PREVIOUS HSE QUESTIONS FROM THE CHAPTER "CHEMICAL BONDING AND MOLECULAR STRUCTURE"

								_	
1.	-	energy curve for the fo	-	rogen r	nolecu	le on th	ie basis	of inter	-nuclear
_	distance between th		(2)						
2.	(i) What is meant by		(1)		_				
_		f BF_3 is zero, but that c		-		(2)			
3.		type AB ₂ E ₂ has 2 bond	-	ns and i	2 lone	pairs of	electro	ons. The	most
		his molecule is							
	(A) Tetrahedral			(D) Squ	iare py	ramid	(1)		
		ant postulates of VSEP	-	(3)	_				
4.	(i) Write the molecular orbital configuration of O_2 molecule. Account for its paramagnetic characte								acter. (2)
	ii) Calculate the bond order of O_2 molecule. (2) [December 2021]								
5.	Fill in the blanks :	1	Γ						
	Molecule	Structure	Bond Angle						
	BF ₃		120 ⁰						
	BeCl ₂	Linear				(-)			
~				(4)		(2)			
6.		er according to M.O. t	neory ?	(1)					
_	(ii) He ₂ molecule doe	· •		(2)					
7.		stulates of VSEPR theo	•	(2)		r			
		are of two types, whic	h are they ? Writ	te one e	exampl	e for ea	ich.	(2)	
8.	(i) Hybridisation of C		(D) 31	(4)					
	(A) sp ² (B) sp			(1)					
		aracteristics of hybrid		(1)	(\mathbf{a})	[C		0041	
0		aramagnetic, explain u	ising IVI.O. theory	/.	(2)	[Septe	ember 2	.021]	
9.	 9. (a) Define Bond angle. (1) (b) NH₃ and NF₃ molecules have a pyramidal shape with a lone pairs of electrons on nitrogen ator 								
		of NH ₃ is 4.9 x 10^{-30} Cm							
10		n water is lower than t				(1)	e reasor	1.	(2)
10							Drodic	t its gos	motry (1)
		of a molecule in which nfiguration of N ₂ mole		-	-		(2)	Dec 2[
11		es of compounds havi				(1)	(2)	[Dec 2	020]
11	(b) Draw the Lewis c	-	(ii) NF ₃			(1)			
12		disation of phosphoro	() 0		2	(1)			
12	• •	high reactivity of PCl_5 r		IUIECUI	ς.	(1)			
		ergy level diagram of C				(2)	[Marc	:h 2020]	
13		of BeF_2 is zero, while t		5 D Acc	count f		-	-	
15	molecular structure.			5 D. AU				70313 01 1	then
14		e type AB ₄ E has 4 bond	hairs of electro	ns and '	1 lone	nair ofe	lectron	Predict	t the most
14	stable structure of t						lection	····culet	the most
			trogen chloride i	s a gas	Why?	(1)			
15	 (b) Hydrogen fluoride is a liquid, while hydrogen chloride is a gas. Why? (1) Draw the molecular orbital diagram for F₂ molecule. Account for its magnetic character. (3) [July 2019] 							ulv 2019]	
	Represent the Lewis structure of Ozone (O_3) molecule and assign the formal charge on each atom. (2)							-	
10			,					24511 410	(-)

17. Among NaCl, $BeCl_2$ and $AlCl_3$, which one is more covalent? Justify the answer. (2)

- 18. Write the molecular orbital electronic configuration of N₂ and O₂ molecules. Compare the stability and magnetic behaviour of these molecules on the basis of M. O. theory.
 (3) [March 2019]
- If Z-axis is the internuclear axis, name the type of covalent bond formed by the overlapping of two p_yorbitals. (1)
- 20. Write any two limitations of octet rule. (2)
- 21. The diatomic species Ne₂, does not exist, but Ne₂⁻ can exist. Explain on the basis of molecular orbital theory. (4) [August 2018]
- 22. Predict the shape of XeF_4 molecule, according to VSEPR theory. (1)
- 23. By using the concept of hybridization, explain the structure of H_2O molecule. (2)
- 24. Write the molecular orbital electronic configurations of N2 and O2 and calculate their bond orders. Give a comparison of their stability and magnetic behaviour. (4) [March 2018]

(3)

- 25. a) The hybridization of C in ethene is
 - i) sp ii) sp² iii) sp³ iv) sp³d (1)
 - b) Explain sp³d² hybridization with an example.
 - c) Calculate the bond order of Lithium molecule. (At. no. of Li is 3) (1) [July 2017]
- 26. The geometry of the molecule is decided by the type of hybridisation.
 - a) Discuss the shape of PCI_5 molecule using hybridisation. (2)
 - b) Give the reason for the high reactivity of PCI_5 . (2)
 - c) Isoelectronic species have the same bond order. Among the following choose the pair having same bond order.
 - $CN^{-}, O_{2}^{-}, NO^{+}, CN^{+}$ (1) [March 2017]
- 27. VSEPR theory is used to predict the shape and bond angle of molecules.
 - a) Write the postulates of VSEPR theory. (2)
 - b) Explain the shape and bond angle of NH_3 molecule using VSEPR theory. (2)
 - c) PCl₅ molecule is unsymmetric. Why? (2) [September 2016]
- 28. a) The electronic configuration of a molecule can give information about bond order.
 - i) Write the molecular orbital configuration of F₂ molecule.
 - ii) Find its bond order. (2)
 - b) Give any two factors influencing the formation of an ionic bond. (2)
 - c) Give the shape of the following species. i) NH_4^+ ii) $HgCl_2$ (1) [March 2016]
- 29. a) The net dipole moment of a polyatomic molecule depends on the spatial arrangement of various bonds in the molecule. The dipole rnoment of BF₃ is zero while that of NF₃ is not zero. Justify. (2)
 - b) The type of hybridization indicates the geometry of a molecule. In water molecule, the oxygen atom is sp³ hybridized. But water molecule has no tetrahedral geometry. Explain (2)
- 30. The formation of molecular orbitals can be described by the linear combination of atomic orbitals.
 - a) Which one of the following correctly represents the formation of bonding molecular orbital from the atomic orbitals having wave functions ψ_A and ψ_B ?
 - i) $\psi_A x \psi_B$ ii) ψ_A / ψ_B iii) $\psi_A + \psi_B$ iv) $\psi_A \psi_B$ (1)
 - b) Write the electronic configuration of oxygen molecule on the basis of Molecular Orbital Theory. Justify the presence of double bond in it and account for its paramagnetic character. (2)

