$\Rightarrow \quad \mathrm{xRT}=(-2) \mathrm{RT}$
$\mathrm{x}=2$
55. (0) From first law of thermodynamics,
$\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$
For isothermal process, $\Delta \mathrm{T}=0$
Hence, $\Delta U=0$

Chemical \& Ionic Equilibrium

1.(D) $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ell \mathrm{n}$ Keq	2.(C)	3.(ACD)
4.(A)	On cooling reaction goes in exothermic direction.	5.(D)
7.(D)	$\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	$\mathbf{8 . (A)}$
9.(B)	Higher $\mathrm{bp} \Rightarrow$ lower vapor pressure	

10.(ACD) $\mathrm{T} \uparrow \Rightarrow \mathrm{K}_{\mathrm{eq}} \uparrow \Rightarrow$ reaction goes forward it is endothermic

11.(AD) Melting point and freezing point are same	12.(A)
14.(A) Weak acid weak base salt solution is acidic if $K_{a}>K_{b}$; Basic if $K_{b}>K_{a}$	15.(D)

16.(C) He does to react with any of gases present Addition of inert gas at constant pressure decreases the dissociation of PCl_{5}.
17.(B) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}} \quad$ 18.(D) $\left[\mathrm{H}^{+}\right]$is changed from 10^{-1} to 10^{-2} Ten times dilution is required.
19.(A) $\mathrm{C}+\underset{0.5-\mathrm{x}}{\mathrm{CO}_{2}} \rightleftharpoons \underset{2 \mathrm{x}}{2 \mathrm{CO}} \quad \Rightarrow \quad \mathrm{x}=0.3 \mathrm{~atm} \quad$ 20.(A) In III $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is acting like base 21.(A)
22.(C) $\underset{0.034-\mathrm{x}}{\mathrm{H}_{2} \mathrm{CO}_{3}} \rightleftharpoons \underset{\mathrm{x}}{\mathrm{H}^{+}}+\underset{\mathrm{x}-\mathrm{y}}{\mathrm{HCO}_{3}^{-}} ; \underset{\mathrm{x}-\mathrm{y}}{\mathrm{HCO}_{3}^{-}} \rightleftharpoons \underset{\mathrm{x}+\mathrm{y}}{\mathrm{H}^{+}}+\underset{\mathrm{y}}{\mathrm{CO}_{3}^{2-}} \quad$ Neglecting H^{+}from second step and $\mathrm{x}-\mathrm{y} \approx \mathrm{x}$
23.(B) When ppt starts $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\mathrm{K}_{\text {sp }}(\mathrm{AgBr}) \quad$ 24.(B) When ppt begins $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=10^{-11}$
25.(C) HCO_{3}^{-}is weakest. Check individual options.
26.(C) Use $\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$
27.(A) Remove H^{+}28.(A) 29.(D)
30.(C) On decreasing temperature reaction goes in exothermic direction. On increasing pressure reaction goes where number of gas particles decreases.
31.(C) NH_{3} can extract proton from $\mathrm{H}_{2} \mathrm{O} \quad$ 32.(ABD) pH of HCl would be 6.97 approx. Use Faradays law for (D)
33.(A) HCl is a strong acid and dissociates completely into ions in aqueous solution.
34.(D) Acidic buffer is a mixture of a weak acid and its salt with a strong base. HClO_{4} is strong acid.
35.(B)

Salt	KssP	Solubility
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	$1.1 \times 10^{-12}=4 \mathrm{~s}^{3}$	$\mathrm{~s}=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{SP}}}{4}}=0.65 \times 10^{-4}$
AgCl	$1.8 \times 10^{-10}=\mathrm{s}^{2}$	$\mathrm{~s}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=0.71 \times 10^{-6}$
AgBr	$5 \times 10^{-13}=\mathrm{s}^{2}$	$\mathrm{~s}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=0.7 \times 10^{-6}$
AgI	$8.3 \times 10^{-17}=\mathrm{s}^{2}$	$\mathrm{~s}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=0.9 \times 10^{-8}$

Solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is highest thus, it will be precipitated at last.
36.(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ which is a salt of NaOH (strong base) and $\mathrm{H}_{2} \mathrm{CO}_{3}$ (weak acid) will produce a basic solution with pH greater than 7.
37.(A) BF_{3} is Lewis acid (e^{-}pair acceptor).
38.(B) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad \Rightarrow \quad 5=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad\left[\because \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}\right]$
$5=-\log \left[1 \times 10^{-4}\right]+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad \Rightarrow \quad 1=\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad \Rightarrow \quad \frac{[\text { Salt }]}{[\text { Acid }]}=10=10: 1$
39.(C) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \mathrm{K}_{1} ; 2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} ; \mathrm{K}_{2}$
$\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} ; \mathrm{K}=$?
$\mathrm{K}_{1}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} ; \mathrm{K}_{2}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]} \Rightarrow \mathrm{K}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]}=\sqrt{\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right] \times[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2} \times\left[\mathrm{NO}_{2}\right]^{2}}}=\sqrt{\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}}$
40.(D) $\quad 2 \mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}+\mathrm{B}_{2(\mathrm{~g})}{ }_{\text {(initially) }}$

Amount of moles at equilibrium $=2(1-x)+2 x+x=2+x$
$\mathrm{K}_{\mathrm{p}}=\frac{\left[\mathrm{p}_{\mathrm{AB}}\right]^{2}\left[\mathrm{p}_{\mathrm{B}_{2}}\right]}{\left[\mathrm{p}_{\mathrm{AB}_{2}}\right]^{2}}=\frac{\left(\frac{2 \mathrm{x}}{2+\mathrm{x}} \times \mathrm{P}\right)^{2} \times\left(\frac{\mathrm{x}}{2+\mathrm{x}} \times \mathrm{P}\right)}{\left(\frac{2(1-\mathrm{x})}{2+\mathrm{x}} \times \mathrm{P}\right)^{2}}=\frac{\frac{4 \mathrm{x}^{3}}{2+\mathrm{x}} \times \mathrm{P}}{4(1-\mathrm{x})^{2}} \Rightarrow \mathrm{~K}_{\mathrm{p}}=\frac{4 \mathrm{x}^{3} \times \mathrm{P}}{2} \times \frac{1}{4}(\because 1-\mathrm{x} \approx 1 \& 2+\mathrm{x} \approx 2)$
$\mathrm{x}=\left(\frac{8 \mathrm{~K}_{\mathrm{p}}}{4 \mathrm{P}}\right)^{1 / 3} \Rightarrow \mathrm{x}=\left(\frac{2 \mathrm{~K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 3}$
41.(A) The cation of group II are precipitated as their sulphides.

* Solubility product of sulphide of group II radicals are very low.
* Therefore, even with low conc. of S^{2-} ions, the ionic product exceeds the value of their solubility product and the radical of group II gets precipitated.
*

The low conc. of S^{2-} ions is obtained by passing $\mathrm{H}_{2} \mathrm{~S}$ gas through the solution of the salt in the presence of dil. HCl which suppresses degree of ionisation of $\mathrm{H}_{2} \mathrm{~S}$ by common ion effect.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons\left.\begin{array}{r}
2 \mathrm{H}^{+} \\
\mathrm{H}^{+}
\end{array}\right]+\mathrm{S}^{2-} \\
& \text { common ion }
\end{aligned}
$$

Note: Solubility product of group IV radicals are quite high.

