

THERMODYNAMICS

Important definations

$>$ Thermodynamics is the branch of science that deals with quantitative aspects of interconversion of various forms of energy and the conversion of energy into work and vice versa.
$>$ System—Part of universe selected for investigation.
> Surrounding-Part of universe other than the investigation.
> Sysetm can be classified as-
Open system can exchange matter and energy both with its surroundings.
Closed system can exchange only energy with its surroundings but not the matter.
Isolated system can neither exchange matter nor energy with surroundings.
$>$ State of system—The conditions of existence of a system when its macroscopic properties have a definite value.
> Properties of a system can be classified into state and paths function.
> State Functions-The thermodynamic quantities which depend only on initial and final state of the system. e.g., pressure, volume and termperature are the variables which are use to describe the state of the system and are state functions. A path function depends upon the path taken by the system during a change in state, e.g., heat and work.
> Thermal process is the one which is carried out at a constant temperature.
> Isobaric process is the one which is carried out at a constant pressure.
> Isochoric process is the one during which the volume remains constant.
> Adiabatic process is the one during which no heat is gained or lost by the system.
$>$ A reversible process takes place in a manner that system never deviates significantly from equilibrium state. It occurs infinitely slowly. All real processes are irreversible in nature.
$>$ A cyclic process is the one that after undergoing a change in state returns back to its initial state.
> An extensive property is a property whose value depends on the quantity or size of matter present in the system, e.g., mass, volume, internal energy, enthalpy, heat capacity, etc.
> An intensive property is that property which is independent of the mass or quantity or size of matter present in the system e.g., temperature, density, pressure etc.
$>$ A substance (solid, liquid or gas) is said to be in standard state when it is pure, under 1 bar pressure and at any specified temperature.
> Heat and work are the two common forms of energy which are exchanged between a system and surroundings. Both are path functions and appear only during a change in state.
$>$ Heat (q)-It is random form of energy.
$>$ Work (w)—It is organised form of energy.
$>$ Heat is positive if it is gained by the system (i.e., heat is transferred from the surroundings to the system) and heat is negative if it is lost by the system (i.e., heat is transferred from system to the surroundings.)
> Work is positive when it is done on the system and negative when done by the system.
> Internal energy (U)—The all types of energy associated with the system at particular conditions of temperature and pressure.

Thermodynamic terms

Properties of system: Physical quantities which are used to define the system.

Thermodynamic processes

- If $d q=0$, process is adiabatic.
- If $d T=0$ and $d E=0$, the process is isothermal.
- If $d V=0$, process is isochoric.
- If $d P=0$, process is isobaric.

Heat (q) and heat capacity (C)

- Heat capacity, $C=d q / d T$
- $C_{v}=\left(\frac{\partial U}{\partial T}\right)_{V} ; C_{p}=\left(\frac{\partial H}{\partial T}\right)_{P}$
- When n_{1} moles of gas A and n_{2} moles of gas B are mixed.

$$
\left(C_{v}\right)_{\operatorname{mix}}=\frac{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}}{n_{1}+n_{2}}
$$

- $C_{p}-C_{v}=n R$

Work (W)

- $W=-P_{e x t} \Delta V$
[irreversible isothermal expansion]
- $W=-2.303 n R T \log \left(P_{1} / P_{2}\right)$
- $W=-2.303 n R T \log \left(V_{2} / V_{1}\right)$
[reversible isothermal expansion]
- $W=n C_{v} d T=\frac{n R}{\gamma-1}\left(T_{2}-T_{1}\right)$
[reversible adiabatic expansion] where, $\gamma=C_{P} / C_{V}$
- $W=-P_{e x t} R\left(\frac{T_{2} P_{1}-T_{1} P_{2}}{P_{1} P_{2}}\right)$
[irreversible adiabatic expansion]

Bond enthalpy

It is the enthalpy change accompanying the breaking of one mole of covalent bonds.
Bond enthalpy =
\sum Bond enthalpies of reactants
$-\sum$ Bond enthalpies of products

Intensive: These do not depend upon quantity of matter.e.g., T, P.

Enthalpy (H)

Total heat of the system

- $H=U+P V$
- $\Delta H=\Delta U+P \Delta V=C_{P} \Delta T$
$=\Delta \mathrm{U}+\Delta n_{g} R T$ (at constant pressure)
- $\Delta H=\sum H_{\text {product }}-\sum H_{\text {reactant }}$
$=-\mathrm{ve}$ (exothermic)
$=+\mathrm{ve}$ (endothermic)

Gibbs Free Energy (G)

Useful work done by the system

- $G=H-T S$
- $\Delta G=\Delta H-T \Delta S$
(Gibbs - Helmholtz equation)

$$
\Delta G^{\circ}=\sum G_{f(\text { product })}^{\circ}-\sum G_{f(\text { reactant })}^{\circ}
$$

- $\Delta G^{\circ}=-2.303 R T \log K_{e q}$.
- If $\Delta G=+\mathrm{ve}$ (Non-spontaneous)
- If $\Delta G=-\mathrm{ve}$ (Spontaneous)

Enthalpy of combustion, $\Delta_{\boldsymbol{c}} H$
It is the enthalpy change when 1 mole of a substance burnt completely in air.

Hess's law of constant heat summation
$\Delta H=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}$

Enthalpy change of a reaction

It is the enthalpy change when a given reactant reacts completely.

Enthalpy of formation

It is the enthalpy change occurring during the formation of 1 mole of a substance from its elements.

Enthalpy of solution

$\Delta_{\text {sol }} H=\Delta_{\text {lattice }} H+\Delta H_{\text {hyd }}$
where, $\Delta_{\text {lattice }} H=S+I+\frac{1}{2} D-\Delta_{f} H+E . A$.

Thermodynamic laws

Zeroth law: System in thermal equilibrium with each other have same temperature.

First law: The total energy of the universe remains constant although it may undergo transformation from one form to the other. $\Delta U=q+w(\Delta U=$ internal energy $)$

Second law: In a spontaneous process total energy of the universe increases.
$\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$
Entropy (S)
Measure of randomness or disorder ;asurc vi anluynuicso vi misulue

- $\Delta S=\frac{q_{r e v}}{\tau}$ (reversible process)
(i) If $\Delta \mathrm{n}_{\mathrm{g}}>0 ; \Delta_{\mathrm{r}} \mathrm{S}>0$.
$\left.\begin{array}{c}\text { (ii) If Solid } \longrightarrow \text { gas } \\ \text { liquid } \longrightarrow \text { gaid }\end{array}\right\} \Delta_{\mathrm{r}} \mathrm{S}>0$
(iii)If crystalisation taken place $\Delta_{\mathrm{r}} \mathrm{S}<0$.

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {vap }}=\frac{\Delta \mathrm{H}_{\text {vap. }}}{\mathrm{T}_{\mathrm{b}}} \\
& \Delta \mathrm{~S}_{\text {fusion. }}=\frac{\Delta \mathrm{H}_{\text {fusion }}}{\mathrm{T}_{\mathrm{f}}} \\
& \Delta \mathrm{G}=\Delta \Delta_{\mathrm{r}} \mathrm{G}+\mathrm{RT} \ln \mathrm{Q}
\end{aligned}
$$

Where, $\mathrm{Q} \equiv$ Reaction quotient

Criteria of spontaneity of process :

(i) If $\Delta G_{\text {system }}$ is (-ve) $<0 \Rightarrow$ is spontaneous
(ii) If $\Delta G_{\text {system }}$ is $>0 \Rightarrow$ non spontaneous
(iii) If $\Delta \mathrm{G}_{\text {system }}=0$ system is at equilibrium.