[October 2015]

31. Molecular orbital theory was developed by F. Hund and R.S. Mullikken.

- b) i) Write the molecular electronic configuration of the N_2 molecule. (1)
 - ii) Predict the stability and magnetic property of N_2 with reasons. (3)
- 32. In order to explain the geometrical shapes of molecules, the concept of hybridisation was introduced.
 - a) The geometry of SF₆ molecule is
 - i) Tetrahedral ii) Planar iii) Octahedral iv) Trigonal bipyramidal (1)
 - b) i) Define the term hybridisation. (1)
 - ii) Explain sp³ hybridisation taking methane (CH₄) as an example. (3) [March 2015]
- 33. a) Molecular orbitals are formed by the linear combination of atomic orbitals (LCAO). Give the salient features of molecular orbital theory. (3)
 - b) Explain $sp^{3}d$ hybridisation with a suitable example. (2)
- 34. a) The shape of the molecules is based on the VSEPR theory. Give the salient features of this theory. (3)b) Draw the potential energy curve for the formation of a hydrogen molecule on the basis of tinter nuclear distance of the hydrogen atoms. (2) [August 2014]
- 35. a) He₂ cannot exist as stable molecule. Justify this statement on the basis of bond order. (1)
 b) State Fajan's rule regarding the partial covalent character of an ionic bond. (1)
 - c) Which has higher boiling point o-nitrophenol or p-nitrophenol? Give reason. (3) [March 2014]
- 36. a) Only valence electrons of atoms take part in chemical combination. Draw the Lewis representation of NF₃. (1)
 - b) Define dipole moment. The dipole moment of BF_3 is zero. Why?(2)
 - c) Based on bond order compare the relative stability of O_2 and $O_2^{2^2}$. (2) [September 2013]
- 37. The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules.
 - a) Arrange the bond pair electron and lone pair electron in the decreasing order of the repulsive interactions among them. (1)
 - b) A molecule of the type AB₃E₂ has three bond pairs and two lone pairs of electrons. Predict the most stable arrangement of electron pairs in this molecule. (1)
 - c) The bond order value is an important property of a molecule. How is bond order related to bond length? (1)
 - d) Write the electronic configuration of an oxygen molecule and justify its magnetic character. (2)

[March 2013]

- 38. a) The ionic bonds have partial covalent character and the covalent bonds also show some ionic character.
 - i) Explain the covalent character of Lithium chloride using Fajan's rule (1)
 - ii) NF_3 and NH_3 show dipole moment. But the dipole moment of NF_3 is less than that of NH_3 . Why? (1)
 - iii) The covalent bond can be explained by Molecular Orbital Theory (MOT). Using MO diagram explain the paramagnetic nature of oxygen molecule. (3) [September 2012]
- 39. Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT) are the two important theories of chemical bonding.
 - a) Out of the following which is the hybridisation of phosphorus in PCI_5 ? (sp³, sp², dsp², sp³d) (1)
 - b) Explain the geometry of PCI_5 molecule and account for its high reactivity. (2)

c) Write the molecular orbital configuration of the C_2 molecule and calculate its bond order. (2)
[March 2012]
40. a) Hydrogen bonding plays an important role in determining the physical properties of substances.
i) Illustrate hydrogen bonding using an example. (1½)
ii) Compare the boiling points of o-nitro phenol and p-nitro phenol based on hydrogen bonding. (1½)
b) Describe the hybridisation and structure of PCl ₅ molecule. (2) [September 2011]
41. The attractive force which holds atoms together in a molecule is called a chemical bond.
a) Explain the formation of a H ₂ molecule on the basis of the valence bond theory (VBT). (2½)
b) Using the molecular orbital theory (MOT), explain why Ne ₂ molecule does not exist? $(1\frac{1}{2})$
c) Calculate the bond order of dinitrogen (N_2). (1) [March 2011]
42. VSEPR theory is used to predict the shape of covalent molecules.
a) State the main postulates of VSEPR theory. (3)
b) Based on VSEPR theory predicts the shape of H_2O and NH_3 . (2) [October 2010]
43. The stability and magnetic properties of a molecule can be explained using the molecular orbital theory
proposed by F. Hund and R.S. Mulliken.
a) Define bond order according to the M.O theory.
b) Draw the energy level diagram for the formation of O_2 molecule.
, , , , , , , , , , , , , , , , , , , ,
44. a) What do you understand by bond pair electrons and lone pair electrons? (2)
b) Explain the bond pair electrons and lone pair electrons H_2O and NH_3 molecules with suitable drawings.
(3) [March 2009]
45. Water is a liquid while H ₂ S is a gas.
a) Suggest the reason for the above fact. (1)
b) Explain the phenomenon. (2) [February 2008]