* It is necessary to suppress the conc. of S^{2-} ions, otherwise radicals of group IV will also get precipitated along with group II radicals.
42.(B) $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid), NaOH (strong base). After neutralisation, the salt $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ formed dissociates in water giving free OH^{-}ions. Thus pH will be greater than 7 .
43.(D)

As $\mathrm{CH}_{3} \mathrm{COOH}$ is the weakest acid, so its conjugate base $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$is the strongest base. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}, \mathrm{HNO}_{3}$ are strong acids, so their conjugate bases are weak.
44.(A) Vapour pressure is directly related to temperature. Greater is the temperature, greater will be the vapour pressure. So to keep it constant, temperature should be constant.
45.(C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is salt of strong base NaOH and weak acid. NaHCO_{3} however is also having an acidic H so less basic than $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
46.(B) For precipitation: I.P $\geq \mathrm{K}_{\text {sp }}$

To initiate the precipitation : I.P. $=\mathrm{K}_{\mathrm{sp}} \quad \Rightarrow \quad\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{sp}}$
$\Rightarrow \quad\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Mg}^{2+}\right]}}=\sqrt{\frac{1 \times 10^{-11}}{0.1}}=10^{-5} \mathrm{M} \quad \Rightarrow \quad \mathrm{pOH}=5 \Rightarrow \mathrm{pH}=9$
47.(A) First find solubility in $\mathrm{mol} / \mathrm{L}$. ($\mathrm{x} \mathrm{mol} / \mathrm{L}$)

$$
\begin{aligned}
& \mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{aq} \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq}) \\
\Rightarrow \quad & \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=\mathrm{x}^{2} \quad \Rightarrow \quad \mathrm{x}=5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Solubility in $\mathrm{g} / \mathrm{L}=\left(5 \times 10^{-5}\right) \times 128=0.0064 \mathrm{~g}$
48.(B) mmol of $\mathrm{CH}_{3} \mathrm{COOH}=10 ; \mathrm{mmol}$ of $\mathrm{CH}_{3} \mathrm{COONa}=10$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{10 / \mathrm{V}}{10 / \mathrm{V}}=\mathrm{pK}_{\mathrm{a}}=4.76$
49.(B) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

Now $\frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=10 \quad \Rightarrow \quad \mathrm{pH}$ increase by 1 .
50.(B) $\quad \mathrm{K}_{\mathrm{a}}=\mathrm{C}_{1} \alpha_{1}^{2}=\mathrm{C}_{2} \alpha_{2}^{2} ; \quad \alpha_{2}=2 \alpha_{1} \quad \Rightarrow \quad \mathrm{C}_{1}\left[\frac{\alpha_{1}}{\alpha_{2}}\right]^{2}=\mathrm{C}_{2} \quad \Rightarrow \quad \mathrm{C}_{2}=0.1 \times\left[\frac{1}{2}\right]^{2}=\frac{0.1}{4}$

Since concentration is decreased to $1 / 4 \mathrm{~m}$, the volume is increased to 4 times which means volume is 200 mL . So $900 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ is added.
51.(16) $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{nRT}$
or $\quad-\Delta \mathrm{nRT}=\Delta \mathrm{E}-\Delta \mathrm{H}=1200$
or $\quad \Delta \mathrm{n}=\frac{-1200}{2 \times 300}=-2$
$\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=(\mathrm{RT})^{\Delta \mathrm{n}}=(0.0821 \times 300)^{-2}=(24.63)^{-2}$
or
$\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=\frac{1}{(24.63)^{2}}=1.648 \times 10^{-3}$
or $\quad \frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}} \times 10^{4}=16.48 \simeq 16$
52.(2)

	$2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow$	$2 \mathrm{NO}_{2}$		
(moles before reaction)	2	0.5	0	
after reaction \rightarrow	$2-1=1$	0		1

$$
\Delta \mathrm{n}=|2.5-2|=0.5
$$

Change in pressure

$$
\begin{aligned}
& \Delta \mathrm{P}=\frac{\Delta \mathrm{nRT}}{\mathrm{~V}}=0.5 \times \frac{1}{12} \times \frac{300}{6.25} \mathrm{~atm} \\
& =2
\end{aligned}
$$

53.(8) Balanced equation is -
$3 \mathrm{I}_{2}(\mathrm{~s})+6 \mathrm{OH}^{-} \rightleftharpoons 5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{G}^{\circ}=5 \times(-50)+(-123.5)+3 \times(-233) \times-0-6 \times(-150)=-172.5 \mathrm{KJ} / \mathrm{mol}$
Now, $\quad \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{k}$

$$
\begin{array}{lll}
\Rightarrow & -172.5=-\frac{25}{3} \times 300 \times 2.3 \times 10^{-3} \log \mathrm{~K} \quad & \Rightarrow \quad \log \mathrm{~K}=30 \\
\Rightarrow & 10^{30}=\frac{\left[\mathrm{I}^{-}\right]^{5} \times\left[\mathrm{IO}_{3}^{-}\right]}{\left[\mathrm{OH}^{-}\right]^{6}}=\frac{10^{-5} \times 10^{-1}}{\left[\mathrm{OH}^{-}\right]^{6}} \\
\Rightarrow \quad\left[\mathrm{OH}^{-}\right]=10^{-6} \quad \Rightarrow \quad \mathrm{pOH}=6 \quad & \Rightarrow \quad \mathrm{pH}=8
\end{array}
$$

$$
\text { 54.(2) Initially: } 0.1 \mathrm{~mol} \quad 0.1 \mathrm{~mol} \quad 0 \quad 0
$$

At equilibrium: $(0.1-x) \mathrm{mol}(0.1-\mathrm{x}) \mathrm{mol} \quad \mathrm{x} \quad \mathrm{x}$

In 10 ml solution at equilibrium moles of $\mathrm{CH}_{3} \mathrm{COOH}$ present $=0.1(0.1-\mathrm{x}) \equiv 0.1(0.1-\mathrm{x})$ moles of NaOH
$\therefore \quad 0.1(0.1-\mathrm{x})=80 \times 10^{-4}=8 \times 10^{-3}$
or $0.01-0.1 \mathrm{x}=0.008 \quad$ or $\quad \mathrm{x}=0.02$
$\mathrm{K}_{\mathrm{C}}=\frac{\mathrm{x}^{2}}{(0.1-\mathrm{x})^{2}}=\frac{(0.02)^{2}}{(0.08)^{2}}=\frac{1}{4^{2}}=\frac{1}{16}$
$=32 \mathrm{~K}_{\mathrm{C}}=32 \times \frac{1}{16}=2$
55.(36) $\log \mathrm{K}_{\mathrm{p}}=\frac{-\Delta_{\mathrm{r}} \mathrm{H}^{0}}{2.303 \mathrm{RT}}+\mathrm{C}$

Slope of the plot is, $\frac{-\Delta_{\mathrm{r}} \mathrm{H}^{0}}{2.303 \mathrm{R}}=5 \times 10^{3}$

$$
\Delta_{\mathrm{r}} \mathrm{H}^{0}=-5 \times 2.303 \times 8.314 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\Delta_{\mathrm{r}} \mathrm{H}^{0}=-95.736 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\Delta_{\mathrm{r}} \mathrm{~S}^{0}=250-250-100=-0.1 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\Delta_{\mathrm{r}} \mathrm{G}^{0}=-95.736+298(0.1) \mathrm{kJ} / \mathrm{mol}
$$

$$
\Delta_{\mathrm{r}} \mathrm{G}^{0}=-65.936 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\log K_{p}=\frac{65.936 \times 10^{3}}{8.314 \times 298 \times 2.303}=11.556
$$

or

$$
\mathrm{K}_{\mathrm{p}}=3.597 \times 10^{11}=35.97 \times 10^{10} \simeq 36 \times 10^{10}
$$

56.(10) $\mathrm{Ka}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} ; \mathrm{Ka}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$
$\mathrm{Ka}_{1} \times \mathrm{Ka}_{2}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=10^{-18}$
$\therefore \quad \frac{10^{-10} \times\left[\mathrm{CO}_{3}^{2-}\right]}{10^{-2}}=10^{-18}$
$\left[\mathrm{CO}_{3}^{2-}\right]=10^{-10}$
$\therefore \quad-\log \left[\mathrm{CO}_{3}^{2}\right]=10$
57.(900) $\because \quad \alpha$ is negligible w.r.t. 1
$\mathrm{K}_{\mathrm{a}}=\mathrm{C}_{1} \alpha_{1}^{2}=\mathrm{C}_{2} \alpha_{2}^{2}$
$\therefore \quad \mathrm{C}_{2}=\mathrm{C}_{1}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{2}$
$=0.2 \times \frac{1}{4}=0.05$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$300 \times 0.2=0.05 \times V_{2}$
$\mathrm{V}_{2}=1200 \mathrm{ml}$
Volume of $\mathrm{H}_{2} \mathrm{O}$ added $=1200-300$
$=900 \mathrm{ml}$
58.(4) $\quad\left(\mathrm{OH}^{-}\right]=\left(\mathrm{OH}^{-}\right]_{\mathrm{NaOH}}+\left(\mathrm{OH}^{-}\right]_{\mathrm{Mg}(\mathrm{OH})_{2}}$
$=0.1+2 \mathrm{~s} \approx 0.1 \mathrm{M}(2 \mathrm{~s} \ll 0.1)$
$\mathrm{K}_{\mathrm{SP}}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=\left[\mathrm{Mg}^{2+}\right](0.1)^{2}$
$\mathrm{Mg}^{2+}=4 \times 10^{-10} \mathrm{M}$
59.(1) For acid buffer,