Third law

- Entropy of all pure crystals is zero at the absolute zero temperature.
At equilibrium :
$\Delta G^{=} 0 \Rightarrow G_{\text {product }}=G_{\text {reactant }}$ $\Delta G^{0}=-R T \ln K_{e q}$.

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87

Process	Expression for w	Expression for q	ΔU	ΔH	Work on PV-graph
Reversible isothermal process	$\begin{aligned} w & =-n R T \ln \frac{V_{2}}{V_{1}} \\ & =-n R T \ln \frac{P_{1}}{P_{2}} \end{aligned}$	$\begin{aligned} & q=n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\ & q=n R T \ln \left(\frac{P_{1}}{P_{2}}\right) \end{aligned}$	0	0	
Irreversible isothermal process	$\begin{array}{r} \mathrm{w}=-P_{\text {ext }}\left(V_{2}-V_{1}\right) \\ =-P_{\text {ext }}\left(\frac{n R T}{P_{2}}-\frac{n R T}{P_{1}}\right) \end{array}$	$q=P_{\text {ext }}\left(V_{2}-V_{1}\right)$	0	0	
Isobaric process	$\begin{aligned} w= & -P_{\text {ext }}\left(V_{2}-V_{1}\right) \\ & =-n R \Delta T \end{aligned}$	$q=\Delta H=n C_{P} \Delta T$	$\Delta U=n C_{V} \Delta T$	$\Delta H=n C_{P} \Delta T$	
Isochoric process	$\boldsymbol{w}=0$	$q=\Delta U=n C_{V} \Delta T$	$\Delta U=n C_{V} \Delta T$	$\Delta H=n C_{P} \Delta T$	
Reversible adiabatic process	$\begin{aligned} \boldsymbol{w} & =n C_{V}\left(T_{2}-T_{1}\right) \\ & =\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1} \end{aligned}$	$\begin{aligned} q & =0 \\ P V^{\prime} & =\text { constant } \\ T V^{-1} & =\text { constant } \end{aligned}$	$\Delta U=n C_{V} \Delta T$	$\Delta H=n C_{P} \Delta T$	

Thermodynamic processes :

1. Isothermal process : $\mathrm{T}=$ constant

$$
\begin{aligned}
& \mathrm{dT}=0 \\
& \Delta \mathrm{~T}=0
\end{aligned}
$$

2. Isochoric process: $V=$ constant $\mathrm{dV}=0$ $\Delta \mathrm{V}=0$
3. Isobaric process : $P=$ constant
dP =0
$\Delta \mathrm{P}=0$
$q=0$
or heat exchange with the surrounding $=0$ (zero)
5 Free expansion - Always going to be irrerversible and since $P_{\text {ext }}=$

Relationship between $\Delta_{r} H$ and $\Delta_{r} U$ for a reaction
$\Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\mathrm{r}} \mathrm{U}+\Delta_{\mathrm{n}_{\mathrm{g}} R T}$
(for ideal gas)
$\Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\mathrm{r}} \mathrm{U}+\mathrm{P}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$
(for non ideal conditions)

- The stoichiometric coefficient of solids and liquids in not considered in calculation of Δn_{g} (because $V_{S} \sim V_{L} \ll V_{S}$)

Estimation of Enthalpy of a reaction from bond Enthalpies: $\Delta H=$
(Enthalpy required to
break reactants into
gasesous atoms
$-\left(\begin{array}{l}\text { Enthalpy released to } \\ \text { form products from the } \\ \text { gasesous atoms }\end{array}\right)$

Internal energy is the quantity that represents all the form of the enegy of the system, i.e., kinetic and potential energies of the system.
> Internal energy change $(\Delta \mathbf{U})$-It is a measure of heat change occur during the process at constant temperature and constant volume.

$$
\Delta \mathrm{U}=q v
$$

$>$ Enthalpy (H)—It is the sum total of internal energy and PV energy of the system at particular conditions of temperature and pressure. It is also called heat content of the system.

$$
\mathrm{H}=\mathrm{U}+\mathrm{PV}
$$

$>$ Enthalpy change $(\Delta \mathbf{H})$ —It is the measure of heat change taking place during the process at constant temperature and constant pressure.

$$
\Delta \mathrm{H}=q p
$$

$\Delta \mathrm{H}$ is negative for exothermic reactions and is positive for endothermic reactions.
> Law of conservation of energy-It is also called first law of thermodynamics and states that energy of universe always remain constant during physical or chemical changes

Or
Energy can neither be created nor be destroyed. Mathematically, it can be written as :

$$
\Delta \mathrm{U}=q+w
$$

$>$ Relation between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ -

$$
\begin{aligned}
& \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V} \\
& \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta n g \mathrm{RT}
\end{aligned}
$$

$>$ The magnitude of temperature change during heat transfer depends upon the heat capacity of the system according to the relation

$$
q=m \times c \times \Delta t
$$

> Specific heat or specific heat capacity is the quantity of heat required to raise the temperature of one unit mass of a substance by one degree celsius (or one kelvin).
Q. 1. In a process 701 J of heat is absorbed by a system and 394 J of work is done by the system? What is the change in internal energy for the process ?

Ans. $\Delta \mathrm{E}=q+w$, where $\Delta \mathrm{E}$ is the change in internal energy
Given

$$
q=+701 \mathrm{~J}
$$

Since the work is done by the system; w is
-ve $1 / 2$
$\therefore \quad \Delta \mathrm{E}=q-w=(701-394) \mathrm{J}=307 \mathrm{~J}$
\therefore Change in internal energy $=307 \mathrm{~J} . \quad \mathbf{1}$
Q. 2. The reaction of cyanamide $\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})$ with O_{2} was carried out in a bomb calorimeter and ΔU was found to be $-742.7 \mathrm{~kJ} / \mathrm{mol}$ at 298 K . Calculate enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Ans. The given reaction is

$$
\begin{aligned}
& \mathrm{NH}_{2} \mathrm{CN}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \qquad \Delta \mathrm{U}=-742.7 \mathrm{~kJ} \mathrm{~mol} \\
& \\
& \text { Enthalpy change } \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta n_{g} \mathrm{RT} \\
& \text { where } \Delta n_{g}=\text { change in the no. of moles (gaseous) }
\end{aligned}
$$

$$
\begin{aligned}
& =n_{2}-n_{1} \\
& =2-\frac{3}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{T}} & \left.=298 \mathrm{~K}, \mathrm{R}=0.0083 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right] \\
\therefore \quad \Delta \mathrm{H} & =-742.7+\frac{1}{2}(0.0083) \times 298 \\
& =(-742.7+1.24) \mathrm{kJ} \\
& =-741.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\therefore Enthalpy change for the reaction is -741.5 kJ mol^{-1}.
Q.3. Calculate the number of kJ necessary to raise the temperature of 60 g of Aluminium from 35 to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. [Imp.]
Ans. Mass of Al given is 60 g
$\Delta \mathrm{T}=$ rise in temp. $=55-35=20^{\circ} \mathrm{C}$
No. of moles of Aluminium $=\frac{60}{27}$
Molar heat capacity $=24 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$=$ Moles $\times \Delta \mathrm{T} \times$ Molar heat capacity
Total heat required i.e., $\mathrm{T}=\frac{60}{27} \times 20 \times 24 \mathrm{~J} \quad \mathbf{1}$

$$
=1067 \mathrm{~J}=1.067 \mathrm{~kJ} .
$$

$>$ Enthalpy of Reaction-The enthalpy change accompanying the chemical reaction in which number of moles of reactants consumed and those of products formed are the same as the stoichiometric coefficients.
$>$ Enthalpy of Neutralisation $\left(\Delta_{n} \mathbf{H}\right)$ —It is the enthalpy change taking place during neutralisation of 1 gm equivalent of acid with 1 gm equivalent of a base in dilute aqueous solution.
$>$ Standard Enthalpy of Fusion $\left(\Delta_{\text {fusion }} \mathbf{H}^{0}\right)$ —It is the enthalpy taking place during the fusion of one mole solid at its melting point.
$>$ Standard Enthalpy of Vaporisation $\left(\Delta_{\mathrm{vap}} \mathbf{H}^{\circ}\right)$ —It is the enthalpy change taking place during the vaporisation of 1 mole of liquid at its boiling point and under standard pressure (1 bar).
$>$ Standard Enthalpy of Sublimation, $\left(\Delta_{\text {sub }} \mathbf{H}^{\circ}\right)$ —It is the change in the enthalpy when one mole of a solid substance sublimes at a constant temperature and under standard pressure (1 bar).
$>$ Standard Enthalpy of Formation $\left(\Delta_{f} \mathbf{H}^{\circ}\right)$ —It is enthalpy change accompanying the formation of 1 mole of the substance from its constituent elements in their standard state.

$$
\Delta_{f} \mathrm{H}^{\circ} \text { can be }>0 \text { or }<0
$$

$>$ Hess's law-The enthalpy change in a chemical or physical process is same whether the process is carried out in one step or in several steps.
$>$ Standard Enthalpy of Combustion $\left(\Delta_{c} \mathbf{H}^{\circ}\right)$ —It is the enthalpy change occuring during the combustion of the mole of the substances in excess of oxygen. $\Delta_{c} \mathrm{H}^{\circ}$ is always less than zero.
$>$ Enthalpy of Atomisation-It is the enthalpy change accompanying the dissociation of 1 mole of substance into gaseous atoms.
$>$ Bond Enthalpy $\left(\Delta_{\text {bond }} \mathbf{H}^{0}\right)$ —The average amount of energy required to break one mole of the bonds of a particular type in gaseous molecules.
$>$ Enthalpy of Solution $\left(\Delta_{\text {sol }} \mathbf{H}^{0}\right)$ —It is the enthalpy change taking place when 1 mole of the solute is dissolved in large excess of solvent so that on further dilution no enthalpy occurs.
$>$ Enthalpy of Hydration-It is the enthalpy change occuring during the hydration of 1 mole of anhydrous salt by combining with specific number of moles of water.
$>$ Lattice Enthalpy of an ionic compound is the enthalpy change which occurs when one mole of an ionic compound dissociates into its ions in gaseous state.
Q.1. The enthalpies of all elements in their standard states are :
[NCERT]
(i) Unity
(ii) zero
(iii) <0
(iv) different for each element

Ans. zero.
Q. 2. (i) $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}$

$$
\Delta \mathrm{H}=-2878 \mathrm{~kJ}
$$

$\Delta \mathrm{H}$ is the heat of \qquad of butane gas.
(ii) $\mathrm{HCl}(q)+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$; $\Delta \mathrm{H}=-57.1 \mathrm{~kJ}$
In real terms
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ $\rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}$ is the heat of \qquad of hydrochloric acid and sodium hydroxide solutions.
(iii) $\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}=716.7 \mathrm{~kJ}$ (graphite) $\Delta \mathrm{H}$ is the heat of of graphite.
(iv) $\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}=714.8 \mathrm{~kJ}$

(diamond)

$\Delta \mathrm{H}$ is the heat of of diamond.
(v) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=6.01 \mathrm{~kJ}$
$\Delta \mathrm{H}$ is the heat of \qquad of ice.
(vi) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) ; \Delta \mathrm{H}=-6.01 \mathrm{~kJ}$ $\Delta \mathrm{H}$ is the heat of \qquad of water.
(vii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}=40.7$ $\Delta \mathrm{H}$ is the heat of \qquad of water.
(viii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-40.7$
$\Delta \mathrm{H}$ is the heat of \qquad of steam.

Ans. (i) Combustion
(ii) Neutralization
(iii) Sublimation
(iv) Sublimation
(1 mark each)
(iv) Sublimation
. 3. Comment on the thermodynamic stability of $\mathrm{NO}(\mathrm{g})$, given :
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) ; \Delta_{r} \mathrm{H}^{0}=90.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta_{r} \mathrm{H}^{0}=-74 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
Ans. As can be seen from the first reaction, formation of NO is endothermic process and will take only when $90 \mathrm{~K} \mathrm{~mol}^{-1}$ energy is available. However, the second reaction involving the oxidation of NO to NO_{2} is an exothermic process and energetically more feasible. Therefore $\mathrm{NO}(\mathrm{g})$ is unstable and it would get converted into $\mathrm{NO}_{2}(\mathrm{~g})$ spontaneously.
Q. 4. Given : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$;
$\Delta_{r} \mathrm{H}^{0}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
What is the standard enthalpy of formation of NH gas?

Ans. Given : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$;
$\Delta_{f} \mathrm{H}^{\circ}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
This is the heat evolved for 2 moles of $\mathrm{NH}_{3}(\mathrm{~g})$
\therefore Heat evolved for 1 mole of $\mathrm{NH}_{3}(\mathrm{~g})$

$$
=\frac{-92.4}{2}=-46.2 \mathrm{~kJ}
$$

Hence $\Delta \mathrm{H}^{\circ}$ of NH_{3} gas $=-46.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. $\quad 1$
Q. 5. $\Delta \mathbf{U}^{\theta}$ of combustion of methane is $-\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1}$. The value of $\Delta \mathbf{H}^{\theta}$ is :
(i) $=\Delta \mathbf{U}^{\theta}$
(ii) $>\Delta \mathbf{U}^{\theta}$
(iii) $<\Delta \mathbf{U}^{\theta}$
(iv) $=0$

Ans. (iii) $\quad \Delta \mathrm{H}^{0}=\Delta \mathrm{U}^{0}+\Delta n \mathrm{RT}$

$$
\begin{aligned}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta n & =n_{\mathrm{P}}-n_{\mathrm{R}} \\
& =1-3=-2 \\
\Delta \mathrm{H} & =\Delta \mathrm{U}-2 \mathrm{RT} \\
\Delta \mathrm{H}^{\circ} & =\Delta \mathrm{U}^{\circ}
\end{aligned}
$$

SHORT ANSWER TYPE QUESTIONS-I

(2 marks each)
Q.1. (a) What does the following diagram indicate?

Ans. (a) Bomb calorimeter
(b) Bomb calorimeter is used for the measurement of ΔU.