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=5+\log \frac{0.1}{0.01}=6 \\
& \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-} \\
& \mathrm{C}_{2}(1-\mathrm{h}) \\
& \\
& \simeq \\
& \\
& \\
& \\
& \mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{~h} \\
& \mathrm{C}_{2} \mathrm{~h} \\
&
\end{aligned}
$$

$$
\therefore \quad \frac{\mathrm{C}_{2} \mathrm{~h} \times \mathrm{C}_{1}}{\mathrm{C}_{2}}=\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{W}}}{\mathrm{~K}_{\mathrm{a}}}
$$

$$
\therefore \quad \mathrm{h}=\frac{\mathrm{K}_{\mathrm{W}}}{\mathrm{~K}_{\mathrm{a}} \mathrm{C}_{1}}=\frac{10^{-14}}{10^{-5} \times 10^{-2}}=10^{-7}
$$

$$
\therefore \quad \mathrm{h} \times 10^{7}=1
$$

60.(8) $\mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \underset{\mathrm{x}}{\rightleftharpoons} \mathrm{Mg}^{2+}+\underset{2 \mathrm{x}+3 \mathrm{y}}{2 \mathrm{OH}^{-}}$
$\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}^{3+}+3 \mathrm{OH}^{-}$
Now $x \gg y$ because $K_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2} \gg \mathrm{~K}_{\text {sp }}$ of $\mathrm{Al}(\mathrm{OH})_{3}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{x} \times(2 \mathrm{x})^{2}=4 \times 10^{-12} \Rightarrow \quad \mathrm{x}=10^{-4} \tag{i}
\end{equation*}
$$

And $\mathrm{y} \times(2 \mathrm{x})^{3}=1 \times 10^{-33}$
$\Rightarrow \quad \mathrm{y}=\frac{10^{-33}}{8 \mathrm{x}^{3}}=\frac{10^{-33}}{8 \times 10^{-12}}=\frac{10^{-21}}{8}$
$\frac{x}{y}=\frac{10^{-4}}{10^{-21}} \times 8=8 \times 10^{17}$
So answer $\Rightarrow 8 \times 10^{+17} \times 10^{-17}=8$
61.(2) $\underset{\text { c(1-h) }}{\mathrm{Fe}^{3+}}+\mathrm{H}_{2} \mathrm{O} \underset{\text { ch }}{\stackrel{\mathrm{K}_{\mathrm{h}}}{\rightleftarrows}} \underset{\text { ch }}{\mathrm{Fe}(\mathrm{OH})^{2+}}+\underset{\text { ch }}{\mathrm{H}^{+}} ; \mathrm{K}_{\mathrm{h}}=6.5 \times 10^{-3}$
$\mathrm{K}_{\mathrm{h}}=6.5 \times 10^{-3}=\frac{\mathrm{ch}^{2}}{(1-\mathrm{h})}=\frac{\mathrm{c} \times(0.5)^{2}}{(0.5)}=\mathrm{c} \times 0.5$
or $\quad \mathrm{c}=13 \times 10^{-3}(\mathrm{M})$
$\left[\mathrm{H}^{+}\right]=\mathrm{ch}=13 \times 10^{-3} \times \frac{1}{2}=6.5 \times 10^{-3}$
or $\quad \mathrm{pH}=3-\log 6.5 \times 2.187 \simeq 2$

$$
\mathrm{Mg}^{2+} \quad+2 \mathrm{OH}^{-} \quad \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})
$$

62.(11) $10 \times 10^{-3} \mathrm{~mol} \quad 20 \times 10^{-3} \mathrm{~mol}$ $10 \times 10^{-3} \mathrm{~mol}$
$\operatorname{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Mg}^{2+}+\underset{2 \mathrm{~s}}{2 \mathrm{OH}^{-}}$

Where s is the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in the resulting solution

$$
\therefore \quad 4 s^{3}=12 \times 10^{-12}
$$

$$
\begin{array}{ll}
\therefore & \mathrm{s}=(3)^{1 / 3} \times\left(10^{-12}\right)^{1 / 3}=1.44 \times 10^{-4}(\mathrm{M}) \\
\therefore & {\left[\mathrm{OH}^{-}\right]=2 \mathrm{~s}=2.88 \times 10^{-4}(\mathrm{M})} \\
\text { or } & \mathrm{pOH}=4-\log 2.88=4-0.459=2.541 \\
\therefore & \mathrm{pH}=14-\mathrm{pOH}=14-2.541=11.459
\end{array}
$$

63.(93) In the resulting solution, $\left[\mathrm{Ca}^{2+}\right]=\frac{10^{-5}}{2}(\mathrm{M})$

In order to observe the precipitation of CaCO_{3} required $\left[\mathrm{Ca}^{2+}\right]=7 \times 10^{-5}(\mathrm{M})$
$\therefore \quad \frac{7 \times 10^{-5}}{10^{-5 / 2}}=\frac{200}{\mathrm{~V}}$ where V is the final volume of solution in ml
or $\quad \frac{200}{\mathrm{~V}}=14 \quad \mathrm{~V}=\frac{200}{14} \mathrm{ml}$
$\therefore \quad \%$ reduction in volume $=\frac{(200-200 / 14)}{200} \times 100$
$=\left(1-\frac{1}{14}\right) \times 100=\frac{13}{14} \times 100=92.856 \simeq 93 \%$
64.(15) For the precipitation of ZnS , required $\left[\mathrm{S}^{2-}\right]$
$=\frac{10^{-21}}{10^{-2}}=10^{-19}(\mathrm{M})$
$\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]=10^{-22}$
or
$\left[\mathrm{H}^{+}\right]^{2}=\frac{10^{-22}}{\left[\mathrm{~S}^{2-}\right]}=\frac{10^{-22}}{10^{-19}}=10^{-3}=10 \times 10^{-4}$
or

$$
\left[\mathrm{H}^{+}\right]=(10)^{1 / 2} \times 10^{-2}(\mathrm{M})
$$

or $\quad \log \left[\mathrm{H}^{+}\right]=\frac{1}{2} \log 10-2$
or $\quad \mathrm{pH}=2-\frac{1}{2} \log 10=2-\frac{1}{2}=\frac{3}{2}$
$\therefore \quad($ minimum pH$) \times 10=3 / 2 \times 10=15$
65.(31)
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \rightleftarrows \underset{2 \mathrm{~s}_{1}+2 \mathrm{~s}_{2}}{2 \mathrm{Ag}^{+}}+\underset{\mathrm{s}_{1}}{\mathrm{CrO}_{4}^{2-}}$
$\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightleftarrows \underset{2 \mathrm{~s}_{2}+2 \mathrm{~s}_{1}}{2 \mathrm{Ag}^{+}}+\underset{\mathrm{s}_{2}}{\mathrm{C}_{2} \mathrm{O}_{4}^{2-}}$
$\therefore \quad 4\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)^{2} \times \mathrm{s}_{1}=9 \times 10^{-12}$
$4\left(s_{1}+s_{2}\right)^{2} \times s_{2}=6 \times 10^{-12}$
or $\quad \frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}=3 / 2 \mathrm{~s}_{2} \quad$ or $\quad \mathrm{s}_{1}=3 / 2 \mathrm{~s}_{2} \quad \therefore \quad 4 \times\left(\frac{5}{2}\right)^{2} \times \mathrm{s}_{2}^{3}=6 \times 10^{-12}$
or $\quad s_{2}^{3}=\frac{6 \times 10^{-12}}{25}=24 \times 10^{-14}=240 \times 10^{-15}$
or $\quad \mathrm{s}_{2}=(240)^{1 / 3} \times 10^{-5}=6.214 \times 10^{-5}(\mathrm{M})$
$\mathrm{s}_{1}=6.214 \times 10^{-5} \times \frac{3}{2}=9.321 \times 10^{-5}(\mathrm{M})$

$$
\begin{array}{ll}
\therefore & {\left[\mathrm{Ag}^{+}\right]=2(6.214+9.321) \times 10^{-5}} \\
& =31.07 \times 10^{-5} \\
\text { or } & {\left[\mathrm{Ag}^{+}\right] \times 10^{5}=31.07 \simeq 31}
\end{array}
$$

Hydrogen, s \& p-Block Elements \& Compounds

1.(AB) On combustion with excess of air, sodium forms peroxide, $\mathrm{Na}_{2} \mathrm{O}_{2}$ and some superoxide, NaO_{2}. (Read NCERT)
2.(D) Beryllium does not exhibit coordination number more than four as in its valence shell there are only four orbitals. (Read NCERT).
3.(D) Read NCERT (S-block Elements)
4.(C) Which of the following shows an increase in solubility down the group : [Read option (A) as follows]
(A) Alkali metals hydroxide
5.(B) More the electropositive character of the cation, more will be the thermal stability. (Read NCERT, S-Block Elements)
6.(A) Clearly O_{2}^{-}(in KO_{2}) has odd number electrons and hence will be paramagnetic. Check yourself about the diamagnetic nature of O_{2}^{2-} (in $\mathrm{Na}_{2} \mathrm{O}_{2} \& \mathrm{PbO}_{2}$) from molecular orbital theory and of O_{3} through its Lewis structure.
7.(ABC) Remember the correct statements as fact.

9.(A) Fact $\quad \mathbf{1 0 . (B C)}$ Alkali carbonate (except $\mathrm{Li}_{2} \mathrm{CO}_{3}$) are V. stable \& NH_{4}^{+}behaves as Alkali metal ions.
11.(BD) Read NCERT (S-Block Elements)
13.(D) Read NCERT (Hydrogen Chapter), Section 9.4.3, page 279.
12.(A) Remember as a fact
14.(B) Read option (B) as $\mathrm{Ca}(\mathrm{OD})_{2}$
15.(C) Fact : \rightarrow Apart from Borax, microcosmic salt $\left[\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4}\right]$ is also for bead test.
16.(B) Crude sodium chloride, generally obtained by crystallisation of brine solution, contains sodium sulphate, calcium sulphate, calcium chloride and magnesium chloride as impurities. Calcium chloride, CaCl_{2}, and magnesium chloride, MgCl_{2} make common salt hygroscopic because they are deliquescent (absorb moisture easily from the atmosphere). [Read NCERT (s-Block Elements)]
17.(D) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2} \uparrow$ (Colourless gas) ; $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$; $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2}$ (excess) $\longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \quad ; \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
18.(D) Read NCERT (s-Block Elements)
19.(C) $2 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{Cl}_{2} \longrightarrow \underbrace{\mathrm{CaCl}_{2}+\mathrm{Ca}(\mathrm{OCl})_{2}}+2 \mathrm{H}_{2} \mathrm{O}$
20.(D) Fact
21.(AC)
22.(C) $>$ Magnesium is a highly flammable metal, but, while it is easy to ignite when powdered or shaved into thin strips, it is difficult to ignite in mass or bulk. Once ignited, it is difficult to extinguish, being able to burn in nitrogen (forming magnesium nitride), carbon dioxide (forming magnesium oxide, and carbon), water (forming magnesium oxide and hydrogen) and sulphur dioxide (forming magnesium oxide, and sulphur).
> Also Read NCERT (S-Block Elements), section 10.6.6.
23.(D) Read NCERT (S-Block Elements), Section 10.1.6 24.(BD) Read NCERT (Hydrogen Chapter), Section 9.6.6
25.(D) Alums crystallize in regular octahedral (fact).

26.(B)	27.(D)
29.(C)	30.(B)

31.(A) NCERT (Hydrogen), Section 9.5.3/Page 281
32.(A) NCERT (Hydrogen), Section 9.6.7/Page 284
33.(A) NCERT (Hydrogen), Section 9.5.3/Page 281
34.(CD) NCERT (Hydrogen), Section 9.1/Page 277
35.(AB) NCERT (Hydrogen), Section 9.3.2/Page 278
36.(AC) NCERT (Hydrogen), Section 9.8/Page 286 \& table 9.3/Page 282

Fact : Hydrogen bonds with deuterium are slightly stronger then the ones involving normal hydrogen.
37.(AB)
38.(CD) NCERT (Hydrogen)/Section 9.6.1, 9.6.2 \& 9.6.3 (Page 281-283)

Fact : Water though dissolves ionic compounds and partially covalent compounds but still it is called as "universal solvent" as it dissolved more substances than any ether liquid.
39.(AB) "Hardness" from NCERT (Hydrogen)
40.(BC) NCERT (Hydrogen), Section 9.5.2/Page 280
41.(AD) NCERT(Hydrogen), Section 9.5.2, Page 280
42.(C) 43.(A) NCERT (s-Block), Section 10.1.6/Page 294 44.(C) NCERT (s-Block), Section 10.1.6, Page 294
45.(AB) NCERT (s-Block), Section 10.7 (Page 301), \& Section 10.3.2 Page 278
46.(B) NCERT (s-Block), Section 10.2.2, Page 295
48.(D) NCERT (s-Block), Section 10.7, Page 301
50.(A) NCERT (s-Block), Section 10.7, Page 301
51.(BD) NCERT (s-Block), Section 10.1.2 \& 10.1.4 Page 292
52.(AC) NCERT (s-Block), Section 10.4
53.(A) NCERT (s-Block), Section 10.7, Page 301
54.(D) Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{N}_{\mathrm{H}_{2} \mathrm{O}_{2}} \times 5.6=1 \times 5.6=5.6 \mathrm{~V}$
55.(AC) NCERT (s-Block), Section 10.7, Page 301 56.(AB) NCERT (s-Block), Section 10.8, Page 302
57.(ABC) NCERT (s-Block Elements), Section 10.3, Page 296
58.(B) Fact : Silica \& diamond are electrical insulators, however graphite conducts electricity
59.(B)
60.(D) $>$ Recall 'Inert pair effect'. $>$ Read NCERT (p-Block Elements-XIth)

Section 11.6, Page 315
61.(C) Read NCERT (p-Block Elements-XIth), Section 11.8.4, Page 321
62.(D) Read NCERT (p-Block Elements), Section 11.3.1, Page 312 63.(B)
64.(ABD) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \xrightarrow{\mathrm{HCl}} \mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\Delta} \mathrm{~B}_{2} \mathrm{O}_{3} \xrightarrow[\Delta \text { (Reduction) }]{\mathrm{Mg} / \mathrm{Al} / \mathrm{C}} \mathrm{B}$
65.(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3} \quad ; \quad \mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{NO}_{2}^{-} \longrightarrow \underbrace{\mathrm{ONOO}^{-}}+\mathrm{H}_{2} \mathrm{O} \quad ;$ Peroxy-nitrite (unstable)
66.(D)

$$
\begin{array}{cl}
\text { 67.(BCD) } \mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O} ; & \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaNO}_{3} \\
\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} ; & \mathrm{AlN}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NH}_{3} \\
\mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\Delta} \mathrm{NH}_{3}+\mathrm{HCl} ; & \mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3} \\
(\mathrm{NH})_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{HCO}_{3} ; & \mathrm{CaCN}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{3}+\mathrm{CaCO}_{3}
\end{array}
$$

68.(AD) 69.(A) Read XIIth NCERT (p-Block Elements), Section 7.5 (Page 174)
71.(D) Lower the oxidation state, the better is the reducing character.
72.(C) Fact
74.(D) Read XIIth NCERT (p-Block Elements), Section 7.5 (Page 175)
76.(B) Read XIIth NCERT (p-Block Elements), Section 7.5 (Page 175)
77.(A)
78.(A)
79.(B) XIth NCERT (p-Block), Section 11.6/Page 315
80.(B) Read NCERT.
81.(A) XIth NCERT (p-Block), Section 11.8.6/Page 322
83.(AB) XIth NCERT (p-Block), Section 11.1.2/Page 309
82.(B) XIth NCERT (p-Block), Section 11.8.4/Page 322
84.(B)
85.(AB)
86.(BC) $>\quad$ NCERT XIth (p-Block), Section 11.7.2 and 11.7.3 (Page 318)
$>$ Fullerenes don't have dangling bonds $>\quad$ Graphite is slippery and soft.
87.(ABD)
88.(BD)

89.(C)
90.(A)
91.(A) For isoelectronic species, we count valence electrons.
92.(B) NCERT (Solids), Section, 1.3.4 (Page 5) and Table 1.2 (Page 6) 93.(C)
94.(C) NCERT XIth (Hydrogen), Section 9.3.2
95.(A) NCERT XIIth (p-Block), Section 7.1
96.(D) NCERT XIIth (p-Block), Section 7.14 (Page 187)
97.(C) O^{2-} donates electron pair to H^{+}(from $\mathrm{H}-\mathrm{OH}$)
100.(C) Read NCERT XIIth (p-Block Elements), Section 7.1.7 (Page 168)
98.(D)
101.(A)
99.(B)
102.(C)
103.(B)
104.(C)
105.(D) $\mathrm{Br}_{2}+\overline{\mathrm{O}} \mathrm{H}($ dil $) \longrightarrow \mathrm{Br}^{-}+\mathrm{BrO}^{-} ; \mathrm{Br}_{2}+\overline{\mathrm{O}} \mathrm{H}($ conc $) \longrightarrow \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}$
106.(C) Recall inert pair effect.
109.(C)
111.(C) Read NCERT (p-Block Elements)
107.(D) 108.(C) Recall Fajan's rules.
110.(D) Read NCERT (p-Block Elements)
112.(A)
113.(C) Read XIIth NCERT (p-Block Elements), Section 7.23.5 Page 205 uses 114.(B) 115.(C)
116.(A) Heavy water is used for slowing down the speed of neutrons in nuclear reactors, hence used as moderators. Boiling point of heavy water is greater $(374.42 \mathrm{~K})$ than that of ordinary water (373 K), hence heavy water is more associated. Dielectric constant of ordinary water is greater than that of heavy water, hence ordinary water is a better solvent.
117.(A) Copper is a noble metal, as it lies below hydrogen in the electrochemical series. Therefore it can't displace hydrogen from dilute HCl . While iron and sodium lie above H in the electrochemical series, so they can liberate H_{2} either from steam or $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\frac{1}{2} \mathrm{H}_{2} ; \quad \mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} ; \quad 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
118.(B) Hardness of water, due to the presence of chlorides and sulphates of Ca and Mg is called permanent hardness. Hence hard water will consist of Mg^{2+} and Cl^{-}ions .
119.(B) When ice melts, its molecules move into the holes or open spaces and comes closer to each other than they were in solid state. Thus, ice has lower density than water and there is contraction in volume.
120.(B)