1
Q.2. Enthalpy of combustion of carbon to CO_{2} is - $393.5 \mathrm{~kJ} / \mathrm{mol}$. Calculate heat released upon
formation of 35.2 g of CO_{2} from carbon and O gas?
Ans. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$;
1 mole 1 mole 1 mole
$\Delta \mathrm{H}=-393 \cdot 5 \mathrm{~kJ} / \mathrm{mol}^{-} \quad 1 / 2$
For formation of 44 g of CO_{2} heat released is $-393 \cdot 5$
$\mathrm{kJ} \mathrm{mol}^{-1}$
For formation of 35.2 g of CO_{2} heat released is
$=\frac{-393.5}{44} \times 35.2$
$=-314 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Q. 3. Enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are $-110,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Find the value of $\Delta_{\mathrm{r}} \mathrm{H}$ for the reaction.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})[\text { [NCERT] }
$$

Ans. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad 1 / 2$
$\Delta_{\mathrm{r}} \mathrm{H}=$?
$\Delta_{r} \mathrm{H}=\Sigma \Delta_{f} \mathrm{H}_{\text {(Product) }}-\Sigma \Delta_{f} \mathrm{H}_{\text {(reactants) }} \quad 1 / 2$
$=\left[\Delta_{f} \mathrm{H}\left(\mathrm{N}_{2} \mathrm{O}\right)+3 \times \Delta_{f} \mathrm{H}_{\mathrm{CO} 2}\right]$

$$
-\left[\Delta_{f} \mathrm{H}\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)+3 \times \Delta_{f} \mathrm{HCO}\right]
$$

$=[81+3 \times(-393)]-[9 \cdot 7+3(-110)] \quad 1 / 2$
$=-777 \cdot 8 \mathrm{~kJ}$. $1 / 2$
Q.1. (a) What is enthalpy change at constant volume. Explain.
(b) Calculate the enthalpy of transition for carbon from the following :
$\mathrm{C}_{\text {diamond }}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=-94.3 \mathrm{kcal}$
$\mathrm{C}_{\text {amorphous }}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-97.6 \mathrm{kcal}$
Also calculate the heat required to change.
1 g of $\mathrm{C}_{\text {diamond }}$ to $\mathrm{C}_{\text {amorphous }}$
[KVS-2014]
Ans. (a) When reaction is carried out in a closed vessed so that that volume remains constant, i.e., $\Delta \mathrm{V}=0$,
then $q_{p}=q_{v}=\Delta \mathrm{V}$ or $\Delta \mathrm{H}=\Delta \mathrm{U}$.
(b) Heat of transition of $C_{\text {diamond }}$ to $C_{\text {amorphous }}$
$\mathrm{C}_{\text {diamond }}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=-94 \cdot 3 \mathrm{kcal} \ldots(1)$
$\mathrm{C}_{\text {amorphous }}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-97.6 \mathrm{kcal}$
Substraction equation (2) from (1)
$C_{\text {diamond }}-C_{\text {amorphous }}=-94 \cdot 3-(-97 \cdot 6)$

$$
\begin{equation*}
=3.3 \mathrm{k} \mathrm{cal} \tag{1}
\end{equation*}
$$

This heat represents the transformation of 1 mole $\mathrm{C}_{\text {diamond }}$ to $\mathrm{C}_{\text {amorphous }}$
Therefore, heat of transformation for 1 g of $\mathrm{C}_{\text {diamond }}$ to $1 \mathrm{~g} \mathrm{C}_{\text {amorphous }}=3.3 \mathrm{k} \mathrm{cal} / 12$
Q. 2. Calculate the enthalpy change for the process.

$$
\mathrm{CCl}_{4}(\mathrm{~g}) \longrightarrow \mathrm{C}(\mathrm{~g})+4 \mathrm{Cl}(\mathrm{~g})
$$

and calculate bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in $\mathrm{CCl}_{4}(\mathrm{~g})$ Given :

$$
\begin{aligned}
\Delta_{\text {vap }} \mathrm{H}^{0}\left(\mathrm{CCl}_{4}\right) & =30 \cdot 5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{f} \mathrm{H}^{0}\left(\mathrm{Cl}_{4}\right) & =-135 \cdot 5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{a} \mathrm{H}^{0}(\mathrm{C}) & =715 \cdot 0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

where $\Delta_{a} \mathrm{H}^{\circ}$ is enthalpy of atomisation. $\Delta_{a} \mathrm{H}\left(\mathrm{Cl}_{2}\right)=242 \mathrm{~kJ} / \mathrm{mol}$.
Ans. (i) $\mathrm{CCl}_{4}(\mathrm{l}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{~g}) ; \Delta \mathrm{H}=30.5 \mathrm{~kJ} / \mathrm{mol}$
(ii) $\mathrm{C}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{l})$;

$$
\Delta \mathrm{H}_{2}=-135.5 \mathrm{~kJ} / \mathrm{mol}
$$

(iii) $\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}_{3}=715.0 \mathrm{~kJ} / \mathrm{mol}$
(iv) $\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \Delta \mathrm{H}_{4}=242 \mathrm{~kJ} / \mathrm{mol}$

Required equation

$$
\mathrm{CCl}_{4}(\mathrm{~g}) \longrightarrow \mathrm{C}(\mathrm{~g})+4 \mathrm{Cl}(\mathrm{~g}), \Delta \mathrm{H}=?
$$

Now carry out the following operations to get the required equation.
Eq. (iii) $+2 \times$ Eq. (iv) - Eq. (i) - Eq. (ii)
$\therefore \quad \Delta \mathrm{H}=\Delta \mathrm{H}_{3}+2 \Delta \mathrm{H}_{4}-\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}$
$\Delta \mathrm{H}=715+2 \times 242-30 \cdot 5-(-135 \cdot 50 \mathrm{~kJ} / \mathrm{mol}$

$$
=1304 \mathrm{~kJ} / \mathrm{mol}
$$

Since during this reaction, $4 \mathrm{C}-\mathrm{Cl}$ bonds are broken bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in CCl_{4} (average value)

$$
\begin{equation*}
=\frac{\Delta \mathrm{H}}{4}=\frac{1304}{4}=326 \mathrm{~kJ} / \mathrm{mol} . \tag{1}
\end{equation*}
$$

Q. 3. Calculate the standard enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}(1)$ from the following data.
(i) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-726 \mathrm{~kJ} / \mathrm{mol}
$$

(ii) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{c}} \mathrm{H}^{\circ}=-393 \mathrm{~kJ} / \mathrm{mol}$
(iii) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;

$$
\Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}
$$

Ans. The require equation is

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})
$$

$$
\Delta_{f} \mathrm{H}^{0}= \pm ? \frac{1}{2}
$$

Multiply eq. (iii) by 2 and add to eq. (ii)

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
\Delta \mathrm{H} & =(2 \times-286)+(-393) \\
& =-572-393 \\
& =-965 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Substract eq. (i) and eq. (iv)

$$
\begin{aligned}
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) & +\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) ; \\
\Delta \mathrm{H} & =-965-(-726) \\
& =-239 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H} & =-239 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Q. 4. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+394 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}+111 \mathrm{~kJ}$
expands energy in all forms to a total of 12000 kJ per day. What is the change in internal energy per day ? If the energy lost was stored as sucrose (1632 kJ per 100 g), how many days should it take to lose 1 kg ? (Ignore water loss for this problem).
Q. 6. The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are $-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1},-393.5$ $\mathbf{k J ~ m o l}{ }^{-1}$ and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate Enthalpy of formation of $\mathrm{CH}_{4}(\mathrm{~g})$.