121.(C) Solubility of alkaline earth metal sulphates decreases down the group because hydration energy decreases.
122.(B) The hydration enthalpy of BeSO_{4} is higher than its lattice energy. Within group 2, the hydration energy decreases down the group while lattice energy is almost the same.
123.(C) Alkali metals are highly electropositive and halogens are electronegative. Thus for the halides of a given alkali metal, the ovalent character decreases with increase in electronegativity of halogens.
$\therefore \quad$ Order of covalent character of halides is: $\mathrm{MI}>\mathrm{MBr}>\mathrm{MCl}>\mathrm{MF}$.
124.(A) The alkali metal ions exist as hydrated ions $\mathrm{M}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}}$ in the aqueous solution. The degree of hydration, however, decreases with the ionic size as we move from Li^{+}to Cs^{+}. In other words, Li^{+}ion is most highly hydrated. e.g. $\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$. Since the mobility of ion is inversely proportional to the size of their hydrated ions, therefore, amongst the alkali metal ions, lithium has the lowest ionic mobility.

$$
\mathrm{Rb}_{(\mathrm{aq})}^{+}>\mathrm{K}_{(\mathrm{aq})}^{+}>\mathrm{Na}_{(\mathrm{aq})}^{+}>\mathrm{Li}_{(\mathrm{aq})}^{+}
$$

125.(C) Only ' Na ' imparts golden colour to Bunsen flame, therefore, $\mathrm{A}=\mathrm{Na}, \mathrm{B}=\mathrm{H}_{2}, \mathrm{C}=\mathrm{NaOH}, \mathrm{D}=\mathrm{Zn}$.

$$
\underset{\text { (A) }}{2 \mathrm{Na}}+\underset{\text { (C) }}{2 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { (B) }}{2 \mathrm{NaOH}}+\quad \underset{\text { (D) }}{\mathrm{H}_{2}} ; \quad \underset{\text { (C) }}{\mathrm{Nn}}+\underset{\text { (B) }}{2 \mathrm{NaOH}} \rightarrow \underset{\text { (D) }}{\mathrm{Na}_{2} \mathrm{ZnO}_{2}}+\underset{\text { (B) }}{\mathrm{H}_{2}} ; \quad \underset{\mathrm{Z}_{2}}{\mathrm{Zn}}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \underset{\mathrm{ZnSO}_{4}}{\mathrm{ZnS}_{2}} \mathrm{H}_{2}}
$$

126.(B) As we move down the group from BeSO_{4} to BaSO_{4} the enthalpy of hydration of the positive ion becomes smaller due to increase in ionic size. Salts of heavier metal ions are less soluble than those of lighter ions.
127.(C) The pair which gives the same gaseous product is Ca and CaH_{2}.

Reactions: $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} ; \mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$
K gives H_{2} while KO_{2} gives O_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$.

$$
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2} ; 2 \mathrm{KO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}
$$

Na gives H_{2}, while $\mathrm{Na}_{2} \mathrm{O}_{2}$ gives $\mathrm{H}_{2} \mathrm{O}_{2}$.

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} ; \quad \mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}
$$

Ba gives H_{2} while BaO_{2} gives $\mathrm{H}_{2} \mathrm{O}_{2}$.

$$
\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} ; \mathrm{BaO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O}_{2} .
$$

128.(D) The alkali metals are larger in size and have smaller nuclear charge thus they have low ionization energy in comparison to alkaline earth metals. The alkaline earth metals have fully filled $\left(\mathrm{ns}^{2}\right) \mathrm{s}$-orbital and have more nuclear charge.
29.(A) In group 13 elements, stability of +3 oxidation state decreases down the group while that of +1 oxidation state increases due to inert pair effect.
Hence, stability of +1 oxidation state increases in the sequence : $\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$.
130.(A) $\mathrm{Me}_{3} \mathrm{SiCl}$ can form only dimer, whereas other can form polymers.
131.(D) SiO_{4}^{4-} ortho-silicate is basic unit of silicates.
132.(C) Pyrosilicate contains two units of SiO_{4}^{4-} joined along a corner containing oxygen atom.
133.(ABD) Al reacts with NaOH to give sodium meta-aluminate.

134.(C) Hydrolysis of substituted chlorosilanes yields corresponding silanols which undergo polymerisation. Out of the given chlorosilanes, only $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ will give linear polymer on hydrolysis followed by polymerisation.

135.(D) $\mathrm{SeO}_{2} \rightarrow$ acidic oxide ; $\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow$ amphoteric ; $\mathrm{Sb}_{2} \mathrm{O}_{3} \rightarrow$ amphoteric ; $\mathrm{Bi}_{2} \mathrm{O}_{3} \rightarrow$ basic oxide
136.(B) There is no lone pair on boron in BCl_{3} hence no repulsion place. There is a lone pair on nitrogen in NCl_{3} hence repulsion takes place. Therefore BCl_{3} is planar molecule but NCl_{3} is pyramidal molecule.
137.(A) Carbon has no d-orbitals, while silicon contains d-orbitals in its valence shell which can be used for bonding purpose.
138.(C) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak monobasic acid. We know that $\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}^{+}$. Therefore it is a weak monobasic acid.
139.(40) 48 mg of MgSO_{4} present in $10^{3} \mathrm{~g}$ of water

$$
\begin{aligned}
& 10^{6} \mathrm{~g} \text { water contains } \mathrm{MgSO}_{4} \quad=48 \times 10^{3} \\
& =48 \mathrm{~g} \\
& \therefore \\
& \therefore \quad 120 \mathrm{~g} \text { of } \mathrm{MgSO}_{4} \equiv 100 \mathrm{~g} \text { of } \mathrm{CaCO}_{3} \\
& \Rightarrow \quad 48 \mathrm{~g} \mathrm{MgSO}_{4} \equiv \frac{100}{120} \times 48=40 \mathrm{ppm}
\end{aligned}
$$

140.(262)
$2 \mathrm{NaCr}(\mathrm{OH})_{4}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
(A) (B)

Mol wt of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=(23 \times 2)+(52 \times 2)+(16 \times 7)$

$$
\begin{aligned}
& =46+104+112 \\
& =262
\end{aligned}
$$

141.(5) $\mathrm{N}_{1}=\frac{10}{5.6}, \mathrm{~N}_{2}=\frac{15}{5.6}, \mathrm{~N}_{3}=\frac{20}{5.6}$
$\left(\frac{10}{5.6} \times \frac{1}{2}\right)+\left(\frac{15}{5.6} \times \frac{1}{2}\right)+\left(\frac{20}{5.6} \times \frac{1}{2}\right)=\mathrm{N}_{\mathrm{T}} \times 4.5$
$\Rightarrow \quad \mathrm{N}_{\mathrm{T}}=0.8928 \mathrm{~N}$
Volume strength $=5.6 \times 0.8928 \approx 5$
142.(4) $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
143.(10) $\mathrm{x} \rightarrow \mathrm{Mg}, \mathrm{Pb}, \mathrm{N}=3$
$\mathrm{y} \rightarrow \mathrm{N}=5$
$\mathrm{z} \rightarrow \mathrm{Pb}, \mathrm{Al}=2$
144.(42) $\mathrm{Be}_{2} \mathrm{C}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{BeO}+\underset{\text { (X) }}{\mathrm{CH}_{4}}$
$\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
(Y)

Mol. wt of $\mathrm{CH}_{4}=16$
Mol wt of $\mathrm{C}_{2} \mathrm{H}_{2}=26$
$\therefore \quad$ Sum of mol. wt. $=16+26=42$
145.(9) $3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$
146.(8) $\mathrm{CaC}_{2}+\mathrm{N}_{2} \longrightarrow \mathrm{CaCN}_{2}+\mathrm{C}$
$64 \mathrm{~g} \quad 80 \mathrm{gm}$
$6.4 \mathrm{~g} \quad=\frac{80}{64} \times 6.4=8 \mathrm{gm}$
147.(4)

(I)

(II)

(III)

(IV)
148.(28) $4 \mathrm{BCl}_{3}+3 \mathrm{LiAlH}_{4} \longrightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{LiCl}+3 \mathrm{AlCl}_{3}$
(X) (Y)
$\mathrm{Y}+\mathrm{air} \longrightarrow \mathrm{B}_{2} \mathrm{O}_{3} \quad \Rightarrow \quad \mathrm{Y}$ should be $\mathrm{B}_{2} \mathrm{H}_{6}$
$\%$ of H_{2} in $\mathrm{B}_{2} \mathrm{H}_{6}=\frac{6}{28} \times 100 \simeq 21.72$
149.(68) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

L. $\mathrm{p}=17 \times 2=34$
B. $p=34$

Total $=34+34=68$
150.(2) Borax has two tetrahedral and two triangular units joined together.

151.(6) $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)^{6-}$
152.(4) Clark's method is used for removal of temporary hardness.
153.(3) Superoxide $\left(\mathrm{O}_{2}^{-}\right)$ion is stable only in the presence of large cations such as $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$ etc.

IOC \& GOC

1.(A) Numbering of carbon chains follows lowest locant rule whereas sequence of writing groups chain follows alphabetical order.
2.(D) Priority of -COOH group is more than -CO - group, so numbering starts from carbonyl carbon atom in the carboxylic group. Thus name is 4 -oxopentaoic acid.
3.(B) In aromatic compounds, numbering starts from the carbon atom at which group with alphabetical priority is attached. Out of -Cl (chloro), $-\mathrm{NO}_{2}$ (Nitro) and $-\mathrm{CH}_{3}$ (methyl) groups, -Cl has highest priority. After that numbering follows in such a way that other group get lowest number.

1-chloro-3-methyl-2-nitrobenzene
4.(C) The percentage of s-character in hybridization increases electronegativity of carbon atom. In $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \stackrel{*}{\mathrm{C}} \mathrm{H}$, said carbon atom is sp-hybridized, so, it most electronegative due to 50% (highest) s-character.

5.(ABD)

Functional isomerism is possible for compounds containing functional group. Alkyl halides cannot show functional isomerism since these are side chain (on groups).
6.(A) Resonance dominates hyperconjugation, so carbocation containing resonance effects is more stable.

So, $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}$ (I) is more stable than (III) so, correct order is II $>\mathrm{I}>\mathrm{III}$.
7.(B) Longest carbon chain is six carbon atoms, $3^{\text {rd }} \& 4^{\text {th }}$ position is occupied by methyl groups. Thus IUPAC name is 3, 4-Dimethylhexane.
8.(A) In Grignard reagent, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgCl}, \mathrm{C}-\mathrm{Mg}$ bond is ionic bond due to which carbon atom is negativity charged and it shows +I effect. -I group will make carbon atom more positively charged. Thus $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ contains more positively charged carbon atom due to more -I effect of -Cl .
9.(D) Carboxylate ion is most stable of it is formed by deprotonation of strongest conjugate acid.

Acidic strength : $\mathrm{F}_{2} \mathrm{CHCOOH}>\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}$
Stability of ion : $\mathrm{F}_{2} \mathrm{CHCOO}^{-}>\mathrm{FCH}_{2} \mathrm{COO}^{-}>\mathrm{ClCH}_{2} \mathrm{COO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
10.(C)

11.(AD) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$, only sp-hybridized carbon atoms.
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$, only sp^{2}-hybridized carbon atoms.
12.(BC) There should be an empty orbital to accept electron pair, for a species to be electrophile.
AlCl_{3} - p-orbital, SO_{3} - d-orbitalempty NO_{2}^{+}- p-orbital empty
$\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$ - p-orbital empty, $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}}=\mathrm{O}$ - p-orbital empty
13.(B) For positive isomerism, parent carbon chain should contain same carbon atoms.

Only position of ketonic group is different in the compounds
14.(AC)

Position isomers.
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO}$
Different Chain, some functional group $\quad \Rightarrow \quad$ Chain isomers.
15.(A) Answer can be either (A) or (C) but the question says "Nucleophile is species that should have". So, it should have a pair of electrons to donate. It may or may not have a negative charge.
16.(AB) Hyperconjugation observed in two cases.

* Delocalization of σ-electrons into empty p-orbital * Delocalization of σ-electrons into empty π^{*} orbitals.
17.(B) Both statements are true but reason is not correct explanation of A.
18.(A) I. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-$ Alkyl \rightarrow resonance
III. $\bigcirc-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-$ benzyl \rightarrow resonance
II. $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$ - isopropyl \rightarrow only hyperconjugation Correct order should be III $\approx \mathrm{I}>$ II

However, In case of comparison between I and III, usually we take III $>$ I.
19.(B) RSH is more than ROH but RS^{-}is more nucleophilic because sulphur atom contains more diffused electron density, so, approachability of RS^{-}at back side of $\mathrm{C}-\mathrm{X}$ bond is more due to which it is stronger nucleophile.
20.(D) Basicity of given anions is reverse of acidity of their conjugate acids. Acidic order of conjugate acids $\mathrm{RCOOH}>\mathrm{HC} \equiv \mathrm{CH}<\mathrm{NH}_{3}<\mathrm{RH} \quad \Rightarrow \quad$ basic strength $\mathrm{RCOO}^{-}<\mathrm{HC} \equiv \mathrm{C}^{-}<\overline{\mathrm{N}} \mathrm{H}_{2}<\mathrm{R}^{-}$
21.(BC)

22.(C) Electron withdrawing group stabilize the carbanions $\overline{\mathrm{C}} \mathrm{Cl}_{3} \rightarrow$ very high -I effect: $\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2} \rightarrow$ Resonance effect Thus order is $\overline{\mathrm{C}} \mathrm{Cl}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-}$
23.(C) Geometrical isomers

Thus total of 4-stereoisomers are possible.

Shows optical isomerism also

Shows optical isomerism also
24.(A)
25.(ABD) Compound containing chiral carbon atom rotates plane of polarised light. In the case when more than one chiral centres exist, overall chirality should exist.

Chiral

Chiral

(Meso, compound does not rotate the plane of polarised light)

Chiral
26.(B) 1° halides one most reactive and 3° halides are least reactive in $\mathrm{S}_{\mathrm{N}} 2$ reaction because steric hindrance increases from 1° to 3° at back side of $\mathrm{C}-\mathrm{X}$ bond.

27.(A) Resonance effect containing free radicals are more stable than hyperconjugation effect.

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{\circ}>\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}^{\circ} \mathrm{H}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\circ}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\circ}
$$

28.(D) Free radicals one chemically reactive species due to unpaired electron.
29.(B) Nucleophilicity is the reverse of the stability of anions, i.e. reverse of the acidity of conjugate acids

Acidic strength :

Nucleophilicity :

30.(C)

(optical isomerism)
31.(ABD) Acetonitrile is $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$ which contains $\mathrm{sp}^{3} \& \mathrm{sp}$ hybridised carbon atoms. Other compounds contain group in which carbon is sp^{2} hybridised carbon atom.
32.(D) In gaseous sate, $d \propto M, C_{2} \mathrm{H}_{5} \mathrm{OH} \& \mathrm{CH}_{3} \mathrm{OCH}_{3}$ contains same molecular mass, so same density for both.
33.(BCD)

34.(C)
35.(BD) At least two chiral centers should be in the compound with environment around chiral carbon atoms.