Ans. Given : (i) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta \mathrm{H}=-890 \cdot 3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(ii) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-395 \cdot 5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l),

$$
\Delta \mathrm{H}=-285 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Aim : $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}), \Delta \mathrm{H}=$?
Eqn. (ii) $+2 \times$ Eqn. (iii) - Eqn. (i) gives the required equation with

$$
\begin{aligned}
\Delta \mathrm{H} & =-395 \cdot 5+2(-285 \cdot 8)-(-890 \cdot 3) \mathrm{kJ} \mathrm{~mol}^{-1} \\
& =-76 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Q. 6. Calculate the enthalpy or combustion of ethylene (gas) to form CO_{2} (gas) and $\mathrm{H}_{2} \mathrm{O}$ (gas) at 298 K and 1 atmospheric pressure. The enthalpies of formation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ are $-393 \cdot 7,-241 \cdot 8+52 \cdot 3 \mathrm{~kJ}$
per mole respectively.
Ans. We aim at :
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
We are given :

$$
\begin{gathered}
\Delta \mathrm{H}_{f\left(\mathrm{CO}_{2}\right)}=-393 \cdot 7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}_{f\left(\mathrm{H}_{2} \mathrm{O}\right)}=-241 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}_{f\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)}=+52 \cdot 3 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}_{\text {Reaction }}=\left(\text { Sum of } \Delta \mathrm{H}_{f}^{\circ} \text { values of Products }\right) \\
-\left(\text { Sum of } \Delta \mathrm{H}_{f}^{\circ} \text { values of Reactants }\right) \\
=\left[2 \times \Delta \mathrm{H}^{\circ}{ }_{f\left(\mathrm{CO}_{2}\right)}+2 \times \Delta \mathrm{H}^{\circ}{ }_{f\left(\mathrm{H}_{2} \mathrm{O}\right)}\right] \\
-\left[\Delta \mathrm{H}^{\circ}{ }_{f\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)}+3 \times \Delta \mathrm{H}^{\circ}{ }_{\left(\mathrm{O}_{2}\right)}\right] \\
=[2 \times(-393 \cdot 7)+2 \times(-241 \cdot 8)]-[(52 \cdot 3)+0] \\
\left(\because \Delta \mathrm{H}_{f}^{\circ} \text { for elementary substance }=0\right) \\
=[-787 \cdot 4-483 \cdot 6]-52 \cdot 3 \\
=-1323 \cdot 3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}
\end{gathered}
$$

Q. 6. Neither q nor w is a state function, yet $q+w$ is a state function. Explain why.

Ans. $q+w=\Delta \mathrm{E}$ and $\Delta \mathrm{E}$ is a state function.
Q. 7 WhenNH $\mathrm{H}_{4} \mathrm{NO}_{2}(\mathrm{~s})$ decomposes at 373 K , it forms
(g) and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. The $\Delta \mathrm{H}$ for the reaction at one atmospheric pressure and 373 K is $-223.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the value of $\Delta \mathrm{E}$ for the reaction under the same conditions?

$$
\text { (Given } \mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \text {) }
$$

Ans. $\quad \mathrm{NH}_{4} \mathrm{NO}_{2}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$,

$$
\begin{aligned}
& \Delta n_{g}=3-0=3 \\
& \Delta \mathrm{U}=\Delta \mathrm{H}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT} \\
&=-223 \cdot 6 \mathrm{~kJ} \mathrm{~mol}^{-1}-(3 \mathrm{~mol}) \\
& \times\left(8 \cdot 314 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(373 \mathrm{~K}) \\
&=-232 \cdot 9 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
$$

(ii) The combustion of 1 mole benzene takes place at 298 K and 1 atm . After combustion $\mathrm{CO}_{2}(\mathrm{~g})$ and ${ }_{2} \mathrm{O}(1)$ are produced and 3267.0 kJ of heat is liberated. Calculate standard enthalpy of formation (Δ
${ }^{0}$) of Benzene. Standard enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(1)$ are $-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $-285 \cdot 83$ $\mathrm{kJ} \mathrm{mol}^{-1}$ respectively. [NCT-2007, NCT-2011]
(ii) $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;

$$
\Delta \mathrm{H}=-3267 \cdot 0 \mathrm{~kJ}
$$

Now, $\quad \Delta_{r} H^{0}=\Sigma \Delta_{f} H^{0}(\mathrm{P})-\Sigma \Delta_{f} \mathrm{H}^{0}(\mathrm{R})$

$$
=6 \times \Delta_{f} \mathrm{H}_{\left(\mathrm{CO}_{2}\right)}+3 \Delta_{f} \mathrm{H}_{1}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

$$
-\Delta_{f} \mathrm{H}^{0}{\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)}-\frac{15}{2} \Delta_{f} \mathrm{H}^{0}\left(\mathrm{O}_{2}\right)
$$

or $\quad-3267 \cdot 0=6 \times(-393 \cdot 5)+3(-285 \cdot 83)$

$$
-\Delta_{f} \mathrm{H}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)-\frac{15}{2}(\mathrm{O})
$$

(for elements enthalpy of formation is zero)

$$
\begin{aligned}
\Delta_{f} \mathrm{H}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) & =3267-6(393 \cdot 5)-3(285 \cdot 83) \\
\Delta_{f} \mathrm{H}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) & =3267-2361-857 \cdot 49 \\
& =48 \cdot 51 \mathrm{~kJ} / \mathrm{mol} .
\end{aligned}
$$

Q. 8. What are heat capacities at constant volume and constant pressure ? What is the relationship between them?
Ans. Heat capacity at constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$: Heat supplied to a system to raise its temperature by $1^{\circ} \mathrm{C}$, keeping the volume of the system constant is called its heat capacity at constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$.
Heat capacity at constant pressure $\left(C_{P}\right)$: Heat supplied to a system to raise its temperature through $1^{\circ} \mathrm{C}$ keeping the external pressure constant is called its heat capacity at constant pressure. (Cp). Relationship between C_{P} and C_{V} :

$$
C_{P}-C_{V}=R
$$

$>$ Spontaneous process-A process which has an urge or a natural tendency to occur in a particular direction either of its own or after proper initiation under a given set of conditions.
$>$ Entropy is a thermodynamic property which is a measure of disorder. It is related to heat absorbed at a constant temperature by the system in a reversible process as:
For a spontaneous change, total entropy change is positive. $\frac{q_{\text {rev }}}{T}$
$>$ Second law of Thermodynamics : The entropy of universe always tends to increase during any spontaneous process.
$>$ Third law of Thermodynamics : At absolute zero, the entropy of a perfectly crystalline substance is zero.
$>$ Gibbs energy is another thermodynamic property which is a measure of energy stored in a system or a substance that is available for doing useful work. It is related to changes in enthalpy and entropy of the system during a process as:
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
For a spontaneous change, $\Delta \mathrm{G}_{\text {sys }}<0$, for a non-spontaneous change, $\Delta \mathrm{G}_{\text {sys }}>0$, and $\Delta \mathrm{G}_{\text {sys }}=0$ shows equilibrium.