39.(D) Structure I should be treated as 2-butene, hence it will show only geometric isomerism. Structure II should be treated as 2-butanol, hence it will show only optical isomerism. However, it is a single choice question, in that case (D) is correct answer. Both types of isomerism studied under stereoisomerism.
40.(D)

2-Amino-3-hydroxy-propanoic acid.
41.(D) Nucleophiles are electron rich species hence, they are Lewis bases.
42.(A)

43.(C)

44.(D) There are four double bonds. Hence, no. of π-electrons $=2 \times 4=8$.
45.(B) keto-enol tautomerism :

Here, $\alpha-\mathrm{H}$ participates.
(II)

here, $\alpha-\mathrm{H}$ participates.
(III)
 \rightleftharpoons

here, $\gamma-\mathrm{H}$ participates (p -tautomerism) and it is induced in presence of base.
46.(A) Mass of organic compound $=0.25 \mathrm{~g}$

Experimental values (at STP) :

$$
\mathrm{V}_{1}=40 \mathrm{~mL} ; \mathrm{V}_{2}=? ; \mathrm{T}_{1}=300 \mathrm{~K} ; \mathrm{T}_{2}=273 \mathrm{~K} ; \mathrm{P}_{1}=725-25=700 \mathrm{~mm} ; \mathrm{P}_{2}=760 \mathrm{~mm}
$$

$$
\begin{aligned}
& \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \quad \Rightarrow \quad \mathrm{~V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{P}_{2}}=\frac{700 \times 40 \times 273}{300 \times 760}=33.52 \mathrm{~mL} \\
& 22400 \mathrm{~mL} \text { of } \mathrm{N}_{2} \text { at STP weighs }=28 \mathrm{~g} \\
& \therefore \quad 33.52 \mathrm{~mL} \text { of } \mathrm{N}_{2} \text { at STP weighs }=\frac{28 \times 33.52}{22400}=\frac{33.52}{8}=0.0419 \mathrm{~g} \\
& \% \text { of } \mathrm{N}=\frac{\text { Mass of nitrgoen at STP }}{\text { Mass of organic compound taken }} \times 100=\frac{0.0419}{0.25} \times 100=16.76 \% \\
& \text { 47.(A) } \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \\
& 10 \mathrm{~mL}^{\text {of } 1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=10 \mathrm{~m} \mathrm{~mol} .} \\
& \quad\left[\because \mathrm{M} \times \mathrm{V}_{(\mathrm{mL})}=\mathrm{mmol}\right]
\end{aligned}
$$

NH_{3} consumed $=20 \mathrm{mmol}$
Acid used for the absorption of ammonia $=20-10 \mathrm{mmol}=10 \mathrm{~mL}$ of $2 \mathrm{~N}($ or 1 M$) \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\% \text { of } \mathrm{N}=\frac{1.4 \times \mathrm{N} \times \mathrm{V}}{\mathrm{~W}}=\frac{1.4 \times 2 \times 10}{0.75}=37.33 \%
$$

48.(C) Aromatic species has a close loop of delocalizable $(4 n+2) \pi$ electrons. In this species d-electron is not part of close loop. So this species contain 6 delocalizable electrons in $6 p$-orbitals.
49.(B) $\quad 3 \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+2 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}+6 \mathrm{Na}_{2} \mathrm{SO}_{4}$. Sodium ferrocyanide $\quad \begin{gathered}\text { Ferric ferrocyanide } \\ \text { (Prussian blue) }\end{gathered}$ (Prussian blue)
50.(B) Similar to Question 46. Find $V_{N_{2}}$.
$\% \mathrm{~N}=\frac{\mathrm{V}_{\mathrm{N}_{2}}(\mathrm{STP})}{8 \times \mathrm{W}_{\text {org. compound }}} \times 100 \quad \Rightarrow \quad \%$ of $\mathrm{N}=\frac{46.099}{8 \times 0.35}=16.46$
51.(A) In case of Lassaigne's test of halogens, it is necessary to remove sodium cyanide and sodium Sulphide from the sodium extract if nitrogen and sulphur are present. This is done by boiling the sodium extract with conc. HNO_{3}.

$$
\mathrm{NaCN}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{HCN} \uparrow ; \mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \uparrow
$$

52.(A)

53.(A) Ortho-cresol is the most reactive towards electrophilic reagents (in S_{E} reaction). The reason for this is the $-\mathrm{CH}_{3}$ group (+I effect) and -OH group $(+\mathrm{R} /+\mathrm{M}$ effect) which increase the electron density on the benzene ring.
54.(C) $\mathrm{H}_{3} \mathrm{O}^{+}$is not electrophile as it has no vacant orbital.
55.(A) In case of different nucleophiles, but present in the same group in the periodic table, then larger is the size, higher is the nucleophilicity. Hence the decreasing order of nucleophilicity of the halide ions is : $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$.
56.(B) Sublimation method is used for those organic substances which pass directly from solid to vapour state on heating and vice-versa on cooling, e.g. benzoic acid, naphthalene, camphor, anthracene, etc. Naphthalene is volatile and benzoic acid is nonvolatile due to the formation of the dimer.
57.(B) Carboxylic acid is much stronger than water and alcohol. Since the carboxylate ion after the removal of proton is stabilised by resonating structures. The -OH in alcohols is almost neutral. Acetylene is also weakest acid.
58.(C) Tollen's reagent is solution of ammoniacal silver nitrate and used for the detection of -CHO group. Aldehydes reduce Tollen's reagent and itself get oxidised to give Ag^{+}ions to Ag powder which forms the silver coloured mirror in the test tube. So this test is also known as silver mirror test.

$$
\mathrm{R}-\mathrm{CHO}+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightarrow \mathrm{R}-\mathrm{COO}^{-}+\mathrm{Ag}(\text { Powder }) .
$$

59.(D) Carboxylic acid dissolve in NaHCO_{3} but phenols do not being very weak acids.
60.(A)

Hence it is homocyclic (as the ring system is made of one type of atoms, i.e., carbon) but not aromatic.
61.(4) The compound has one chiral centre. Therefore, $2^{n}=2^{1}=2$ optically active compounds are possible. Also, two geometrical isomers (cis and trans) are possible. So, total of four isomers are possible.

62.(5) Structural isomers refers to the compounds that have same molecular formula but different arrangement of atoms or groups within the molecule. Based on this, following are the structural isomers for $\mathrm{C}_{6} \mathrm{H}_{14}$:

n -Hexane

2-Methyl pentane
3-Methyl pentane

2,2-Dimethyl butane
2,3-Dimethyl butane
63.(7) There are seven chiral centres present in the given compound.

64.(8) When molecule is asymmetric, no. of geometrical isomers is given by 2^{n} where n is no. of double bonds.
65.(7) (I)

(II\&III)

(IV)

(V)

(VII)

66.(11) Triple bonds $=1$

Double bonds $=6$
Rings $=3$
Due to each triple bond, there are 2 degree of unsaturation while due to double bond \& ring there is 1 degree of unsaturation each. So in total D.U. $=2+6+3=11$
67.(2)

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
68.(3) There are three derivatives for formula $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$.

69.(8) There are 8 chiral carbon atoms present.

70.(2) The resonating structures are

71.(6)

72.(3) Three isomers are possible for disubstituted benzene.

73.(4) $\mathrm{a}=2^{\mathrm{n}}$ where $\mathrm{a}=$ number of optically active isomers and $\mathrm{n}=$ number of asymmetric carbon atoms As $\mathrm{n}=2$, so $\mathrm{a}=2^{2}=4$.
74.(7)

75.(9)
(a)

(b)

$(2,2)$
(c)

(d)

$(1,2)$
(e)

$(2,3)$
(f)

(g)

(h)

(i)

Hydrocarbons

1.(C)

2.(D)

3.(C)

carbocation
4.(B)

(I)

(II)

(III)

(IV)

Four structural isomers are produced but (I) and (III) contains chiral centre, so, two isomers are chiral compound,
5.(B) Dissolved metal reduction produces trans isomer and heterogeneous catalyst produces cis isomer
6.(B) $\mathrm{CH}_{2}=\mathrm{CH}-$ group should exist on the hydrocarbon which on oznonolysis will produce formaldehyde as one product.
7.(D)

8.(BCD) $(4 n+2) \pi \mathrm{e}^{-}$rule

Consider one ring and count $\mathrm{e}-\mathrm{s}$ on the perimeter of its
It contains $10 \mathrm{e}^{-}$which are according $(4 \mathrm{n}+2) \pi \mathrm{e}^{-} \mathrm{s} \quad \Rightarrow \quad$ Aromatic

9.(ABCD) All the given alkynes will give corresponding alkene on reaction with sodium in liquid ammonia due to partial hydrogenation of triple bond.
Note : If we use NaNH_{2}, then only $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{PhC} \equiv \mathrm{CH}$ containing acidic hydrogen will react.
10.(CD) $\mathrm{CH}_{3} \mathrm{MgX}+\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \longrightarrow \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{MgX}$
11.(C)
12.(B) $\quad \mathrm{R}_{2} \mathrm{Cu}+\mathrm{R}^{\prime} \mathrm{X} \longrightarrow \mathrm{R}-\mathrm{R}^{\prime}$ (alkane)
13.(C)

(Only two structural isomers are formed). Stereoisomers are ignored.
14.(C) At lower temperature, thermodynamic controlled products are formed. Thus, 1-bromo-2-butene is formed
15.(D) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ reduces butan-2-one, other compounds requires strong reducing agents
16.(D) Isobutene has lowest surface area, so, contains lowest boiling point.
17.(D) Butene-1 is non polar in nature, so, non-polar catalyst is best to reduce it.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Pd} / \mathrm{H}_{2}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

18.(ABC) Acetylene is weakly acidic in nature due to which it cannot react with NaOH .

HCl reacts with triple bond.

20.(C) $\mathrm{CH}_{3} \mathrm{MgI}$ contains $\mathrm{C}-\mathrm{Mg}$ bond
21.(D) n-pentane : Highest molar mass and highest surface area; n-butane : Lowest molar mass and lowest surface area n-pentane >2-methylbutane >2 2, 2-dimethylpropane $>$ n-butane
22.(A) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
23.(B)
24.(A)

25.(ABC) Each carbon connected by double bond should contain two different group individually.
26.(C) Stronger acid reacts faster.
27.(B) sp hybridized carbon atom is more electronegative so, negative charge is more stable on if

$$
\begin{array}{ccc}
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}^{-} & \begin{array}{c}
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-} \\
\text {no inductive } \\
\text { effect }
\end{array} & \mathrm{CH}_{3}-\overline{\mathrm{C}} \mathrm{H}_{2}
\end{array}
$$

28.(ABC) Factual
29.(BCD) Factual
30.(D)

4-(1methylethyl)-5-(1-methylpropyl)-decane
31.(A)

5-(2', 2' - dimethylpropyl) - decane
32.(AC)

Resonance effect increases charge density at O , p-positive

inductive effect withdraws electron density from benzene ring, so, deactivates if
33.(ABC) (A) $\mathrm{CH}_{3}-\stackrel{\stackrel{\circ}{\mathrm{O}}}{\mathrm{D}} \stackrel{+}{\mathrm{C}} \mathrm{H}_{3} \longleftrightarrow \mathrm{CH}_{3}-\stackrel{+}{\mathrm{O}}=\mathrm{CH}_{2} \quad$ Resonance effect $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2} \quad$ hyperconjugation. Thus $\mathrm{CH}_{3} \mathrm{O} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ is more stable then $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(B) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}\left(2^{\circ}\right.$ carbocation) is less stable than $\mathrm{CH}_{3}-\mathrm{O}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ because of resonance.
(C) $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ is more stable than $\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}\left(1^{\circ}\right.$ carbocation) because of resonance.
(D) Vinyl carbocation are less stable than normal carbocation $\mathrm{CH}_{2} \underset{\mathrm{sp}^{2}}{\stackrel{+}{\mathrm{C}}} \mathrm{H}<\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
34.(AC)

35.(BC)

36.(C) Refer to explanation of Q. 34
37.(C) More branching means lesser surface area which results in lesser molecular forces of attraction (Van der waals forces) and hence lower boiling point.

39.(C)

40.(C) $-\mathrm{CH}_{3}$ group is o, p-directing. Because of crowding, no substitution occurs at the carbon atom between the two $-\mathrm{CH}_{3}$ groups in m-Xylene, even though two $-\mathrm{CH}_{3}$ groups activate that position.

4-Bromo-1, 3-dimethyl benzene (major)

6-Bromo-1, 3-dimethyl benzene (minor)
41.(D) The molecules which do not satisfy Huckel rule or $(4 n+2) \pi$-electron rule are said to be non-aromatic.

The compound (d) has total $4 \pi \mathrm{e}^{-}$. It does not follow $(4 \mathrm{n}+2)$ rule. So it is non-aromatic compound. All other compounds ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) are planar and have $6 \pi \mathrm{e}^{-}$, so they are aromatic.
42.(C)

However, acetaldehyde does not give Victor Meyer test. It will give Tollen's test, Brady's test along with iodoform test.
43.(A) Maleic acid shows geometrical isomerism (Fumaric acid) and not optical isomerism.
44.(D)

45.(D) The conformation (D) is most stable because of intermolecular H-bonding.
46.(B)

47.(B) Effect of substituents : Presence of electron withdrawing groups $\left(-\mathrm{NO}_{2},-\mathrm{X},-\mathrm{CN}\right)$ increase the acidity of phenols while the presence of electron releasing groups $\left(-\mathrm{NH}_{2},-\mathrm{CH}_{3}\right)$ decrease the acidity of phenols. Hence the order of decreasing acidity is : p-nitrophenol $>$ phenol $>$ p-cresol.
48.(A) Due to -I effect of F atom, CF_{3} in benzene ring deactivates the ring and does not favour electrophilic substitution. While $-\mathrm{CH}_{3}$ and $-\mathrm{OCH}_{3}$ via hyperconjugation and resonance effect respectively favour electrophilic substitution in the benzene ring at 'ortho' and 'para' position. The +M effect of $-\mathrm{OCH}_{3}$ is more than +H effect of $-\mathrm{CH}_{3}$, therefore correct order for electrophilic substitution is (A).
49.(C) The branching of chain increases the octane number of a fuel. High octane number means better fuel.
50.(AD)

51.(6) One unhybridized orbital on each carbon involved in double bond and two on each carbon involved in triple bond.

52.(2)

53.(3)

54.(4) The reaction involved is

55.(1)

The compound obtained is a meso compound. Meso compounds are those which are superimposable on their mirror image even though they contain chiral centres.
Hint : Symmetric Trans compound on anti-addition gives meso compound.
56.(8)

Total $=2+4+1+1=8$
57.(0) The reaction is

58.(3)

Total 3 trans alkene can be formed.
59.(3)

3 different product can be formed
60.(4) $\begin{gathered}\text { Alkyne (given) } \\ \mathrm{x} \times 10\end{gathered} \xrightarrow[\mathrm{H}_{2}]{\substack{\text { Lindlar cataylst }}} \underset{\mathrm{x} \times 10+2}{\text { Alkene }}$
(A)
(B)
(D)

(Mol. mass $=86$ given $) \quad(\mathrm{x} \times 10+2+36.5)$
Calculated mass of $(D)=2(10 \times x+2+36.5)-2 \times 35.5=20 x+6$
(After Wurtz reaction, deduct two chlorine atoms)
Therefore, Mol. mass calculated $=$ Mol. Mass given
$20 \mathrm{x}+6=86$
$\mathrm{x}=\frac{86-6}{20}=4$
Therefore, the alkyne is propyne with molecular mass 40 .
61.(3) The total number of possible products is three 2-butene can exist in cis form as well as trans form so total 3 product could be possible.

62.(4)

Since both of them lack symmetry both have enantiomeric pair
Hence total no. of isomers are 4.
Note: Only 3° product is formed because Br_{2} is highly selective.
63.(1)

64.(1)

Only $1 \mathrm{sp}^{2}$ hybridized carbon is there in product
65.(4)

Minimum 4 carbons are required

Environmental Chemistry

21.(5) Water is considered as pure if its BOD is less than 5 ppm .
22.(5) Fe is co-ordinated to 5 groups and $6^{\text {th }}$ site is free to which CO links if present.
23.(1) $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{15}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
24.(3)
25.(4)
$\mathrm{C}_{4} \mathrm{H}_{10}+6 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$
27.(6)

28.(5)

29.(5) CO_{2} and other green house gases are methane, water vapour, nitrous oxide, CFC's and ozone.
30.(5)

31.(7)

32.(1) $\mathrm{Zn}=5 \mathrm{ppm}$
$\mathrm{Fe}=0.2 \mathrm{ppm}$
$=(5 \times 0.2)=1$
33.(4) A-Hydroxyapatite $\left[3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{Ca}(\mathrm{OH})_{2}\right]$

B-harder fluorapatite $\left[3\left(\mathrm{Ca}_{3} \mathrm{PO}_{4}\right) \cdot \mathrm{CaF}_{2}\right]$
$|A-B|=17(2)-19(2)=4$
34.(5)

(Diamagnetic) (P) (P)
$\dot{\mathrm{Cl}}+\mathrm{O}_{3(\mathrm{~g})} \longrightarrow \dot{\mathrm{ClO}}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
(D) $\quad(\mathrm{P})$
$\mathrm{Cl} \dot{\mathrm{O}}+\mathrm{O}_{(\mathrm{g})} \longrightarrow \dot{\mathrm{C}}{ }_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
(P)
(P)
(P)
(P)
35.(6) $\mathrm{N}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{1400 \mathrm{~K}} 2 \stackrel{+2}{\mathrm{~N}} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2{\stackrel{4}{\mathrm{~N}} \mathrm{O}_{2}(\mathrm{~g})}$