Important Formulae

$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}=2.303 \mathrm{RT} \log \mathrm{K}$
(i)
$\Delta \mathrm{U}=q+w \quad \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}=2.303 \mathrm{RT} \log \mathrm{K}$
(ii)

$$
\Delta \mathrm{U}=q+w
$$

(vi) For process to be spontaneous
(iii) $\Delta \mathrm{H}^{0}=\Sigma \Delta_{f} \mathrm{H}^{0}$ (Products) $-\Sigma \Delta_{f} \mathrm{H}^{\circ}$ (Reactants)
$\Delta S_{\text {system }}+\Delta S_{\text {surr }}>0$
(iv) $\Delta \mathrm{H}^{0}=$ [Sum ofH bondof reactants] - [Sum of Hbond of products]
(v)

$$
\begin{gather*}
\Delta \mathrm{S}=\quad \frac{q_{(\text {rev })}}{\mathrm{T}} \tag{viii}\\
\Delta \mathrm{~S}_{\mathrm{f}}=\Delta \mathrm{H}_{\mathrm{f}} / \mathrm{T}_{\mathrm{f}} \text { and } \Delta \mathrm{S}_{\text {vap }}=\Delta \mathrm{H}_{\text {vap }} / \mathrm{T}_{\mathrm{b}} .
\end{gather*}
$$

(vii)
(ix)

$$
\begin{aligned}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
\Delta \mathrm{G}_{\text {sys }} & =-\mathrm{T} \Delta \mathrm{~S}_{\text {Total }} \\
\Delta_{r} \mathrm{G}^{\circ} & =\Sigma \Delta_{f} \mathrm{G}^{\circ}(\text { Products })-\left\{\mathrm{G}^{\circ} \text { (Reactants }\right)
\end{aligned}
$$

(x) $\Delta \mathrm{G}_{\mathrm{T}, \mathrm{P}}<0$ refers to spontaneous process.

VERY SHORT ANSWER TYPE QUESTIONS

(1 mark each)

Q.1. Predict the sign of entropy change in each of the following :
(i) A liquid crystallises into solid.
(ii) Temperature of perfectly crystalline solid is raised from 0 K to 115 K .
(iii) $2 \mathrm{NaHCO}_{3}$ (s) $\longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}$ (g)
(iv) $\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{g})$.

Ans. (i) - ve
(ii) + ve
(iii) + ve because gaseous product is formed
(iv) + ve.
Q. 2. Predict the sign of entropy change for each of the following changes of state :
(1) $\mathrm{Hg}(\mathbf{1}) \longrightarrow \mathrm{Hg}(\mathrm{g})$
(2) $\mathrm{AgNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{AgNO}_{3}(\mathrm{aq})$
(3) $\mathrm{I}_{\mathbf{2}}(\mathrm{g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~s})$
(4) C (graphite) $\longrightarrow \mathrm{C}$ (Diamond). (1 mark each)

Ans.
(i) + ve
(iii) - ve
(ii) + ve
(iv) - ve.
Q. 3. A reaction $\mathbf{A}+\mathbf{B} \longrightarrow \mathbf{C}+\mathbf{D}+q$ is found to have entropy change. The reaction will be :
(1) Possible at high temperature
(2) Possible only at low temperature
(3) Not possible at any temperature
(4) Possible at any temperature.
[NCERT]
Ans. (4) Since the reaction is Exothermic $(\Delta \mathrm{H}<0)$ and has $\Delta S>0$, therefore, it is feasible at all temperatures because both the factors favour spontaneity. $\mathbf{1}$
Q.4. In the following changes, state whether order has
increased or decreased and consequently the direction of changes of entropy of the system.
(i) Stretched rubber band \rightarrow Loose rubber band.
(ii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
(iii) Dry ice (solid carbon dioxide) $\rightarrow \mathrm{CO}_{2}$ (g)
(iv) Steam \rightarrow Water
(v) $\mathrm{Cr}^{3+}+6 \mathrm{H}_{2} \mathrm{O}(a q) \rightarrow \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
(vi)

(vii) Proteins (helical form)
$\xrightarrow[\text { Denaturation }]{\text { light }}$ Proteins
(viii) Normal egg \rightarrow hard boiled egg.

Ans. (i) Order increases, entropy decreases.
(ii) Order increases, entropy decreases.
(iii) Disorder increases, entropy increases
(iv) Order increases, entropy decreases.
(v) Order increases, entropy decreases.
(vi) Order increases, entropy decreases.
(vii) Disorder increases, entropy increases.
(viii) Order increases, entropy decreases.
Q. 5. For an isolated system $\Delta U=0$, what will be ΔS ?

Ans. For an isolated system with $\Delta \mathrm{U}=0$, the spontaneous change will occur if $\Delta \mathrm{S}>0$.
Q. 1. For the reaction at 298 K

$$
2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}
$$

$\Delta \mathrm{H}=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ At what temperature will reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range? [NCERT] [KVS-2013]
Ans. For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$;

$$
\Delta \mathrm{H}=400 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

and $\Delta \mathrm{S}=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

For a spontaneous reaction $\Delta \mathrm{G}$ has to be negative $\Delta \mathrm{H}$ is $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (positive)
$\therefore \mathrm{T} \Delta \mathrm{S}$ has to be $>\Delta \mathrm{H}$
or $\quad \mathrm{T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}>\frac{400}{0.2}$
$1 / 2$
or $\quad \mathrm{T}>2000 \mathrm{~K}$
For the reaction to be spontaneous $\mathrm{T}>2000 \mathrm{~K} .1$
Q. 2. The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{0} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, $\mathrm{T}=300 \mathrm{~K}$.
[NCERT]
Ans. The equilibrium constant given for a reaction is 10 .

$$
\begin{aligned}
& \text { i.e., } \quad \mathrm{K} \quad=10 \\
& \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \mathrm{log} \mathrm{~K} \\
& =-2.303 \times 8.314 \times 300 \log 10 \\
& =-2.303 \times 8.314 \times 300 \times 1 \quad 1 / 2 \\
& =-5744 \cdot 142 \mathrm{~J} \mathrm{~mol}^{-1}=-5.744 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
$$

Q.3. For the following reaction
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta_{f} \mathrm{H}^{0}=-286 \mathrm{~kJ} / \mathrm{mol}$
Temperature $=298 \mathrm{~K}$
Calculate $\Delta \mathbf{S}$ in surroundings ?
[NCERT]
Ans. Since heat (enthalpy) is evolved in the above reaction.
\therefore It is absorbed by the surroundings.
i.e.,

$$
\begin{array}{rlrl}
q_{\text {surr }} & =+286 \mathrm{~kJ} / \mathrm{mol} & 1 / 2 \\
\Delta \mathrm{~S}_{\text {surr }} & =\frac{q_{\text {surr }}}{\mathrm{T}}=\frac{286000}{298} \mathrm{~J} & 1 / 2 \\
\Delta \mathrm{~S} & =959.73 \mathrm{JK}^{-1} . & & 1 \tag{1}
\end{array}
$$

Q.4. Calculate the entropy change ΔS per mole for following reaction.
Combustion of Hydrogen in a fuel cell at 298 K .

$$
\begin{gathered}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\Delta \mathrm{H}=241 \cdot 60 \mathrm{~kJ} \\
\Delta \mathrm{G}=288 \cdot 40 \mathrm{~kJ} .
\end{gathered}
$$

[NCERT]
Ans. $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Putting in the values,

$$
\begin{align*}
-288.40 & =-241.6-298 \times \Delta \mathrm{S} \\
\therefore \quad \Delta \mathrm{~S} & =\frac{-288.4+241.6}{-298} \tag{1}\\
& =0.157 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{align*}
$$

SHORT ANSWER TYPE QUESTIONS-II

Q.1. (a) Under what conditions is the heat absorbed by a system is equal to the work done by the system.
(b) Under what conditions the following reaction will be spontaneous :
(i) Reaction with both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ positive.
(ii) Reaction with both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ negative.
[KVS-2014]
Ans. (a) For an ideal gas undergoing an isothermal change, $\Delta \mathrm{U}=0$. Hence,

$$
q=-w
$$

i.e., the heat absorbed by the system is equal to work done by the system.
$11 / 2$
(b) (i) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=-\mathrm{ve}$, then reaction is spontaneous if both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are +ve .
Then, the reaction will be spontaneous, if $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$.
Therefore, the reaction with both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are positive will be spontaneous at sufficiently high temperature.
(ii) Now if both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are - ve.

That means - T $\Delta \mathrm{S}$ will become positive and the reaction will be spontaneous at low temperature. where, $\Delta \mathrm{G}$ will be negative.

$$
\begin{aligned}
\Delta \mathrm{G}=- & \Delta \mathrm{H}+\mathrm{T} \Delta \mathrm{~S} \\
& \text { at low temperature. }
\end{aligned}
$$

$\Delta G=-v e$
$11 / 2$
Q. 2. For a reaction $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \longrightarrow 2 \mathrm{D}(\mathrm{g})$.

$$
\Delta \mathbf{U}^{0}=-10 \cdot 5 \mathrm{~kJ}, \Delta \mathrm{~S}^{0}=-44 \cdot 1 \mathrm{JK}^{-1}
$$

Calculate ΔG° for the reaction and predict whether the reaction is spontaneous or not ?
[NCERT]
Ans.

$$
\begin{aligned}
\Delta \mathrm{H}^{0} & =\Delta \mathrm{U}^{0}+\Delta n_{(g)} \mathrm{RT} \\
\Delta \mathrm{U}^{0} & =-10 \cdot 5 \mathrm{~kJ} \\
\Delta n(g) & =2-3=-1 \mathrm{~mol} \\
\mathrm{~T} & =298 \mathrm{~K} \\
& \left(\text { Room temperature } 25^{\circ} \mathrm{C} \text { is taken }\right) \\
\mathrm{R} & =8.314 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}^{0} & =-10.5(\mathrm{~kJ})+[-1(\mathrm{~mol}) \\
& \times 8.314 \times 10^{-3}\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \times 298 \mathrm{~K}] \\
& =-12.978 \mathrm{~kJ} \quad 1
\end{aligned}
$$

According to Gibbs Helmoltz equation :

$$
\begin{aligned}
\Delta \mathrm{G}^{0} & =\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\
& =-12 \cdot 978(\mathrm{~kJ})-298(\mathrm{~K}) \\
& \quad \times-0.0441\left(\mathrm{kJK}^{-1}\right)^{1 / 2} \\
& =-12 \cdot 978+13.1418 \\
& =+0.1638 \mathrm{~kJ}
\end{aligned}
$$

Since $\Delta \mathrm{G}^{0}$ is positive, the reaction is non spontaneous.
Q.3. Calculate the standard Gibbs energy change for the formation of propane $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ at 298 K . Given that
$\Delta_{f} \mathrm{H}^{0}$ for propane $=-103.85 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
\mathrm{S}^{0}{ }_{\mathrm{M}} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) & =270 \cdot 2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\mathrm{~S}^{0}{ }_{\mathrm{M}} \mathrm{H}_{2}(\mathrm{~g}) & =130 \cdot 68 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
\mathrm{~S}^{0}{ }_{\mathrm{M}} \mathrm{C}_{\text {(graphite) }} & =5 \cdot 74 \mathrm{JK}^{-1} . \quad[N C E R T]
\end{aligned}
$$

Ans. The formation of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ is represented by

$$
\begin{array}{rlr}
3 \mathrm{C}_{\text {(graphite) }} & +4 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) & \mathbf{1} \\
\Delta \mathrm{S}^{0} & =\mathrm{S}^{0}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)-4 \mathrm{~S}^{0}\left(\mathrm{H}_{2}\right)-3 \mathrm{~S}^{0}(\mathrm{C}) \\
& =270 \cdot 2-[4 \times 130 \cdot 68)]-[3 \times 5 \cdot 74] \\
& =-269 \cdot 74 \mathrm{JK}^{-1} \tag{1}\\
\Delta_{f} \mathrm{G}^{0} & =\Delta_{f} \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\
& =-103 \cdot 85 \times 10^{3}(\mathrm{~J})-298(\mathrm{~K}) \\
& \quad \times\left(-269 \cdot 74 \mathrm{JK}^{-1}\right) \\
& =-23470 \cdot 48 \mathrm{~J} \\
& =23 \cdot 47 \mathrm{~kJ} .
\end{array}
$$

Q. 4. For the reaction :

$$
\begin{gathered}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\Delta \mathrm{H}=-95 \cdot 4 \mathrm{~kJ} \text { and } \Delta \mathrm{S}=-198 \cdot 3 \mathrm{JK}^{-1}
\end{gathered}
$$

Calculate the temperature at which Gibbs energy change (ΔG) is equal to zero. Predict the nature of the reaction at this temperature and above it ?
[*BSM 2011-12]
Ans.

$$
\text { when } \quad \begin{align*}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
\Delta \mathrm{G} & =0 \\
\Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{~S} \\
\mathrm{~T} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}} \\
{ }^{*} \text { BSM } & :(\text { Board Supplem } \\
& =\frac{-95 \cdot 4 \times 1000 \mathrm{~J}}{-198 \cdot 3 \mathrm{JK}^{-1}} \\
& =481 \mathrm{~K}
\end{align*}
$$

* BSM : (Board Supplementary Material)

At this temperature the reaction would be in equilibrium. With increase in temperature the opposing factor $\mathrm{T} \Delta \mathrm{S}$ would become more and hence $\Delta \mathrm{G}$ would become positive and the reaction would become non-spontaneous. The reacti8n would be spontaneous at the temperature below 481 K .
Q. 5. Fill up the blanks in the following table related to $\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (steam) at standard atmospheric pressure.
[NCERT]

S.	No.	$\mathbf{t}^{\circ} \mathbf{C}$	$\mathbf{T K}$	$\Delta \mathbf{H}$ (Enthalpy) change $\mathbf{k J ~ m o l}^{\mathbf{- 1}}$	$\Delta \mathbf{S}$ (Entropy change) $\mathbf{J ~ m o l}^{\mathbf{- 1}}$ $\mathbf{K}^{-\mathbf{1}}$	$\mathbf{T} \Delta \mathbf{S}$ $\mathbf{k J}$
$\Delta \mathbf{G}$ (Free energy) $\mathbf{k J}$						
1	90	363.0	41.1	-	-	+1.193
2	110	373.0	40.7	109	-	-
3	110	383.0	40.1	-	-	-0.979

Ans. (1)

$$
\begin{align*}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
+1 \cdot 193 & =41 \cdot 1-363 \times \Delta \mathrm{S} \\
363 \times \Delta \mathrm{S} & =41 \cdot 1-1 \cdot 193=39 \cdot 907 \\
\Delta \mathrm{~S} & =\frac{39 \cdot 907}{363} \\
& =0 \cdot 1099 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =110 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\mathrm{~T} \Delta \mathrm{~S} & =383 \times 109 \\
& =41747=41 \cdot 75 \mathrm{kJmol}^{-1} \tag{2}\\
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& =40 \cdot 7-41 \cdot 75 \\
& =-1 \cdot 05 \mathrm{kJmol}-1 \\
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
-0 \cdot 979 & =40 \cdot 1-\mathrm{T} \Delta \mathrm{~S} \tag{3}\\
\mathrm{~T} \Delta \mathrm{~S} & =40 \cdot 1+0 \cdot 979 \\
& =41 \cdot 079 \mathrm{kJmol}^{-1} \\
\Delta \mathrm{~S} & =\frac{\mathrm{T} \Delta \mathrm{~S}}{\mathrm{~T}}=\frac{41 \cdot 079}{383} \\
& =0 \cdot 1072 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =107 \cdot 2 \mathrm{~J} \mathrm{~mol} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} .
\end{align*}
$$

6 The heats of combustion of carbon and carbon monoxide are - 393.5 and $-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The heat of formation (in kJ) of carbon monoxide per mole is
(c) Given, $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$;

$$
\begin{equation*}
\Delta H_{1}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\Delta H_{2}=-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{ii}
\end{equation*}
$$

We have to find enthalpy of formation of $\mathrm{CO}(\mathrm{g})$

$$
\begin{equation*}
\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g}) ; \Delta H=? \tag{iii}
\end{equation*}
$$

By subtracting Eq. (ii) from Eq. (i), we get the required equation, i.e. Eq. (iii)

$$
\begin{aligned}
\therefore \Delta H=\Delta H_{1}-\Delta H_{2} & =(-393.5+283.5) \mathrm{kJ} \mathrm{~mol}^{-1} \\
& =-110 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

7 For the complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}()+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}()$, the amount of heat produced as measured in bomb calorimeter, is $1364.47 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming ideality the enthalpy of combustion, $\Delta_{C} H$, for the reaction will be ($R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
a) For the given reaction,

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \\
& \Delta U=-1364.47 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H=\Delta U+\Delta n_{g} R T \\
& \Delta n_{g}=2-3=-1 \\
& \therefore \quad \Delta H=-1364.47+(-1) \times 0.008314 \times 298 \\
&=(-1364.47-2.4776) \mathrm{kJ} \mathrm{~mol}^{-1} \\
&=-136695 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

8 energy ($\mathrm{kJ} \mathrm{mol}^{-1}$) of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond energy of a $\mathrm{C}-\mathrm{H}$ bond as $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

$$
\begin{aligned}
2 \mathrm{C}(s)+\mathrm{H}_{2}(g) & \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(g) ; & \Delta H & =225 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{C}(s) & \longrightarrow 2 \mathrm{C}(g) ; & \Delta H & =1410 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(g) & \longrightarrow 2 \mathrm{H}(g) ; & \Delta H & =330 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(7) (d) Key concept For calculation of $\mathrm{C} \equiv \mathrm{C}$ bond energy, first calculate dissociation energy of $\mathrm{C}_{2} \mathrm{H}_{2}$.

$$
\begin{array}{rlr}
\mathrm{C}_{2} \mathrm{H}_{2}(g) & \longrightarrow 2 \mathrm{C}(g)+2 \mathrm{H}(g) ; \Delta H=? & \ldots(\mathrm{i}) \\
\text { Given, } \mathrm{C}_{2} \mathrm{H}_{2}(g) & \longrightarrow 2 \mathrm{C}(g)+2 \mathrm{H}(g) ; \Delta H_{1}=-225 \mathrm{~kJ} \ldots \text { (ii) } \\
2 \mathrm{C}(s) & \longrightarrow 2 \mathrm{C}(g) ; \Delta H_{2}=1410 \mathrm{~kJ} & \ldots(\mathrm{iii}) \\
\mathrm{H}_{2}(\mathrm{~g}) & \longrightarrow 2 \mathrm{H}(\mathrm{~g}) ; \Delta H_{3}=330 \mathrm{~kJ} & \ldots(\mathrm{iv}) \tag{iv}
\end{array}
$$

Addition of Eqs. (ii), (iii) and (iv) gives Eq. (i)

$$
\begin{aligned}
\Delta H & =\Delta H_{1}+\Delta H_{2}+\Delta H_{3} \\
& =-225+1410+330=1515 \mathrm{~kJ} \\
\Delta H & =2 \mathrm{BE}_{(\mathrm{C}-\mathrm{H})}+\mathrm{BE}_{(\mathrm{C} \equiv \mathrm{C})} \\
1515 & =2 \times 350+\mathrm{BE}_{(\mathrm{C} \equiv \mathrm{C})} \\
\mathrm{BE}_{(\mathrm{C} \equiv \mathrm{C})} & =1515-700=815 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

9.1

Two litres of an ideal gas at a pressure of 10 atm expands isothermally at $25^{\circ} \mathrm{C}$ into a vacuum until its total volume is 10 litres. How much heat is absorbed and how much work is done in the expansion?

Solution

We have $q=-\mathrm{w}=p_{\text {ex }}(10-2)=0(8)=0$ No work is done; no heat is absorbed.

9.2

Consider the same expansion, but this time against a constant external pressure of 1 atm .

Solution

We have $q=-\mathrm{w}=p_{e x}(8)=8$ litre-atm

9.3

Consider the expansion given in problem 6.2 , for 1 mol of an ideal gas conducted reversibly.

Solution

We have $q=-\mathrm{w}=2.303 \mathrm{nRT} \log \frac{V_{f}}{V_{s}}$

$$
\begin{aligned}
= & 2.303 \times 1 \times 0.8206 \times 298 \times \log \frac{10}{2} \\
& =2.303 \times 0.8206 \times 298 \times \log 5 \\
& =2.303 \times 0.8206 \times 298 \times 0.6990 \\
& =393.66 \mathrm{~L} \text { atm }
\end{aligned}
$$

10 If water vapour is assumed to be a perfect gas, molar enthalpy change for vapourisation of 1 mol of water at lbar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the internal energy change, when
1 mol of water is vapourised at 1 bar pressure and $100^{\circ} \mathrm{C}$.
(i) The change $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta H=\Delta U+\Delta n_{g} \mathrm{R} T
$$

or $\Delta U=\Delta H-\Delta n_{g} R T$, substituting thr values, we get

$$
\begin{aligned}
& \Delta U=41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-1 \\
& \quad \times 8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 373 \mathrm{~K} \\
& =41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-3.096 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& =37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

11 A swimmer coming out from a pool is covered with a film of water weighing about 18 g . How much heat must be supplied to evaporate this water at 298 K ? Calculate the internal energy of vaporisation at 298 K .
$\Delta_{\text {vap }} H^{\ominus}$ for water
at $298 \mathrm{~K}=44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$
We can represent the process of evaporation as

No. of moles in $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(1)$ is
$=\frac{18 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}$
Heat supplied to evaporate 18 g water at
$298 \mathrm{~K}=\mathrm{n} \times \Delta_{\operatorname{tap}} H^{\ominus}$

$$
\begin{aligned}
& =(1 \mathrm{~mol}) \times\left(44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& =44.01 \mathrm{kJJ}
\end{aligned}
$$

(assuming steam behaving as an ideal gas).
$\Delta_{\text {vap }} U=\Delta_{\text {vap }} H^{\ominus}-p \Delta V=\Delta_{\text {vap }} H^{\ominus}-\Delta n_{g} R T$

$$
\begin{aligned}
& \Delta_{\text {vuw }} H^{V}-\Delta \mathrm{n}_{\mathrm{L}} \mathrm{R} T=44.01 \mathrm{kJJ} \\
& \quad-(1)\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})\left(10^{-3} \mathrm{kJJJ}^{-1}\right) \\
& \begin{aligned}
\Delta_{\text {vup }} U^{v} & =44.01 \mathrm{~kJ}-2.48 \mathrm{~kJ} \\
& =41.53 \mathrm{kJJ}
\end{aligned}
\end{aligned}
$$

